中考仿真试题
人教版中考仿真押题卷《数学试卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题 1.12-的倒数是( ) A. B. 12 C. D.2.为丰富国民精神文化生活,提升文化素养,全国各地陆续开展全民阅读活动. 现在的图书馆不单是人们学习知识的地方,更是成为人们休闲的好去处. 下列图书馆标志的图形中不是..轴对称图形的是( ) A. B. C. D. 3. 下列图形中,由AB ∥CD ,能得到∠1=∠2的是A. B. C. D. 4.如图,将RtABC 绕直角项点C 顺时针旋转90°,得到A' B'C ,连接AA',若∠1=20°,则∠B 度数是( )A. 70°B. 65°C. 60°D. 55°5.已知a b <,下列不等式中,变形正确的是( ) A. a 3b 3->- B. 3a 13b 1->- C. 3a 3b ->- D. a b 33> 6.2018年10月24日上午9时,港珠澳大桥正式通车,它是连接香港、珠海、澳门的超大型跨海通道,全长55 000米,数据55 000用科学记数法表示是( )A. 55×103B. 55×103C. 0.55×104D. 5.5×104 7.如图,下列选项中不是正六棱柱的三视图的是( )A. B. C. D.8.一组数据3、2、4、5、2,则这组数据的众数是( )A. 2B. 3C. 3.2D. 49.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,ED ⊥AB 于点D .若∠A =30°,AE =6 cm ,则BC 等于( )3 B. 3 cm 3 D.4 cm10.在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为d 0022A B +,例如:点P 0(0,0)到直线4x +3y ﹣3=0的距离为d 223543=+,根据以上材料,求点P 1(3,4)到直线y =﹣3544x +的距离为( ) A. 3 B. 4 C. 5 D. 6二.填空题11.因式分解:2ax 2﹣4axy +2ay 2=_____.12.函数2y x =-中,自变量的取值范围是 . 13.如图,点A(t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tanα=32 ,则t 的值是________.14.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于___________.15.如图,一折扇完全打开后,若外侧两竹片OA,OB的夹角为120°,扇面ABDC的宽度AC是OA的一半,且OA=30 cm,则扇面ABDC的周长为__________cm.16.如图,在平面直角坐标系中,已知△ABC与△DEF位似,原点O是位似中心,位似比12OAAD,若AB=1.5,则DE=_____.17.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是cm.18.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.三.解答题19.计算:(﹣1)2020+(π﹣3)0﹣3tan30°+11()2-.20.已知x 、y 满足方程组52251x y x y -=-⎧⎨+=-⎩,求代数式()()()222x y x y x y --+-的值. 21.如图,已知∠AOB =60°,点P 在边OA 上,OP =12,点M ,N 在边OB 上,PM =PN ,若MN =2,求OM 的长.22.如图,在平面直角坐标系xOy 中,△ABC 三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)将△A 1B 1C 1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A 2,B 2,C 2,请画出△A 2B 2C 2;(3)△A 1B 1C 1与△A 2B 2C 2面积之比为 (不写解答过程,直接写出结果).23.如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象相交于A(-1,n),B(2,-1)两点,与y 轴相交于点C .(1)求一次函数与反比例函数的表达式;(2)若点D 与点C 关于x 轴对称,求△ABD 的面积.24.如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G .(1)求证:BD ∥EF .(2)若BE =4,EC =6,△DGF 面积为8,求▱ABCD 的面积.25.随着城际铁路的开通,从甲市到乙市的高铁里程比快里程缩短了90千米,运行时间减少了8小时,已知甲市到乙市的普快列车里程为1220千米,高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)若从甲市到乙市途经丙市,且从甲市到丙市的高铁里程为780千米.某日王老师要从甲市去丙市参加14:00召开的会议,如果他买了当日10:00从甲市到丙市的高铁票,而且从丙市高铁站到会议地点最多需要0.5小时.试问在高铁列车准点到达的情况下,王老师能否在开会之前赶到会议地点?26.如图,AB 是⊙O 的直径,D 是⊙O 上一点,点E 时AD 的中点,过点A 作⊙O 的切线交BD 的延长线于点F .连接AE 并延长交BF 于点C .(1)求证:AB =BC ;(2)如果AB =10.tan ∠FAC =12,求FC 的长.27.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.答案与解析一、选择题1.12-的倒数是( )A. B. 12C. D.【答案】A【解析】【分析】根据倒数的定义求解即可.【详解】12-的倒数是,故选A.【点睛】本题考查了倒数,分子分母交换位置是求一个数倒数的关键.2.为丰富国民精神文化生活,提升文化素养,全国各地陆续开展全民阅读活动. 现在的图书馆不单是人们学习知识的地方,更是成为人们休闲的好去处. 下列图书馆标志的图形中不是..轴对称图形的是( )A. B. C. D.【答案】B【解析】【分析】轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴.据此可以分析.【详解】根据轴对称图形的定义可知,选项A,C,D,是轴对称图形,选项B不是轴对称图形.故选B【点睛】本题考核知识点:轴对称图形.解题关键点:理解轴对称图形的定义.3. 下列图形中,由AB∥CD,能得到∠1=∠2的是A. B. C. D.【答案】B【解析】【详解】分析:根据平行线的性质应用排除法求解:A、∵AB∥CD,∴∠1+∠2=180°.故本选项错误.B、如图,∵AB∥CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本选项正确.C、∵AB∥CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本选项错误.D、当梯形ABDC是等腰梯形时才有,∠1=∠2.故本选项错误.故选B.4.如图,将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,连接AA',若∠1=20°,则∠B的度数是( )A. 70°B. 65°C. 60°D. 55°【答案】B【解析】【分析】根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.【详解】∵将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故选B.【点睛】本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.5.已知a b <,下列不等式中,变形正确的是( )A. a 3b 3->-B. 3a 13b 1->-C. 3a 3b ->-D. a b 33> 【答案】C【解析】【分析】根据不等式的性质解答即可.【详解】解:A 、不等式a b <的两边同时减去3,不等式仍成立,即33a b -<-,故本选项错误; B 、不等式a b <的两边同时乘以3再减去1,不等式仍成立,即3131a b -<-,故本选项错误; C 、不等式a b <的两边同时乘以3-,不等式的符号方向改变,即33a b ->-,故本选项正确; D 、不等式a b <的两边同时除以3,不等式仍成立,即33a b <,故本选项错误; 故选C .【点睛】本题考查了不等式的性质注意:不等式两边都乘以同一个负数,不等号的方向改变.6.2018年10月24日上午9时,港珠澳大桥正式通车,它是连接香港、珠海、澳门的超大型跨海通道,全长55 000米,数据55 000用科学记数法表示是( )A. 55×103 B. 5.5×103 C. 0.55×104 D. 5.5×104 【答案】D【解析】【分析】由科学记数法公式()101<10n a a ⨯≤即可得到结果;【详解】455000=5.510⨯;故答案选D .【点睛】本题主要考查了科学记数法的表示,准确判断小数点的位置是关键.7.如图,下列选项中不是正六棱柱的三视图的是( )A. B. C. D.【答案】A【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选A.【点睛】本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.8.一组数据3、2、4、5、2,则这组数据的众数是( )A. 2B. 3C. 3.2D. 4【答案】A【解析】【分析】根据众数的概念进行求解即可.【详解】2出现了两次,其余数据均出现一次,2出现的次数最多,所以这组数据的众数是2,故选A.【点睛】本题考查了众数的概念,熟练掌握”众数是指一组数据中出现次数最多的数据”是解题的关键.9.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于点D.若∠A=30°,AE=6 cm,则BC等于()3cm B. 3 cm 3 D. 4 cm【答案】C【解析】【分析】根据直角三角形的性质求出DE ,根据角平分线的性质求出CE ,根据正切的定义计算即可.【详解】解:在Rt △ADE 中,∠A=30°,∴DE=12AE=3,∠ABC=60°, ∵BE 平分∠ABC ,ED ⊥AB ,∠ACB=90°,∴CE=DE=3,∠EBC=30°,在Rt △CBE 中,BC=tan CE EBC =∠(cm ), 故选:C .【点睛】本题考查的是角平分线的性质、直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为d,例如:点P 0(0,0)到直线4x +3y ﹣3=0的距离为d35=,根据以上材料,求点P 1(3,4)到直线y =﹣3544x +的距离为( ) A. 3 B. 4 C. 5 D. 6【答案】B【解析】【分析】先将直线的解析式化为定义中的形式,再根据距离公式计算即可. 【详解】∵3544y x =-+ ∴35044x y +-= ∴点1)(3,4P 到直线3544y x =-+5454== 故选:B .【点睛】本题考查了一次函数的几何应用:点到直角的距离公式,掌握理解距离公式是解题关键.二.填空题11.因式分解:2ax2﹣4axy+2ay2=_____.【答案】2a(x﹣y)2【解析】【分析】先提取公因式2a,再对余下的多项式利用平方差公式继续分解.【详解】解:原式=2a(x2﹣2xy+y2)=2a(x﹣y)2,故答案为:2a(x﹣y)2【点睛】本题主要考查因式分解,因式分解时,如果多项式的各项有公因式,首先考虑提取公因式,然后根据多项式的项数来选择方法继续因式分解,如果是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式,掌握上述因式分解的知识点是解题的关键.12.函数12yx=-中,自变量的取值范围是.【答案】x>2【解析】【分析】根据分式有意义和二次根式有意义的条件求解.详解】解:根据题意得,x﹣2>0,解得x>2.故答案为x>2.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα= 32,则t的值是________.【答案】2 【解析】【分析】根据正切的定义即可求解.【详解】∵点A (t ,3)在第一象限,∴AB=3,OB=t ,又∵tanα=AB OB =32, ∴t=2.故答案为2.14.如图,△ABC 绕点A 顺时针旋转45°得到△A′B′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于___________.2-1【解析】【分析】由旋转的性质可得45CAC BAB ∠'=∠'=︒,45B B ∠'=∠=︒,2AB AB '==可证AFB ∆',ADB ∆和BEF ∆为等腰直角三角形,分别求出ADB S ∆,BEF S ∆的值,即可求解.【详解】解:如图,设,AB B C ''交于点,BC B C '',交于点,90BAC ∠=︒,2AB AC ==45B C ∴∠=∠=︒,ABC ∆绕点顺时针旋转45︒得到△AB C '',45CAC BAB ∴∠'=∠'=︒,45B B ∠'=∠=︒,2AB AB '==, AFB ∴∆'是等腰直角三角形,AD BC ∴⊥,B F AF '⊥,212AF AB ='=, 21BF AB AF ∴=-=-, 45B ∠=︒,EF BF ⊥,AD BD ⊥,ADB ∴∆和BEF ∆为等腰直角三角形,212AD BD AB ∴===,21EF BF ==-, 图中阴影部分的面积1111(21)(21)2122ADB BEF S S ∆∆=-=⨯⨯---=-, 故答案为:21-.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质.15.如图,一折扇完全打开后,若外侧两竹片OA ,OB 的夹角为120°,扇面ABDC 的宽度AC 是OA 的一半,且OA =30 cm ,则扇面ABDC 的周长为__________cm .【答案】(30π+30)【解析】【分析】根据题意求出OC ,根据弧长公式分别求出AB 、CD 的弧长,根据扇形周长公式计算.【详解】由题意可得:1152OC AC OA ===, 弧AB 长=12030=20180ππ⨯, 弧CD 的长=12015=10180ππ⨯, ∴扇形ABCD 的周长=()20+10+15+15=30+30cm πππ, 故答案为()30+30π. 【点睛】本题主要考查了弧长的计算,准确理解所给图形找出相关的量是解题的关键. 16.如图,在平面直角坐标系中,已知△ABC 与△DEF 位似,原点O 是位似中心,位似比12OA AD =,若AB =1.5,则DE =_____.【答案】4.5【解析】【分析】根据位似图形的性质得出AO,DO 的长,进而得出, 13OA OD =,13AB DE =求出DE 的长即可 【详解】∵△ABC 与△DEF 位似,原点O 是位似中心,∴AB OA DE OD =, ∵12OA AD =, ∴13OA OD =, ∴13AB DE =, ∴DE =3×1.5=4.5. 故答案为4.5.【点睛】此题考查坐标与图形性质和位似变换,解题关键在于得出AO,DO 的长17.在等腰△ABC 中,AB=AC ,其周长为20cm ,则AB 边的取值范围是 cm .【答案】5<x <10.【解析】【分析】设AB=AC=x ,则BC=20﹣2x ,根据三角形的三边关系即可得出结论.【详解】∵在等腰△ABC 中,AB=AC ,其周长为20cm ,∴设AB=AC=x cm ,则BC=(20﹣2x )cm ,∴22022020x x x >-⎧⎨->⎩ , 解得5cm <x <10cm ,故答案为5<x <10.【点睛】本题考查了等腰三角形的性质,三角形三边关系,正确理解和灵活运用相关知识是解题的关键. 18.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.【答案】20﹣208000=401401. 【解析】【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为1,2,3,,第二个数的规律为:分子为1,2,3,,分母为222112,215,3110,+=+=+=等式右边的规律为:分子为3331,2,3,,分母为222112,215,3110,+=+=+=归纳类推得:第n 个等式为32211n n n n n -=++(n 为正整数) 当20n =时,这个等式为322202020201201-=++,即20800020401401-= 故答案为:20800020401401-=. 【点睛】本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键.三.解答题19.计算:(﹣1)2020+(π+11()2-.【答案】3.【解析】【分析】先计算有理数的乘方、零指数幂、特殊角的正切函数值、负整数指数幂,再计算实数的乘法,最后计算实数的加减运算即可.【详解】原式1123=+-+1112=+-+3=.【点睛】本题考查了有理数的乘方、零指数幂、特殊角的正切函数值、负整数指数幂等知识点,熟记各运算法则是解题关键.20.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.【答案】35【解析】【分析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,求出方程组的解得到x与y的值,代入计算即可求出值.【详解】原式=(x2-2xy+y2)-(x2-4y2)=x2-2xy+y2-x2+4y2=-2xy+5y2,方程组52251x yx y--⎧⎨+-⎩=①=②,①+②得:3x=-3,即x=-1,把x=-1代入①得:y=15,则原式=213+=555.【点睛】此题考查了代数式求值,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.21.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,求OM的长.【答案】OM=5.【解析】【分析】作PD⊥MN于D,根据30°角所对直角边是斜边一半的性质可得OD的长,根据等腰三角形三线合一的性质求出MD,即可得出OM的长.【详解】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,∠AOB=60º,OP=12,∴OD=12OP=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=12MN=1,∴OM=OD-MD=6-1=5.【点睛】本题主要考查了含30º角的直角三角形性质、等腰三角形的”三线合一”性质,过点P作PD⊥OB 是解答的关键.22.如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)△A1B1C1与△A2B2C2面积之比为(不写解答过程,直接写出结果).【答案】(1)作图见解析;(2)作图见解析;(3)1:4【解析】【分析】(1)根据关于x轴对称点的性质得出对应点位置进而得出答案;(2)根据将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以-2,得出各点坐标,进而得出答案;(3)利用位似图形的性质得出位似比,进而得出答案.【详解】(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3) ∵将△A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2,B2,C2,∴△A1B1C1与△A2B2C2的相似比为:1∶2,∴△A1B1C1与△A2B2C2面积之比为:1∶4.【点睛】本题考查了作图-轴对称变换、作图-位似变换,熟练掌握直角坐标系中的基本作图方法是解答的关键.23.如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象相交于A(-1,n),B(2,-1)两点,与y 轴相交于点C .(1)求一次函数与反比例函数的表达式;(2)若点D 与点C 关于x 轴对称,求△ABD 的面积.【答案】(1)一次函数的表达式为y =-x +1,反比例函数的表达式为y =-2x ;(2)S △ABD =3. 【解析】【分析】(1)先把B 点坐标代入m y x=中求出m ,得到反比例函数解析式为2y x =-,再利用解析式确定A 点坐标,然后利用待定系数法求一次函数解析式即可;(2)先利用一次函数解析式确定()0,1C ,利用关于x 轴对称的性质得到()0,1D -,则BD x ∥轴,然后根据三角形面积公式计算即可;【详解】解:(1)∵反比例函数m y x =的图象经过点B(2,-1), ∴m =-2.……∵点A(-1,n)在2y x=-的图象上,∴n =2.∴A(-1,2). 把点A ,B 的坐标代入y =kx +b ,得221k b k b ⎧-+=⎨+=-⎩解得11k b ⎧=-⎨=⎩, ∴一次函数的表达式为y =-x +1,反比例函数的表达式为2y x =-; (2)∵直线y =-x +1交y 轴于点C ,∴C(0,1).∵点D 与点C 关于x 轴对称,∴D(0,-1).∵B(2,-1),∴BD ∥x 轴.∴S △ABD =12×2×3=3. 【点睛】本题主要考查了反比例函数与一次函数的交点问题知识点,准确理解待定系数法求解析式是关键.24.如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G .(1)求证:BD ∥EF .(2)若BE =4,EC =6,△DGF 的面积为8,求▱ABCD 的面积.【答案】(1)证明见解析;(2)ABCD 的面积为100.【解析】【分析】(1)根据平行四边形的判定与性质即可得证;(2)先根据平行四边形的性质得出DF 、AD 的长和//,//AB CD BD EF ,再根据平行线的性质得出,F ADB FDG A ∠=∠∠=∠,然后根据相似三角形的判定与性质得出2()DFG ADB SDF S AD =,从而可求出ADB △的面积,由此即可得ABCD 的面积.【详解】(1)证明:∵四边形ABCD 是平行四边形∴//AD BC ,即//DF BE又∵DF =BE∴四边形BEFD 是平行四边形∴//BD EF ;(2)∵四边形ABCD 是平行四边形,4,6BE EC ==∴4,4610DF BE AD BC BE EC ====+=+=,//AB CD∴FDG A ∠=∠∵四边形BEFD 是平行四边形//BD EF ∴∴F ADB ∠=∠ ∴DFG ADB ~∴2244()()1025DFG ADB S DF SAD === ∵8DFG S =∴50ADBS=∴ABCD的面积为2250100ADBS=⨯=.【点睛】本题考查了平行四边形的判定与性质、相似三角形的判定与性质等知识点,较难的是题(2),利用平行四边形的性质得到两个三角形相似的条件是解题关键.25.随着城际铁路的开通,从甲市到乙市的高铁里程比快里程缩短了90千米,运行时间减少了8小时,已知甲市到乙市的普快列车里程为1220千米,高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)若从甲市到乙市途经丙市,且从甲市到丙市的高铁里程为780千米.某日王老师要从甲市去丙市参加14:00召开的会议,如果他买了当日10:00从甲市到丙市的高铁票,而且从丙市高铁站到会议地点最多需要0.5小时.试问在高铁列车准点到达的情况下,王老师能否在开会之前赶到会议地点?【答案】(1)高铁列车的平均时速为240千米/小时;(2)王老师能在开会之前到达.【解析】【分析】(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意可得,高铁走(1220-90)千米比普快走1220千米时间减少了8小时,据此列方程求解;(2)求出王老师所用的时间,然后进行判断.【详解】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,122012209082.5x x--=,解得:x=96,经检验,x=96是原分式方程的解,且符合题意,则2.5x=240,答:高铁列车的平均时速为240千米/小时;(2)780÷240=3.25,则坐车共需要3.25+0.5=3.75(小时),从10:00到下午14:00,共计4小时>3.75小时,故王老师能在开会之前到达.【点睛】此题考查分式方程的应用,解题关键在于列出方程26.如图,AB是⊙O的直径,D是⊙O上一点,点E时AD的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB=BC;(2)如果AB=10.tan∠FAC =12,求FC的长.【答案】(1)证明见解析;(2)FC=203.【解析】【分析】(1)连接EB,可得BE⊥AC,∠ABE=∠CBE,再证∆ABE≅∆CBE,即可得到结论;(2)易得∠FAC=∠ABE,从而得AEBE=12,设AE=x,则BE=2x,可得AC=5BE=5,作CH⊥AF于点H,易证Rt△ACH∽Rt△BAE,可得HC=4,AH=8,由HC∥AB,得FCFB=HCAB,进而即可求解.【详解】(1)连接EB,∵AB是⊙O的直径,∴∠AEB=90°,∴BE⊥AC,∵点E为AD弧的中点,∴∠ABE=∠CBE,在∆ABE与∆CBE中,∵=90{AEB CEBBE BEABE CBE∠∠=︒=∠∠=,∴∆ABE≅∆CBE(ASA),∴BA=BC;(2)∵AF为切线,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan ∠ABE =tan ∠FAC =12, ∵在Rt △ABE 中,tan ∠ABE =AE BE =12, ∴设AE =x ,则BE =2x , ∴AB =5x ,即5x =10,解得:x =25,∴∆ABE ≅∆CBE ,∴AC =2AE =45,BE =45,作CH ⊥AF 于点H ,∵∠HAC =∠ABE ,∴Rt △ACH ∽Rt △BAE ,∴HC AE =AH BE =AC AB ,即HC 25=AH 45=4510, ∴HC =4,AH =8,∵HC ∥AB ,∴FC FB =HC AB ,即FC FC 10+=25, 解得:FC =203.【点睛】本题主要考查圆的基本性质,锐角三角函数以及相似三角形的综合,掌握圆周角定理的推论,锐角三角函数的定义以及相似三角形的判定和性质定理,是解题的关键.27.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.【答案】(1)抛物线的表达式为:223y x x =--;(2)POD S ∆有最大值,当14m =时,其最大值为4916;(3) (3,23)Q -或()3,23-或113113,22⎛⎫-+- ⎪ ⎪⎝⎭或1133313,22⎛⎫--+ ⎪ ⎪⎝⎭. 【解析】【分析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解;(2)设点()2,23P m m m --,求出32OG m =+,根据()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,利用二次函数的性质即可求解; (3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角关系,确定直线OQ 倾斜角,进而求解.【详解】解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =,故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 坐标代入一次函数表达式:y sx t =+并解得,直线PD 的表达式为:32y mx m =--,则32OG m =+,()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++, ∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况: ①当ACB BOQ ∠=∠时,4AB =,32BC =,10AC =,过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:22AH =, ∴CH 2则tan 2ACB ∠=,则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:3x =±故点(3,3)Q -或()3,23-;②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:12x -±=,故点13,22Q ⎛⎫-+- ⎪ ⎪⎝⎭或1322⎛⎫-+ ⎪ ⎪⎝⎭;综上,点Q -或(或1122⎛⎫-+- ⎪ ⎪⎝⎭或⎝⎭. 【点睛】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
2022——2023学年山东省菏泽市中考数学专项提升仿真模拟试题(3月4月)含答案

2022-2023学年山东省菏泽市中考数学专项提升仿真模拟试题(3月)一、选一选(本大题共8小题,共24.0分)1.2-的相反数是()A.2- B.2C.12D.12-2.下列标识中,既是轴对称图形,又是对称图形的是()A.B.C.D.3.关于x 的方程kx 2+2x ﹣1=0有实数根,则k 的取值范围是()A .k≥﹣1B.k≥﹣1且k≠0C.k≤﹣1D.k≤1且k≠04.函数y =中,自变量x 的取值范围是()A.0x ≠B.5x ≥ C.5x ≤ D.5x >5.函数k y x=与()20y kx k k =-+≠在同一直角坐标系中的大致图象可能是()A. B. C. D.6.已知1001m n x y -=+=-,,则代数式()()n x m y +--的值是()A.-101B.101C.99D.-997.如图,CB=1,且OA=OB,BC⊥OC,则点A 在数轴上表示的实数是()A.B. C.D.﹣8.如图,在Rt ABC 中,∠C =90°,AC =1cm ,BC =2cm ,点P 从A 出发,以1cm/s 的速沿折线AC →CB →BA 运动,最终回到A 点.设点P 的运动时间为x (s),线段AP 的长度为y (cm),则能反映y 与x 之间函数关系的图像大致是()A. B. C. D.二、填空题(本大题共6小题,共18.0分)9.因式分解x3-9x=__________.10.为应对金融危机,某工厂从2008年到2010年把某种产品的成本下降了19%,则平均每年下降的百分数为______.11.如图,用一个可以转动的转盘(转盘被平均分成面积相等的三部分)做游戏,转动转盘两次,两次所得数字之乘积大于5的概率为______.12.如图是一个几何体的三视图,根据图中标注的数据可求得该几何体的侧面积为_____.13.如图,在△OAB 中,C 是AB 的中点,反比例函数y=kx(k >0)在象限的图象A ,C 两点,若△OAB 面积为6,则k 的值为_____.14.已知二次函数2y ax bx c =++的图象如图所示,它与x 轴的两个交点的坐标分别为()1,0-,()3,0.对于下列结论:0abc >①;②240b ac ->;③当120x x <<时,12y y >;④当13x -<<时,0.y >其中正确的有______个.三、计算题(本大题共1小题,共10.0分)15.有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放需要各种费用300元,据预测,每天每千克价格上涨0.1元.(1)设x 天后每千克苹果的价格为p 元,写出p 与x 的函数关系式;(2)若存放x 天后将苹果性售出,设总金额为y 元,求出y 与x 的函数关系式;(3)该水果店将这批水果存放多少天后性售出,可以获得利润,利润为多少?四、解答题(本大题共9小题,共68.0分)16.101112+33tan30---.17.先化简再求值:212x x -+÷(12x +﹣1),其中x =13.18.在某次反潜演习中,我A 测得离开海平面的下潜潜艇C 的俯角为37 ,位于A 正上方1100米的反潜飞机B 测得此时潜艇C 的俯角为67 ,求前艇C 离海平面的下潜深度.(参考数据:3sin375≈,4cos375≈ ,3tan374≈ ,12sin6713≈ ,5cos6713≈ ,12tan67)5≈ 19.如图,在Rt ABC 中,90B ∠= ,12AB BC cm ==,点D 从点A 开始沿边AB 以2/cm s 的速度向点B 移动,移动过程中始终保持//DE BC ,//DF AC ,求:出发几秒时,四边形DFCE 的面积为220cm .20.某校有2000名学生,为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了150名学生进行抽样.整理样本数据,得到下列图表:某校150名学生上学方式的分布表方式划记人数步行正正正15骑车正正正正正正正正正正51乘公共交通工具正正正正正正正正正45乘私家车正正正正正正30其他正9合计150(1)理解画线语句的含义,回答问题:如果150名学生全部在同一个年级抽取,那么这样的抽取是否合理?请说明理由.答:__________________________________.(2)该校数学兴趣小组获取的信息,向学校提出了一些建议.如:骑车上学的学生数约占全校的34%,建议学校合理安排自行车停车场地.请你上述统计的全过程,再提出一条合理化建议:________________________.21.小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃没有超过1kg 收费22元,超过1kg ,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y (元),所寄樱桃为x (kg ).(1)求y 与x 之间的函数关系式;(2)已知小李给外婆快寄了2.5kg 樱桃,请你求出这次快寄的费用是多少元?22.如图,AB 为O 的直径,弦//CD AB ,E 是AB 延长线上一点,CDB ADE ∠=∠.()1DE 是O 的切线吗?请说明理由;()2求证:2AC CD BE =⋅.23.某中学计划购买A 型和B 型课桌凳共200套,经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用没有能超过40880元,并且购买A 型课桌凳的数量没有能超过B 型课桌凳的23,求该校本次购买A 型和B 型课桌凳共有几种?哪种的总费用?24.如图,二次函数2y ax 2x c =++的图象与x 轴交于点()1,0A -和点B ,与y 轴交于点()0,3C .()1求该二次函数的表达式;()2过点A的直线//AD BC且交抛物线于另一点D,求直线AD的函数表达式;()3在()2的条件下,在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与ABD△相似?若存在,求出点P的坐标;若没有存在,请说明理由.2022-2023学年山东省菏泽市中考数学专项提升仿真模拟试题(3月)一、选一选(本大题共8小题,共24.0分)1.2-的相反数是()A.2-B.2C.12D.12-【正确答案】B【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B.本题考查求相反数,熟记相反数的概念是解题的关键.2.下列标识中,既是轴对称图形,又是对称图形的是()A. B. C. D.【正确答案】A【分析】根据对称图形的定义旋转180°后能够与原图形完全重合即是对称图形,以及轴对称图形性质做出判断.【详解】A既是对称图形,也是轴对称图形,故此选项正确;B没有是对称图形,是轴对称图形,故此选项错误;C没有是对称图形,是轴对称图形,故此选项错误;D是对称图形,没有是轴对称图形,故此选项正确.故选:A.考点:对称图形;轴对称图形.3.关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1B.k≥﹣1且k≠0C.k≤﹣1D.k≤1且k≠0【正确答案】A【分析】分两种情况讨论:(1)当0k=时,方程为一元方程,必有实数根;(2)当0k ≠时,方程为一元二次方程,当0∆≥时,必有实数根.【详解】(1)当0k =时,方程为一元方程,必有实数根;(2)当0k ≠时,方程为一元二次方程,当0∆≥时,必有实数根:()4410k ∆=--≥,解得1k ≥-,综上所述,1k ≥-.故选.A本题考查了根的判别式,要注意,先进行分类讨论,当方程是一元方程时,总有实数根;当方程为一元二次方程时,根的情况要通过判别式来判定.4.函数y =中,自变量x 的取值范围是()A.0x ≠B.5x ≥ C.5x ≤ D.5x >【正确答案】D【分析】根据分式及二次根式有意义的条件,即可得出的取值范围.【详解】解:由题意得:,解得:.故选:.本题考查了二次根式及分式有意义的条件,属于基础题.注意掌握二次根式有意义的条件:被开方数为非负数,分式有意义;分母没有为零.5.函数k y x=与()20y kx k k =-+≠在同一直角坐标系中的大致图象可能是()A. B. C. D.【正确答案】B【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【详解】解:由解析式y =-kx 2+k 可得:抛物线对称轴x =0;A 、由双曲线的两支分别位于二、四象限,可得k <0,则-k >0,抛物线开口方向向上、抛物线与y 轴的交点为y 轴的负半轴上,而没有是交于y 轴正半轴,故选项A 错误;B 、由双曲线的两支分别位于一、三象限,可得k >0,则-k <0,抛物线开口方向向下、抛物线与y 轴的交点在y 轴的正半轴上,本图象符合题意,故选项B 正确;C 、由双曲线的两支分别位于一、三象限,可得k >0,则-k <0,抛物线开口方向向下、抛物线与y 轴的交点在y 轴的正半轴上,而没有是y 轴的负半轴,本图象没有符合题意,故选项C 错误;D 、由双曲线的两支分别位于一、三象限,可得k >0,则-k <0,抛物线开口方向向下、抛物线与y 轴的交点在y 轴的正半轴上,而没有是开口向上,本图象没有符合同意,故选项D 错误.故选B .本题考查二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k 取值是否矛盾;(2)根据二次函数图象判断抛物线与y 轴的交点是否符合要求.6.已知1001m n x y -=+=-,,则代数式()()n x m y +--的值是()A .-101B.101C.99D.-99【正确答案】A【分析】将()()n x m y +--整理为(m-n )与(x+y )表示的形式,再将1001m n x y -=+=-,代入计算.【详解】∵1001m n x y -=+=-,,∴()()n x m y +--=n+x-m+y=-(m-n )+(x+y )=-100-1=-101,故选:A.此题考查整式的化简求值,可以将代数式的值整体代入计算,题中加括号是难点.7.如图,CB=1,且OA=OB,BC⊥OC,则点A 在数轴上表示的实数是()A.B. C.D.﹣【正确答案】D【详解】试题解析:∵BC ⊥OC ,∴∠BCO=90°,∵BC=1,CO=2,∴OB=OA===,∵点A 在原点左边,∴点A 故选D .8.如图,在Rt ABC 中,∠C =90°,AC =1cm ,BC =2cm ,点P 从A 出发,以1cm/s 的速沿折线AC →CB →BA 运动,最终回到A 点.设点P 的运动时间为x (s),线段AP 的长度为y (cm),则能反映y 与x 之间函数关系的图像大致是()A. B. C. D.【正确答案】A【分析】根据题目已知,分三种情况讨论,①当点P 在线段AC 上运动时,②当点P 在线段CB 上运动时,③当点P 在线段BA 上运动时,根据速度×时间=路程,以及三角形的三边长度,分析即可.【详解】∵∠C =90°,AC =1,BC =2,∴AB ==线段AP 的长是一个分段函数,①当点P 在线段AC 上运动时,自变量x 的取值范围是01x ≤≤,由题图可知AP x =,即y x =;②当点P 在线段CB 上运动时,自变量x 的取值范围是13x ≤<,则1CP x =-,在Rt APC中,AP =y ==;③当点P 在线段BA 上运动时,自变量x的取值范围是33x <≤+,则3BP x AC BC x =--=-,故(3)3y AP AB BP x x ==---=-+(01)(13)3(33x x y x x x ≤≤⎧∴=<≤-+<≤+⎪⎩各选项的图象可知A 选项正确.故选A .本题考查了函数图像,函数图像的性质,勾股定理,掌握函数图像的性质是解题的关键.二、填空题(本大题共6小题,共18.0分)9.因式分解x 3-9x=__________.【正确答案】x (x+3)(x-3)【分析】先提取公因式x ,再利用平方差公式进行分解.【详解】解:x 3-9x ,=x (x 2-9),=x (x+3)(x-3).【点睛】本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,分解因式要彻底.10.为应对金融危机,某工厂从2008年到2010年把某种产品的成本下降了19%,则平均每年下降的百分数为______.【正确答案】10%【分析】如果把2006年的成本看作单位“1”,设平均每年下降的百分率为,那么2009年的成本为元,2010年的成本为元,而此时的成本为元,根据这个等量关系列出方程.【详解】解:设每年下降的百分率为,由题意,可得,解得,(没有合题意舍去),所以平均每年下降的百分率为.故.本题考查了一元二次方程的解,可根据题意列出方程,判断所求的解是否符合题意,舍去没有合题意得解.11.如图,用一个可以转动的转盘(转盘被平均分成面积相等的三部分)做游戏,转动转盘两次,两次所得数字之乘积大于5的概率为______.【正确答案】1 3【分析】根据树状图,利用概率公式解答.【详解】解:画树状图如下:由树状图可知所有可能结果共有种等可能结果,其中乘积大于的有种,两次所得数字之乘积大于的概率为.故.本题考查了列表法与树状图,树状图适合两步或两步以上完成的,解题时要注意此题是放回实验还是没有放回实验.用到的知识点为:概率=所求情况数与总情况数之比.12.如图是一个几何体的三视图,根据图中标注的数据可求得该几何体的侧面积为_____.【正确答案】2π【分析】易得此几何体为圆柱,圆柱的侧面积=底面周长×高.【详解】解:由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆形可得此几何体为圆柱,易得圆柱的底面直径为,高为,侧面积.故.本题考查圆柱的侧面积计算公式,关键是得到该几何体的形状.13.如图,在△OAB 中,C 是AB 的中点,反比例函数y=k x(k >0)在象限的图象A ,C 两点,若△OAB 面积为6,则k 的值为_____.【正确答案】4【分析】分别过点A 、点C 作OB 的垂线,垂足分别为点M 、点N ,根据C 是AB 的中点得到CN 为AMB 的中位线,然后设MN NB a ==,CN b =,2AM b =,根据OM AM ON CN ⋅=⋅,得到OM a =,根据面积32236a b ab =⋅÷==求得2ab =,从而求得224k a b ab =⋅==.【详解】分别过点A 、点C 作OB 的垂线,垂足分别为点M 、点N ,如图点C 为AB 的中点,∴CN 为AMB 的中位线,∴MN NB a ==,CN b =,2AM b =,OM AM ON CN ⋅=⋅,∴()2OM b OM a b ⋅=+⋅,∴OM a =,∴32236AOB S a b ab =⋅÷== ,∴2ab =,∴224k a b ab =⋅==.故答案为.4本题考查了反比例函数的比例系数的几何意义及三角形的中位线定理,关键是正确作出辅助线,掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是2k,且保持没有变.14.已知二次函数2y ax bx c =++的图象如图所示,它与x 轴的两个交点的坐标分别为()1,0-,()3,0.对于下列结论:0abc >①;②240b ac ->;③当120x x <<时,12y y >;④当13x -<<时,0.y >其中正确的有______个.【正确答案】①②③【分析】首先根据对称轴公式a 的取值可判定出0b <,根据a 、b 、c 的正负即可判断出①的正误;抛物线与x 轴有两个没有同的交点,则240b ac ∆=->,故②正确;根据二次函数的性质即可判断出③的正误;由图象可知:当13x -<<时,0y <,即可判断出④的正误.【详解】根据图象可得:抛物线开口向上,则0a >,抛物线与y 交于负半轴,则0c <,对称轴:b x 02a=->,∴0b <,∴0abc >,故①正确;它与x 轴的两个交点分别为()1,0-,()3,0,则240b ac ∆=->,故②正确;抛物线与x 轴的两个交点分别为()1,0-,()3,0,∴对称轴是1x =,抛物线开口向上,∴当1x <时,y 随x 的增大而减小,∴当120x x <<时,12y y >,故③正确;由图象可知:当13x -<<时,0y <,故④错误;故正确的有①②③.故①②③.此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定抛物线的开口方向,当0a >时,抛物线开口向上;当0a <时,抛物线开口向下.②项系数b 和二次项系数a 公共决定对称轴的位置:当a 与b 同号时(即0ab >),对称轴在y 轴左侧;当a 与b 异号时(即0ab <),对称轴在y 轴右侧.(简称:左同右异)③常数项c 决定抛物线与y 轴的交点,抛物线与y 交于()0,c .三、计算题(本大题共1小题,共10.0分)15.有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放需要各种费用300元,据预测,每天每千克价格上涨0.1元.(1)设x 天后每千克苹果的价格为p 元,写出p 与x 的函数关系式;(2)若存放x 天后将苹果性售出,设总金额为y 元,求出y 与x 的函数关系式;(3)该水果店将这批水果存放多少天后性售出,可以获得利润,利润为多少?【正确答案】()1 0.14p x =+;()22580040000y x x =-++;(3)该水果店将这批水果存放50天后性售出,可以获得利润,利润为12500元.【分析】(1)根据按每千克4元的市场价收购了这种苹果10000千克,此后每天每千克苹果价格会上涨0.1元,进而得出x 天后每千克苹果的价格为p 元与x 的函数关系;(2)根据每千克售价乘以销量等于总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【详解】()1根据题意知,0.14p x =+;()()()220.141000050580040000y x x x x =+-=-++.()3300410000w y x =--⨯ 25500x x=-+25(50)12500x =--+∴当50x =时,利润12500元,答:该水果店将这批水果存放50天后性售出,可以获得利润,利润为12500元.此题主要考查了二次函数的应用以及二次函数最值求法,得出w 与x 的函数关系是解题关键.四、解答题(本大题共9小题,共68.0分)16.101tan30---.【分析】本题涉及二次根式化简、负指数幂、角的三角函数值三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.11tan30-︒--3333=+33=+-=本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记角的三角函数值,熟练掌握零指数幂、二次根式化简、值等考点的运算.17.先化简再求值:212x x -+÷(12x +﹣1),其中x =13.【正确答案】23【详解】分析:根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.详解:原式=111222x x x x x +---÷++()()=112•21x x x x x ()()()+-++-+=1x --()=1x-当13x =时,原式=113-=23.点睛:本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.18.在某次反潜演习中,我A 测得离开海平面的下潜潜艇C 的俯角为37 ,位于A 正上方1100米的反潜飞机B 测得此时潜艇C 的俯角为67 ,求前艇C 离海平面的下潜深度.(参考数据:3sin375≈ ,4cos375≈ ,3tan374≈ ,12sin6713≈ ,5cos6713≈ ,12tan67)5≈ 【正确答案】潜艇下潜深度是500米.【分析】作CD AB ⊥于点D ,设AD x =米,在直角ACD △中利用三角函数利用x 表示出CD ,然后在直角BCD △中利用三角函数即可列方程求得x 的值.【详解】如图,作CD AB ⊥于点.D 设AD x =米,在直角ACD 中,37ACD ∠= ,tan AD ACD CD∠=,4.3tan tan3734AD x x CD x ACD ∴====∠ 1100BD AB AD x ∴=+=+, 直角BCD 中,67BCD ∠= ,12tan tan675BD BCD CD ∠=== ,110012453x x +∴=,解得:500x =.答:潜艇下潜深度是500米.本题考查了解直角三角形的应用-仰角、俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.19.如图,在Rt ABC 中,90B ∠= ,12AB BC cm ==,点D 从点A 开始沿边AB 以2/cm s 的速度向点B 移动,移动过程中始终保持//DE BC ,//DF AC ,求:出发几秒时,四边形DFCE 的面积为220cm.【正确答案】出发1秒或5秒时,四边形DFCE 的面积为220cm .【分析】设点D 从点A 出发x 秒时,则四边形DFCE 面积为220cm .根据ABC ADE BDF DECF S S S S =-- 四边形,就可以求出结论.【详解】设点D 从点A 出发x 秒时,则四边形DFCE 的面积为220cm ,由题意,得()()11112122212212220222x x x x ⨯⨯-⨯⨯---=,解得:11x =,25x =.答:出发1秒或5秒时,四边形DFCE 的面积为220cm .本题考查了一元二次方程的运用及等腰直角三角形的性质的运用,三角形的面积公式的运用,解答时运用面积之间的关系建立方程是关键.20.某校有2000名学生,为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了150名学生进行抽样.整理样本数据,得到下列图表:某校150名学生上学方式的分布表方式划记人数步行正正正15骑车正正正正正正正正正正51乘公共交通工具正正正正正正正正正45乘私家车正正正正正正30其他正9合计150(1)理解画线语句的含义,回答问题:如果150名学生全部在同一个年级抽取,那么这样的抽取是否合理?请说明理由.答:__________________________________.(2)该校数学兴趣小组获取的信息,向学校提出了一些建议.如:骑车上学的学生数约占全校的34%,建议学校合理安排自行车停车场地.请你上述统计的全过程,再提出一条合理化建议:________________________.【正确答案】(1)没有合理,理由见解析;(2)下面的坐标系中绘制成条形统计图见解析.【分析】(1)根据抽样必须具有随机性,分析得出即可;(2)根据扇形统计图分别求出各种乘车的人数,进而画出条形图即可.【详解】()1没有合理,因为如果150名学生全部在同一个年级抽取,这样抽取的学生没有具有随机性,比较片面,所以这样的抽样没有合理;()2步行人数为:200010%200(⨯=人),骑车的人数为:200034%680(⨯=人),乘公共汽车人数为:200030%600(⨯=人),乘私家车的人数为:200020%400(⨯=人),乘其它交通工具得人数为:20006%120(⨯=人),如图所示:此题主要考查了扇形图与条形图的综合应用以及抽样的随机性,根据扇形图得出各部分所占比例是解题关键.21.小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃没有超过1kg 收费22元,超过1kg ,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y (元),所寄樱桃为x (kg ).(1)求y 与x 之间的函数关系式;(2)已知小李给外婆快寄了2.5kg 樱桃,请你求出这次快寄的费用是多少元?【正确答案】(1)28(01)1018(1)x y x x ≤⎧=⎨+⎩;(2)这次快寄的费用是43元.【分析】(1)根据快递的费用=包装费+运费由分段函数就,当0<x≤1和x >1时,可以求出y与x 的函数关系式;(2)由(1)的解析式可以得出x=2.5>1代入解析式就可以求出结论.【详解】(1)由题意,得当0<x≤1时,y=22+6=28;当x >1时y=28+10(x ﹣1)=10x+18;∴y=()()280110181x x x ⎧<≤⎪⎨+>⎪⎩;(2)当x=2.5时,y=10×2.5+18=43.∴这次快寄的费用是43元.22.如图,AB 为O 的直径,弦//CD AB ,E 是AB 延长线上一点,CDB ADE ∠=∠.()1DE 是O 的切线吗?请说明理由;()2求证:2AC CD BE =⋅.【正确答案】(1)结论:DE 是O 的切线,理由见解析;(2)证明见解析.【分析】(1)连接OD ,只要证明OD DE ⊥即可;(2)只要证明:AC BD =,CDB DBE ∽即可解决问题.【详解】()1解:结论:DE 是O 的切线.理由:连接OD .CDB ADE ∠=∠ ,ADC EDB ∴∠=∠,//CD AB Q ,CDA DAB ∴∠=∠,OA OD = ,OAD ODA ∠=∠∴,ADO EDB ∴∠=∠,AB Q 是直径,90ADB ∴∠= ,90ADB ODE ∴∠=∠= ,DE OD ∴⊥,DE ∴是O 的切线.()2//CD AB ,ADC DAB ∴∠=∠,CDB DBE ∠=∠,∴ AC BD=,AC BD ∴=,DCB DAB ∠=∠ ,EDB DAB ∠=∠,EDB DCB ∴∠=∠,CDB ∴ ∽DBE ,CD DB BD BE∴=,2BD CD BE ∴=⋅,2AC CD BE ∴=⋅.本题考查相似三角形的判定和性质、圆周角定理、切线的判定等知识,解题的关键是学会添加常用辅助线,准确寻找相似三角形解决问题,属于中考常考题型.23.某中学计划购买A 型和B 型课桌凳共200套,经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用没有能超过40880元,并且购买A 型课桌凳的数量没有能超过B 型课桌凳的23,求该校本次购买A 型和B 型课桌凳共有几种?哪种的总费用?【正确答案】(1)购买一套A 型课桌凳和一套B 型课桌凳各需180元和220元.(2)总费用是购买A 型80套,购买B 型120套.【分析】(1)设购买一套A 型课桌凳需要x 元,购买一套B 型课桌凳需要y 元,再根据“购买一套A 型课桌凳比购买一套B 型课桌凳少用40元”及“购买4套A 型和5套B 型课桌凳共需1820元”列方程组即可得出答案;(2)设购买a 套A 型课桌凳,则购买(200)a -套B 型课桌凳,再根据“购买23这两种课桌凳的总费用少于40880元”及“购买A 型课桌凳的数量没有能超过B 型课桌凳数量的”列一元没有等式组,求解后得到情况,再分别求得所需金额,作对比即可得出答案.【详解】(1)设购买一套A 型课桌凳需要x 元,购买一套B 型课桌凳需要y 元,根据题意得:40451820y x x y -=⎧⎨+=⎩解得:180220x y =⎧⎨=⎩答:购买一套A 型课桌凳需要180元,购买一套B 型课桌凳需要220元.(2)设购买a 套A 型课桌凳,则购买(200)a -套B 型课桌凳,根据题意得:180220(200)408802(200)3a a a a +-<⎧⎪⎨≤-⎪⎩解得:7880a <≤∵a 为整数79,80a = ∴共有2种购买,1:购买79套A 型课桌凳,121套B 型课桌凳;2:购买80套A 型课桌凳,120套B 型课桌凳.1所需费用:7918012122040840⨯+⨯=(元);2所需费用:8018012022040800⨯+⨯=(元).4080040840< ∴2购买80套A 型课桌凳,120套B 型课桌凳所需费用,费用为40800元.本题考查了二元方程组的应用及一元没有等式组的应用,找到相对应的等量关系和没有等关系是解题的关键.24.如图,二次函数2y ax 2x c =++的图象与x 轴交于点()1,0A -和点B ,与y 轴交于点()0,3C .()1求该二次函数的表达式;()2过点A 的直线//AD BC 且交抛物线于另一点D ,求直线AD 的函数表达式;()3在()2的条件下,在x 轴上是否存在一点P ,使得以B 、C 、P 为顶点的三角形与ABD △相似?若存在,求出点P 的坐标;若没有存在,请说明理由.【正确答案】(1)y=-x 2+2x+3;;(2)y=-x-1;(3)存在,P (35,0)或P (92-,0).【分析】(1)把A (-1,0),C (0,3)代入y=ax 2+2x+c 即可得到结果;(2)在y=-x 2+2x+3中,令y=0,则-x 2+2x+3=0,得到B (3,0),由已知条件得直线BC 的解析式为y=-x+3,由于AD ∥BC ,设直线AD 的解析式为y=-x+b ,即可得到结论;(3)①由BC ∥AD ,得到∠DAB=∠CBA ,只要当BC PB AD AB =或BC PB AB AD=时,△PBC ∽△ABD ,求出,AB=4,,代入比例式解得BP 的长度,即可得到P (35,0)或P (92-,0).【详解】解:(1)∵次函数y=ax 2+2x+c 的图象点A (-1,0)和点C (0,3),∴023a c c =-+⎧⎨=⎩,解得13a c =-⎧⎨=⎩,∴二次函数的表达式为y=-x 2+2x+3;(2)在y=-x 2+2x+3中,令y=0,则-x 2+2x+3=0,解得:x 1=-1,x 2=3,∴B (3,0),由已知条件得直线BC 的解析式为y=-x+3,∵AD ∥BC ,∴设直线AD 的解析式为y=-x+b ,∴0=1+b ,∴b=-1,∴直线AD 的解析式为y=-x-1.(3)①∵BC ∥AD ,∴∠DAB=∠CBA ,又∵D (4,-5),∴∠ABD≠45°,点P 在点B 得到左侧,∴只可能△ABD ∽△BPC 或△ABD ∽△BCP ,∴BC PB AD AB =或BC PB AB AD=时,∵A (-1,0),B (3,0),C (0,3),D (4,-5),∵AD=5,AB=4,,即4PB =或324=,解得BP=125或BP=152,∵3-125=35,3-152=92-,∴P (35,0)或P (92-,0).本题主要考查了二次函数解析式得确定、函数图象交点的求法,锐角三角形,最值得求法,相似三角形的判定和性质,解答(3)时,要分类讨论,以防漏解或错解.2022-2023学年山东省菏泽市中考数学专项提升仿真模拟试题(4月)一、选一选(本大题共8小题,共24.0分)1.0()π-的值是()A.π- B.πC.1-D.12.青岛“最美地铁线”--连接崂山和即墨的地铁11号线,在今年4月份开通,地铁11号线全长月58千米,58千米用科学记数法可表示为()A.50.5810m ⨯ B.45.810m ⨯ C.45810m ⨯ D.55.810m⨯3.如图是我国几家银行的标志,其中即是轴对称图形又是对称图形的有()A.2个B.3个C.4个D.5个4.“发红包”是最近兴起的一种娱乐方式,为了了解所在单位员工春节期间使用发红包的情况,小明随机了16名同事平均每个红包发的钱数,结果如下表平均每个红包发的钱数(元)25101520发红包的人数25522则此次中平均每个红包发的钱数的众数为()A.2元 B.5元 C.10元 D.5元和10元5.如图,已知AB 是O 的直径,25CBA ∠= ,则D ∠的度数为()A.25B.50C.65D.756.小明家离学校2000米,小明平时从家到学校需要用x 分钟,今天起床晚,恰迟到,走路速度比平时快5米/分钟,结果比平时少用了2分钟到达学校,则根据题意可列方程()A.2000200052x x -=- B.2000200052x x -=+ C.2000200052x x -=- D.2000200052x x -=+7.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是()A. B.C. D.8.如图,抛物线()210y ax bx c a =++≠,其顶点坐标为()1,3A -,抛物线与x 轴的一个交点为()3,0B -,直线()20y mx n m =+≠与抛物线交于A ,B 两点,下列结论:20a b -=①,0abc >②,③方程23ax bx c ++=有两个相等的实数根,④抛物线与x 轴的另一个交点是()1,0,⑤当31x -<<-时,有21.y y <其中正确结论的个数是()。
辽宁省大连市语文中考2024年仿真试题与参考答案

2024年辽宁省大连市语文中考仿真试题与参考答案一、积累与运用(本大题有7小题,每小题3分,共21分)1、(1)下列词语中,加点字的注音全部正确的一项是:A. 精湛(zhàn)精神焕发(huàn)灵丹妙药(dàn)B. 漫步(màn)漫不经心(màn)漫天飞舞(màn)C. 炽热(chì)炽手可热(chì)炽情(chì)D. 灵巧(qiǎo)灵活多变(líng)灵魂(hún)答案:A解析:A选项中所有加点字的注音都是正确的。
B选项中“漫不经心”的“漫”应读màn,C选项中“炽情”的“炽”应读chì,D选项中“灵活多变”的“灵”应读líng。
2、(2)下列句子中,没有语病的一项是:A. 为了确保本次活动的顺利进行,我们提前做好了充分的准备。
B. 随着科技的飞速发展,我们的生活越来越美好,但同时也带来了很多新的问题。
C. 他的演讲非常精彩,赢得了在场所有人的热烈掌声。
D. 通过这次参观,我对我国的历史文化有了更加深入的了解。
答案:C解析:A选项中“充分的准备”应改为“充分的准备工作”;B选项中“但同时也带来了很多新的问题”应改为“但也带来了很多新的问题”;D选项中“通过这次参观”应改为“通过参观”。
C选项句子结构完整,语义清晰,没有语病。
3、下列句子中,加点字词的用法与其他三句不同的一项是:A. 城春草木深。
B. 春风又绿江南岸。
C. 春江潮水连海平。
D. 春色满园关不住。
答案:B解析:A、C、D三句中的“春”字都是名词作状语,表示“在春天”。
而B句中的“春”字是使动用法,表示“使……变绿”。
因此,B句的用法与其他三句不同。
4、阅读下面的古诗文,回答问题。
绿蚁新醅酒,红泥小火炉。
晚来天欲雪,能饮一杯无?(1)解释下列词语在诗中的意思。
①绿蚁:________②新醅酒:________(2)这首诗表达了诗人怎样的情感?答案:(1)①绿蚁:酒上浮起的绿色泡沫。
【精品】中考仿真模拟测试《语文卷》含答案解析

中考语文仿真模拟测试题一、积累与运用(共22分)1.下列各组词语中加点的字读音无误..的一项是( )A. 徜.徉(cháng )扼.要(è)豢.养(huàn)纵横捭.阖(bǎi)B. 踟.蹰(zhī)瑕疵.(cī)果脯.(fǔ)茅塞.顿开(sè)C. 忖.度(cǔn)觊.觎(jì)倔.强(jué)情不自禁.(jìn)D. 惘.然(wǎng)罹.难(lí)癖.好(pì)前倨.后恭(jù)2.下列词语书写完全正确....的一项是( )A. 装璜笼络观摩针贬时弊B. 欧打歌阙引申蜚声遐迩C. 纱锭陨落昭示名门望族D. 朗诵慎密泄露挺而走险3.下列加点成语使用错误..的一项是( )A. 孩子和家长们设计出了五彩斑斓、别出心裁....的风筝,有可爱的小猪佩琪、有翩翩飞舞的蝴蝶、有炊烟袅袅的小房子……B. 同样办一件事,有的人认真负责,有的人敷衍塞责,其效果殊途同归....。
C. 一带一路跨越高山深海,在大陆上落地生根,在海洋中乘风破...浪.,画出最壮美的经济走廊。
D. 我在卸甲坡村扶贫一年多以来,群众对我的称呼可谓是五花八门....。
4.下列选项没有语病....、句意明确的一项是( )A. 市委书记董卫民认真听取了项目发展定位、未来目标打算以及规划设计,鼓励企业整合文创资源,形成文化创意与科技创新相融合的产业,为区域经济发展助力。
B. 为巩固校园周边食品安全,城管执法局联合市场监管局对学校周边各商户开展食品安全专项整治行动。
C. 每年三月,数千株樱花盛开北山头,花瓣随风飘扬,好似一场缤纷浪漫的樱花雨,吸引各地游客前来欣赏。
D. 目前已经启动了尹家湖、红星湖环境综合整治,实施了土地重金属污染土壤整治,修复示范工程等治理,并对116起环境违法进行了立案查处。
5.填入文段空格的句子,衔接最恰当...的一项是( )森林火灾是森林最危险敌人,也是林业最可怕的灾害,它会给森林带来最有害,具有毁灭性的后果。
最新中考物理模拟(仿真)试题7(含答案)

最新中考物理模拟(仿真)试题(含答案)姓名:班级:得分:一、单项选择题(每小题2分,共28分)1、如图所示为某物体做直线运动时的路程随时间变化的图象。
下列分析正确的是()A.在0~20s内物体一直在做匀速直线运动B.在5~10s时间内,物体通过的路程为0mC.在0~10s内物体的平均速度为4m/sD.在0~5s内与10~20s内物体的速度之比为2:12、如图所示是探究声现象的四种实验情景,下列说法正确的是()A.甲图抽出罩内空气实验,现象结果说明声音的传播需要介质B.乙图拨动钢尺实验,说明钢尺振动的频率越高,响度越大C.丙图敲击音叉实验,说明音叉的振幅越大,音调越高D.丁图轻弹橡皮膜,附近的烛焰随着跳动,说明声波能传递信息3、下列物态变化现象中,需要吸热的是()①初春,冰雪消融汇成溪流②盛夏,从冰箱中取出的鸡蛋会“冒汗”③金秋,清晨的雾在太阳出来后散去④初冬,清晨草地上出现霜A.①②B.②③C.①③ D.③④4、眼睛是心灵的窗户,关于眼睛及其视力矫正,下列说法中正确的是()A.眼睛的晶状体相当于凹透镜B.物体通过晶状体所成的像是虚像C.矫正近视眼所配戴的眼镜镜片是凹透镜D.远处景物通过近视眼成像在视网膜的后方5、小明想用天平称出20g水,先用正确的方法测出空烧杯的质量,如图1所示,然后在右盘中增加20g砝码,接着向烧杯中注入一定量的水,指针位置如图2所示。
接下来的操作应该是()A.向左调节平衡螺母B.向左移动游码C.用滴管向烧杯中加水D.用滴管从烧杯中取水6、力的作用都是相互的,下列现象中没有利用这一原理的是()A.向前划船时,要用桨向后拨水B.人向前跑步时,要向后下方蹬地C.火箭起飞时,要向下方喷气D.踢球时,脚对球施加向前的力7、如图示,三个质量和底面积均相同的容器,分别装有质量和深度均不相等的三种不同液体,A、B、C三个容器底部受到的压强相等。
下列说法错误的是()A.液体的密度关系为ρA>ρB>ρCB.三容器底部所受液体的压力F A=F B=F CC.桌面受到的压强p A<p B<p CD.三容器中所盛液体的质量m A>m B>m C8、如图所示,弹性轻绳的上端固定在O点,拉长后将下端固定在体验者的身上,并与固定在地面上的扣环相连。
最新中考物理模拟(仿真)试题4(含答案)

最新中考物理模拟(仿真)试题(含答案)姓名:班级:得分:一、单项选择题(每小题2分,共28分)1、如图所示是探究声现象的四种实验情景,下列说法正确的是()A.甲图抽出罩内空气实验,现象结果说明声音的传播需要介质B.乙图拨动钢尺实验,说明钢尺振动的频率越高,响度越大C.丙图敲击音叉实验,说明音叉的振幅越大,音调越高D.丁图轻弹橡皮膜,附近的烛焰随着跳动,说明声波能传递信息2、疫情期间,如图所示的体温计起到了重要的作用,关于该体温计,下列说法正确的是()A.每次使用后必须用沸水消毒B.读数时不能离开人体C.分度值是 1℃D.根据液体热胀冷缩的原理制成3、请根据下列诗句的意思判断涉及到光的折射的是()A.绿树浓荫夏日长,楼台倒影入池塘 B.峰多巧障日,江远欲浮天C.举杯邀明月,对影成三人 D.大漠孤烟直,长河落日圆4、如图所示,A、B、C、D是距凸透镜不同距离的四个点,F为焦点。
下列成像原理与图中物体在不同点时的成像情况相对应,其中正确的是()A.放大镜使用时的成像情况与物体放在C点时的成像情况相似B.电影放映机是根据物体放在D点时的成像特点制成的C.照相机是根据物体放在A点时的成像特点制成的D.人眼看物体时的成像情况与物体放在F点时的成像情况相似5、下列说法正确的是()A.一块砖切成体积相等的两块后,砖的密度变为原来的一半B.铁的密度比铝的密度大,表示铁的质量大于铝的质量C.一钢瓶中氧气的密度为ρ,用掉一部分后,瓶中氧气的密度还是为ρD.铜的密度是8.9×103kg/m3,表示1m3铜的质量为8.9×103kg6、下面关于弹力的说法不正确的是()A.发生弹性形变的物体会对它所接触的物体产生弹力的作用B.平时所说的压力、支持力、拉力等都可以认为是弹力C.同一物体发生的弹性形变越大,产生的弹力就越大D.树枝被吹弯了,说明两个物体不接触也能产生弹力7、如图所示,甲、乙两个不同的实心圆柱体放在水平地面上。
2022年中考仿真模拟检测《数学卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共6小题)1.2020的相反数是( )A. 2020B. ﹣2020C. 12020D. 12020- 2.下列计算中,正确的是( )A. a 2•a 4=a 8B. (a 3)4=a 7C. (ab )4=ab 4D. a 6÷a 3=a 3 3.若将一个长方形纸条折成如图的形状,则图中∠1与∠2的数量关系是( )A. ∠1=2∠2B. ∠1=3∠2C. ∠1+∠2=180°D. ∠1+2∠2=180°4.已知两圆的半径分别为2和5,如果这两圆内含,那么圆心距d 的取值范围是( )A. 0<d <3B. 0<d <7C. 3<d <7D. 0≤d <3 5.如果正十边形的边长为a ,那么它的半径是( )A. sin 36a ︒B. cos36a ︒C. 2sin18a ︒D. 2cos18a ︒ 6.已知在四边形ABCD 中,AB ∥CD ,对角线AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是矩形是( )A. AD =BC ,AC =BDB. AC =BD ,∠BAD =∠BCDC. AO =CO ,AB =BCD. AO =OB ,AC =BD二.填空题(共12小题)7.分解因式:2mx -6my =__________.8.函数1x -中,自变量x 的取值范围是____________________. 9.从1,2,3,4,5,6,7,这七个数中,任意抽取一个数,那么抽到素数的概率是_____. 10.一组数据:2,2,5,5,6,那么这组数据的方差是_____.11.不等式组21021xx-+<⎧⎨-⎩解集是_____.12.方程+2x x=的根是__________.13.已知关于的一元二次方程2210mx x-+=有两个不相等的实数根,则的取值范围是___.14.在△ABC中,D、E分别在边AB、AC上,DE∥BC,DE经过△ABC的重心,如果AB=π,AC n=,那么DE=_____.(用π、n表示)15.如图,已知在5×5的正方形网格中,点A、B、C在小正方形的顶点上,如果小正方形的边长都为1,那么点C到线段AB所在直线的距离是_____.16.如图,已知在平面直角坐标系中,点A在x轴正半轴上,点B在第一象限内,反比例函数y=kx的图象经过△OAB的顶点B和边AB的中点C,如果△OAB的面积为6,那么k的值是_____.17.定义:对于函数y=f(x),如果当a≤x≤b时,m≤y≤n,且满足n﹣m=k(b﹣a)(k是常数),那么称此函数为”k级函数”.如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得k=3,所以函数y=﹣3x为”3级函数”.如果一次函数y=2x﹣1(1≤x≤5)为”k级函数”,那么k的值是_____.18.如图,已知在平行四边形ABCD中,AB=10,BC=15,tan∠A=43,点P是边AD上一点,联结PB,将线段PB绕着点P逆时针旋转90°得到线段PQ,如果点Q恰好落在平行四边形ABCD的边上,那么AP 的值是_____.三.解答题(共7小题)19.先化简,再求值:(1222a a ++-)÷2322a a a++,其中a =5+1. 20.解方程组: 22212320x y x xy y +=⎧⎨-+=⎩ 21.如图,有一拱桥的桥拱是圆弧形,已知桥拱的水面跨度AB (弧所对的弦的长)为8米,拱高CD (弧的中点到弦的距离)为2米.(1)求桥拱所在圆的半径长;(2)如果水面AB 上升到EF 时,从点E 测得桥顶D 的仰角为α,且cotα=3,求水面上升的高度.22.某社区为了加强居民对新型冠状病毒肺炎防护知识了解,鼓励社区居民在线参与作答《2020年新型冠状病毒肺炎的防护全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从该社区抽取40名居民的答卷,并对他们的成绩(单位:分)进行整理、分析,过程如下:收集数据85 65 95 100 90 95 85 65 75 85 100 90 70 90 100 80 80 100 95 75 80 100 80 95 65 100 90 95 85 80 100 75 60 90 70 80 95 75 100 90整理数据(每组数据可含最低值,不含最高值) 分组(分)频数 频率 60~704 0.1 70~80 a b 80~9010 025 90~100c d 100~1108 0.2分析数据(1)填空:a = ,b = ,c = ,d = ;(2)补全频率分布直方图;(3)由此估计该社区居民在线答卷成绩在(分)范围内的人数最多;(4)如果该社区共有800人参与答卷,那么可估计该社区成绩在90分及以上约为人.23.如图,已知在正方形ABCD中,对角线AC与BD交于点O,点M在线段OD上,联结AM并延长交边DC于点E,点N在线段OC上,且ON=OM,联结DN与线段AE交于点H,联结EN、MN.(1)如果EN∥BD,求证:四边形DMNE是菱形;(2)如果EN⊥DC,求证:AN2=NC•AC.24.如图,已知平面直角坐标系xOy中,抛物线y=ax2+bx+4经过点A(﹣3,0)和点B(3,2),与y轴相交于点C.(1)求这条抛物线的表达式;(2)点P是抛物线在第一象限内一点,联结AP,如果点C关于直线AP的对称点D恰好落在x轴上,求直线AP的截距;(3)在(2)小题的条件下,如果点E是y轴正半轴上一点,点F是直线AP上一点.当△EAO与△EAF全等时,求点E的纵坐标.25.如图,已知在△ABC中,∠ACB=90°,AC=4,BC=8,点P是射线AC上一点(不与点A、C重合),过P作PM⊥AB,垂足为点M,以M为圆心,MA长为半径的⊙M与边AB相交的另一个交点为点N,点Q 是边BC上一点,且CQ=2CP,联结NQ.(1)如果⊙M与直线BC相切,求⊙M的半径长;(2)如果点P在线段AC上,设线段AP=x,线段NQ=y,求y关于x的函数解析式及定义域;(3)如果以NQ为直径的⊙O与⊙M的公共弦所在直线恰好经过点P,求线段AP的长.答案与解析一.选择题(共6小题)1.2020的相反数是( )A. 2020B. ﹣2020C.12020D.12020【答案】B【解析】【分析】直接利用相反数的定义得出答案.【详解】解:2020的相反数是:﹣2020.故选:B.【点睛】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.下列计算中,正确的是()A. a2•a4=a8B. (a3)4=a7C. (ab)4=ab4D. a6÷a3=a3【答案】D【解析】【分析】直接利用积的乘方、幂的乘方运算法则以及同底数幂的乘除运算法则分别计算得出答案.【详解】A.a2•a4=a2+4=a6,故此选项计算错误,B.(a3)4=a3×4=a12,故此选项计算错误,C.(ab)4=a4b4,故此选项计算错误,D.a6÷a3=a6-3=a3,故此选项计算正确.故选D.【点睛】此题主要考查了积的乘方、幂的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.若将一个长方形纸条折成如图的形状,则图中∠1与∠2的数量关系是( )A. ∠1=2∠2B. ∠1=3∠2C. ∠1+∠2=180°D. ∠1+2∠2=180°【答案】A【解析】【分析】由折叠可得,∠2=∠ABC,再根据平行线的性质,即可得出∠1=∠ABD=2∠2.【详解】解:如图,由折叠可得,∠2=∠ABC,又∠2+∠ABC=∠ABD,即:∠ABD=2∠2,∵AB∥CD,∴∠1=∠ABD(两直线平行,内错角相等),∴∠1=∠ABD=2∠2故选:A.【点睛】本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键.4.已知两圆的半径分别为2和5,如果这两圆内含,那么圆心距d的取值范围是( )A. 0<d<3B. 0<d<7C. 3<d<7D. 0≤d<3【答案】D【解析】【分析】本题直接告诉了两圆的半径及两圆的位置的关系,根据数量关系与两圆位置关系的对应情况便可直接得出答案.【详解】解:由题意知,两圆内含,则0≤d<5-2(当两圆圆心重合时圆心距为0),即如果这两圆内含,那么圆心距d 的取值范围是0≤d <3,故选:D .【点睛】本题主要考查圆与圆的位置关系,①外离,则d >R+r ;②外切,则d=R+r ;③相交,则R-r <d <R+r ;④内切,则d=R-r ;⑤内含,则d <R-r .5.如果正十边形的边长为a ,那么它的半径是( ) A. sin 36a ︒ B. cos36a ︒ C. 2sin18a ︒ D. 2cos18a ︒【答案】C【解析】【分析】如图,画出图形,在直角三角形OAM 中,直接利用三角函数即可得到OA.【详解】如图,正十边形的中心角∠AOB=360°÷10=36°,AB=a∴∠AOM=∠BOM=18°,AM=MB=12a ; ∴OA=AM sin OAM ∠=218a sin ︒故选C.【点睛】本题考查三角函数,能够画出图形,找到正确的三角函数关系是解题关键.6.已知在四边形ABCD 中,AB ∥CD ,对角线AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是矩形的是( )A. AD =BC ,AC =BDB. AC =BD ,∠BAD =∠BCDC. AO =CO ,AB =BCD. AO =OB ,AC =BD【答案】B【解析】【分析】根据矩形的判定方法,一一判断即可解决问题.【详解】解:A、AB∥DC,AD=BC,无法得出四边形ABCD是平行四边形,故无法判断四边形ABCD是矩形.故错误;B、∵AB∥CD,∴∠BAD+∠ABC=∠ADC+∠BCD=180°,∵∠BAD=∠BCD,∴∠ABC=∠ADC,∴得出四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形.故正确;C、∵AO=CO,AB=BC,∴BD⊥AC,∠ABD=∠CBD,∵AB∥CD,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD,∴AB=CD,∴四边形ABCD是菱形,无法判断四边形ABCD是矩形.故错误;D、AO=OB,AC=BD无法判断四边形ABCD是矩形,故错误;故选:B.【点睛】本题考查矩形的判定方法、熟练掌握矩形的判定方法是解决问题的关键,记住对角线相等的平行四边形是矩形,有一个角是90度的平行四边形是矩形,有三个角是90度的四边形是矩形,属于中考常考题型.二.填空题(共12小题)7.分解因式:2mx-6my=__________.【答案】2m(x-3y)【解析】试题分析:对于因式分解的题目.如果有公因式,我们首先都需要提取公因式,然后利用公式法或十字相乘法进行因式分解.原式=2m(x-3y).考点:因式分解.8.函数中,自变量x的取值范围是____________________.【答案】x>1【解析】【分析】根据被开方数不能为负数,以及分母不能为零,列出不等式解不等式即可.【详解】根据题意得:x-1≥0,且x-1≠0解得x>1故填x>1【点睛】本题考查自变量的取值范围,正确列出不等式是解题关键.9.从1,2,3,4,5,6,7,这七个数中,任意抽取一个数,那么抽到素数的概率是_____.【答案】4 7【解析】【分析】根据素数定义,先找到素数的个数,让素数的个数除以数的总数即为所求的概率.【详解】解:∵1,2,3,4,5,6,7这7个数有4个素数是2,3,5,7;∴抽到素数的概率是47.故答案为:47.【点睛】本题考查的是概率公式.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn;找到素数的个数为易错点.10.一组数据:2,2,5,5,6,那么这组数据的方差是_____.【答案】14 5【解析】【分析】根据题意先求出这组数的平均数是4,再根据方差公式求解即可【详解】解:∵x=15(2+2+5+5+6)=4,∴S2=1n[(x1−x)2+(x2−x)2+…+(x n−x)2]=15[(4﹣2)2+(4﹣2)2+(4﹣5)2+(4﹣5)2+(4﹣6)2]=145,故答案为:145.【点睛】本题考查了方差:一般地设n个数据,x1,x2,…,x n的平均数为x,则方差S2=1n[(x1−x)2+(x2−x)2+…+(x n−x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.11.不等式组21021xx-+<⎧⎨-⎩解集是_____.【答案】13 2x <【解析】【分析】先求出各个不等式的解集,再求它们的公共解集即为不等式组得解集.【详解】解:21021xx-+<⎧⎨-⎩①②,解不等式①,得12 x>;解不等式②,得x≤3;所以原不等式组的解集为:13 2x<≤,故答案为:13 2x <.【点睛】此题主要考查了解一元一次不等式(组),关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.x=的根是__________.【答案】2【解析】【分析】本题可先对方程两边平方,得到x+2=x,再对方程进行因式分解即可解出本题.【详解】原方程变形为:x+2=x 即x−x−2=0∴(x−2)(x+1)=0∴x=2或x=−1∵x=−1时不满足题意.∴x=2.故答案为2.【点睛】此题考查解无理方程,解题关键在于掌握方程解法.13.已知关于的一元二次方程 2210mx x -+=有两个不相等的实数根,则的取值范围是___.【答案】1m <且0m ≠【解析】【分析】由二次项系数非零结合根的判别式△>0,即可得出关于m 的一元一次不等式组,解之即可得出结论.【详解】∵关于x 的一元二次方程mx 2-2x+1=0有两个不相等的实数根,∴()20240m m ≠⎧⎪⎨--⎪⎩=>, 解得:m <1且m≠0.故答案为1m <且0m ≠.【点睛】本题考查了根的判别式、一元二次方程的定义以及解一元一次不等式组,根据二次项系数非零结合根的判别式△>0列出关于m 的一元一次不等式组是解题的关键.14.在△ABC 中,D 、E 分别在边AB 、AC 上,DE ∥BC ,DE 经过△ABC 重心,如果AB =π,AC n =,那么DE =_____.(用π、n 表示) 【答案】2233n π- 【解析】分析】由DE ∥BC 推出AD :AB =AG :AF =DE :BC =2:3,推出DE =23BC ,求出 BC 即可解决问题.【详解】解:如图设G 是重心,作中线AF .∵DE ∥BC ,∴AD :AB =AG :AF =DE :BC =2:3,∴DE =23BC , ∵BC BA AC =+ ∴BC n π=-,∴()222333DE n n ππ=-=- 故答案为:2233n π-. 【点睛】本题考查三角形的重心、平行线的性质、平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.如图,已知在5×5的正方形网格中,点A 、B 、C 在小正方形的顶点上,如果小正方形的边长都为1,那么点C 到线段AB 所在直线的距离是_____.【答案】355【解析】分析】根据题意,连接AD 、AC ,作CE ⊥AD 于点E ,由每个小正方形的边长为1,利用勾股定理,可以得到AC 、CD 、AD 的长,然后即可得到△ACD 的形状,再利用等积法,即可求得CE 的长.【详解】解:连接AD 、AC ,作CE ⊥AD 于点E ,∵小正方形的边长都为1,∵224225+=223332+=22112+=∵((2225322=+,即AD 2=AC 2+CD 2∴△ACD 是直角三角形,∠ACD =90°, ∴22AC CD AD CE ⋅⋅=, 即32225=22CE ⨯⨯, 解得,CE =355, 即点C 到线段AB 所在直线的距离是355, 故答案为:355.【点睛】本题考查勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.16.如图,已知在平面直角坐标系中,点A 在x 轴正半轴上,点B 在第一象限内,反比例函数y =k x的图象经过△OAB 的顶点B 和边AB 的中点C ,如果△OAB 的面积为6,那么k 的值是_____.【答案】4【解析】【分析】过B 作BD ⊥OA 于点D ,设点B (m ,n ),根据△OAB 的面积为6,可以求得A 点坐标,而点C 是AB 的中点,即可表示出C 点坐标,再将点B 、C 坐标同时代入反比例函数解析式,即可求解.【详解】解:过B 作BD ⊥OA 于D ,∵点B在反比例函数kyx=的图象上,∴设B(m,n),∵△OAB的面积为6,∴12 OAn=,∴ (12n,),∵点C是AB的中点,∴ (122mnn+,2n),∵点C在反比例函数kyx=的图象上,∴12=22mn nmnn+⋅,∴4mn=,∴4k=.故答案为.【点睛】本题目考查反比例函数,难度一般,正确作出辅助线,设出点B的坐标,是顺利解题的关键.17.定义:对于函数y=f(x),如果当a≤x≤b时,m≤y≤n,且满足n﹣m=k(b﹣a)(k是常数),那么称此函数为”k级函数”.如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得k=3,所以函数y=﹣3x为”3级函数”.如果一次函数y=2x﹣1(1≤x≤5)为”k级函数”,那么k的值是_____.【答案】2【解析】【分析】先根据一次函数的性质求出对应的y的取值范围,再根据k级函数的定义解答即可.【详解】解:∵一次函数y=2x﹣1,1≤x≤5,∴1≤y≤9,∵一次函数y=2x﹣1(1≤x≤5)为”k级函数”,∴9-1=k(5-1),解得:k=2;故答案为:2.【点睛】本题是新定义试题,主要考查了对”k级函数”的理解和一次函数的性质,正确理解”k级函数”的概念、熟练掌握一次函数的性质是解题关键.18.如图,已知在平行四边形ABCD中,AB=10,BC=15,tan∠A=43,点P是边AD上一点,联结PB,将线段PB绕着点P逆时针旋转90°得到线段PQ,如果点Q恰好落在平行四边形ABCD的边上,那么AP 的值是_____.【答案】6或10【解析】【分析】分情况解答:当点Q落在CD上时,作BE⊥AD于E,QF⊥AD交AD的延长线于F.设PE=x,通过证明△PBE≌△QPF,得出PE=QF=x,DF=x﹣1,由tan∠FDQ=tan A=43=FQDF,即可得出AP的值;当点Q落在AD上时,得出∠APB=∠BPQ=90°,由tan A=43,即可得出AP的值;当点Q落在直线BC上时,作BE⊥AD于E,PF⊥BC于F.则四边形BEPF是矩形.由tan A=BEAE=43,可得出△BPQ是等腰直角三角形,此时求出BQ不满足题意,舍去.【详解】解:如图1中,当点Q落在CD上时,作BE⊥AD于E,QF⊥AD交AD的延长线于F.设PE=x.在Rt△AEB中,∵tan A=BEAE=43,AB=10,∴BE=8,AE=6,∵将线段PB 绕着点P 逆时针旋转90°得到线段PQ ,∴∠BPQ =90°,∴∠EBP +∠BPE =∠BPE +∠FPQ =90°,∴∠EBP =∠FPQ ,∵PB =PQ ,∠PEB =∠PFQ =90°,∴△PBE ≌△QPF (AAS ),∴PE =QF =x ,EB =PF =8,∴DF =AE +PE +PF ﹣AD =x ﹣1,∵CD ∥AB ,∴∠FDQ =∠A ,∴tan ∠FDQ =tan A =43=FQ DF , ∴1x x =43, ∴x =4,∴PE =4,∴AP =6+4=10;如图2,当点Q 落在AD 上时,∵将线段PB 绕着点P 逆时针旋转90°得到线段PQ ,∴∠BPQ =90°,∴∠APB =∠BPQ =90°,在Rt △APB 中,∵tan A =AP BP =43,AB =10, ∴AP =6;如图3中,当点Q 落在直线BC 上时,作BE ⊥AD 于E ,PF ⊥BC 于F .则四边形BEPF 是矩形.在Rt △AEB 中,∵tan A =BE AE =43,AB =10, ∴BE =8,AE =6,∴PF =BE =8, ∵△BPQ 是等腰直角三角形,PF ⊥BQ ,∴PF =BF =FQ =8,∴PB =PQ =,BQPB =16>15(不合题意舍去),综上所述,AP 的值是6或10,故答案为:6或10.【点睛】本题主要考查旋转的性质,由正切求边长,正确画出图形,分情况解答是解题的关键.三.解答题(共7小题)19.先化简,再求值:(1222a a ++-)÷2322a a a++,其中a. 【答案】2a a -,32+【解析】【分析】 先根据分式的混合运算法则化简,再把a 的值代入化简后的式子计算即可.【详解】解:原式=()()()()22232222a a a a a a a -+++÷+-+ =()()()2322232a a a a a a ++⨯+-+ =2a a -. 当a【点睛】本题考查了分式的化简求值和二次根式的除法运算,属于基本题型,熟练掌握分式的混合运算法则和分母有理化方法是解题关键.20.解方程组: 22212320x y x xy y +=⎧⎨-+=⎩【答案】1144x y =⎧⎨=⎩,2263x y =⎧⎨=⎩【解析】【分析】首先把第二个方程左边分解因式,即可转化为两个一次方程,分别与第一个方程组成方程组,即可求解.【详解】解:由(2)得(x−y)(x−2y)=0.∴x−y=0或x−2y=0,原方程组可化为212x yx y+=⎧⎨-=⎩,21220x yx y+=⎧⎨-=⎩,解这两个方程组,得原方程组的解为:114 4x y =⎧⎨=⎩,2263xy=⎧⎨=⎩.【点睛】本题主要考查了高次方程组的解法,解题的基本思想是降次,掌握降次的方法是解高次方程的关键.21.如图,有一拱桥的桥拱是圆弧形,已知桥拱的水面跨度AB(弧所对的弦的长)为8米,拱高CD(弧的中点到弦的距离)为2米.(1)求桥拱所在圆的半径长;(2)如果水面AB上升到EF时,从点E测得桥顶D的仰角为α,且cotα=3,求水面上升的高度.【答案】(1)桥拱所在圆的半径长为5米;(2)水面上升的高度为1米【解析】【分析】(1)根据点D是AB中点,DC AB⊥知C为AB中点,联结OA,设半径OA=OD=R,OC=OD﹣DC=R﹣2,在Rt△ACO中,由勾股定理求出半径.(2) 设OD与EF相交于点G,联结OE,由EF∥AB,OD⊥AB,得到OD⊥EF,进而找出EG=3DG,设水面上升的高度为x米,即CG=x,则DG=2﹣x,在Rt△EGO中根据勾股定理求出x即可.【详解】解:(1)∵点D是AB中点,DC AB⊥,∴AC=BC,DC经过圆心,设拱桥的桥拱弧AB所在圆的圆心为O,∵AB=8,∴AC=BC=4,联结OA ,设半径OA =OD =R ,OC =OD ﹣DC =R ﹣2,∵OD ⊥AB ,∴∠ACO =90°,在Rt △ACO 中,∵OA 2=AC 2+OC 2,∴R 2=(R ﹣2)2+42,解之得R =5.答:桥拱所在圆的半径长为5米.(2)设OD 与EF 相交于点G ,联结OE ,∵EF ∥AB ,OD ⊥AB ,∴OD ⊥EF ,∴∠EGD =∠EGO =90°,在Rt △EGD 中,cot 3EG DG α== , ∴EG =3DG ,设水面上升的高度为x 米,即CG =x ,则DG =2﹣x ,∴EG =6﹣3x ,在Rt △EGO 中,∵EG 2+OG 2=OE 2,∴(6﹣3x )2+(3+x )2=52,化简得 x 2﹣3x +2=0,解得 x 1=2(舍去),x 2=1,答:水面上升的高度为1米.【点睛】此题是关于圆的综合性试题,包含的知识点有解直角三角形,勾股定理,解一元二次方程等,有一定难度.22.某社区为了加强居民对新型冠状病毒肺炎防护知识的了解,鼓励社区居民在线参与作答《2020年新型冠状病毒肺炎的防护全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从该社区抽取40名居民的答卷,并对他们的成绩(单位:分)进行整理、分析,过程如下:收集数据85 65 95 100 90 95 85 65 75 85 100 90 70 90 100 80 80 100 95 75 80 100 80 95 65 100 90 95 85 80 100 75 60 90 7080 95 75 100 90整理数据(每组数据可含最低值,不含最高值)分组(分) 频数频率60~70 4 0.170~80 a b80~90 10 0.2590~100 c d100~110 8 0.2分析数据(1)填空:a=,b=,c=,d=;(2)补全频率分布直方图;(3)由此估计该社区居民在线答卷成绩在(分)范围内的人数最多;(4)如果该社区共有800人参与答卷,那么可估计该社区成绩在90分及以上约为人.【答案】(1)6,0.15,12,0.3;(2)见解析;(3):90~100;(4)400【解析】【分析】(1)根据数据找出a,c再求出相应的b,d.(2)根据(1)画图即可.(3)从直方图中直接找出频率最高者即为所求.(4)总数乘以频率即可.【详解】解:(1)由题意可知:第二组的频数a=6,第四组的频数c=12,∴第二组的频率为:6÷40=0.15,第四组的频率为:12÷40=0.3.故答案为:6,0.15,12,0.3;(2)如下图即为补全的频率分布直方图;(3)由此估计该社区居民在线答卷成绩在90~100(分)范围内的人数最多.故答案为:90~100;(4)800×(0.3+0.2)=400(人).答:如果该社区共有800人参与答卷,那么可估计该社区成绩在90分及以上约为400人.故答案为:400.【点睛】此题考查数据的收集,包含频率的计算,画直方图等,难度一般.23.如图,已知在正方形ABCD中,对角线AC与BD交于点O,点M在线段OD上,联结AM并延长交边DC于点E,点N在线段OC上,且ON=OM,联结DN与线段AE交于点H,联结EN、MN.(1)如果EN∥BD,求证:四边形DMNE是菱形;(2)如果EN⊥DC,求证:AN2=NC•AC.【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据正方形性质及ON=OM,求出MN∥CD,进而得出四边形DMNE是平行四边形,在证明出△AOM ≌△DON 即可得到平行四边形DMNE 是菱形;(2)根据MN ∥CD 得到AN AM NC ME =,再由EN ⊥DC 得到EN ∥AD ,AC DC AN DE=,再由AB ∥DC ,得到AM AB ME DE =,即可得到AN AC NC AN=,即为所求. 【详解】证明:(1)如图1,∵四边形ABCD 是正方形,∴OA =OB =OC =OD ,AC ⊥BD ,∵ON =OM ,∴ON OM OC OD= , ∴MN ∥CD ,又∵EN ∥BD ,∴四边形DMNE 是平行四边形,在△AOM 和△DON 中,∵∠AOM =∠DON =90°,OA =OD ,OM =ON ,∴△AOM ≌△DON (SAS ),∴∠OMA =∠OND ,∵∠OAM+∠OMA =90°,∴∠OAM+∠OND =90°∴∠AHN =90°.∴DN ⊥ME ,∴平行四边形DMNE 是菱形;(2)如图2,∵MN∥CD,∴AN AM NC ME=,∵四边形ABCD是正方形,∴AB∥DC,AB=DC,∠ADC=90°,∴AD⊥DC,又∵EN⊥DC,∴EN∥AD,∴AC DC AN DE=,∵AB∥DC,∴AM AB ME DE=,∴AN AC NC AN=,∴AN2=NC•AC.【点睛】此题考查正方形相关知识,主要是利用平行线分线段成比例求解,难度较大.24.如图,已知在平面直角坐标系xOy中,抛物线y=ax2+bx+4经过点A(﹣3,0)和点B(3,2),与y轴相交于点C.(1)求这条抛物线的表达式;(2)点P是抛物线在第一象限内一点,联结AP,如果点C关于直线AP的对称点D恰好落在x轴上,求直线AP的截距;(3)在(2)小题的条件下,如果点E是y轴正半轴上一点,点F是直线AP上一点.当△EAO与△EAF全等时,求点E的纵坐标.【答案】(1)211433y x x =-++;(2)32;(3335+或5 6 【解析】【分析】(1)把(3,0)A -和点(3,2)B 代入抛物线的解析式,列方程组,可得结论;(2)如图1,根据对称的性质得5AD AC ==,可得2OD =,设OH a =,则4HC HD a ==-,在Rt HOD ∆中,根据勾股定理得222HD OH OD =+,列方程可得结论;(3)分两种情况:先说明AOE ∆是直角三角形,所以EAF ∆也是直角三角形,根据90EFA ∠=︒,画图,由勾股定理列方程可解答.【详解】解:(1)抛物线24y ax bx =++过点(3,0)A -和点(3,2)B , 93409342a b a b -+=⎧⎨++=⎩, 解得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩, 211433y x x =-++; (2)如图1,连接AC ,DH ,点关于直线AP 的对称点,AD AC =∴,211433y x x =-++与轴交于点(0,4)C ,与轴交于点(3,0)A -, 5AC ∴=,5AD ∴=,点(2,0)D ,设直线AP 与轴交于点,则HC HD =,设OH a =,则4HC HD a ==-,在Rt HOD ∆中,222HD OH OD =+,222(4)2a a ∴-=+, 32a =, 直线AP 的截距为32; (3)点是轴正半轴上一点,AOE ∴∆是直角三角形,且90AOE ∠=︒当EAO ∆与EAF ∆全等时,存在两种情况:①如图2,当90EFA AOE ∠=∠=︒,EFA AOE ∆≅∆,EF OA ∴=,AHO EHF ∠=∠,90AOH EFH ∠=∠=︒,()AOH EFH AAS ∴∆≅∆,AH EH ∴=,由(2)知:32OH =, 32EH AH OE ∴==-, Rt AHO ∆中,222AH AO OH =+,22233()3()22OE ∴-=+, 解得:3352OE +=或3352-(舍), 点的纵坐标是3352+; ②如图3,当90EFA AOE ∠=∠=︒,EFA EOA ∆≅∆,3AF AO ∴==,EF OE =, Rt AHO ∆中,223353()2AH =+= 353FH ∴=-,32EH OE =-, Rt EFH ∆中,由勾股定理得:222EH FH EF =+,222335()(3)2OE OE ∴-=-+, 解得:356OE =,点的纵坐标是356;335+或356. 【点睛】本题是一道二次函数综合题,解答本题的关键是掌握二次函数的性质,对称的性质:对称轴是对称点连接的垂直平分线,三角形全等的性质和判定,当三角形全等不确定边的对应关系时,先确定三角形的特殊性,如直角三角形或等腰三角形等条件,再进一步分情况讨论.25.如图,已知在△ABC 中,∠ACB =90°,AC =4,BC =8,点P 是射线AC 上一点(不与点A 、C 重合),过P 作PM ⊥AB ,垂足为点M ,以M 为圆心,MA 长为半径的⊙M 与边AB 相交的另一个交点为点N ,点Q 是边BC 上一点,且CQ =2CP ,联结NQ .(1)如果⊙M 与直线BC 相切,求⊙M 的半径长;(2)如果点P 在线段AC 上,设线段AP =x ,线段NQ =y ,求y 关于x 的函数解析式及定义域;(3)如果以NQ 为直径的⊙O 与⊙M 的公共弦所在直线恰好经过点P ,求线段AP 的长.【答案】(1)55-;(2)2221220y x x =-+0<x <4);(3)52或112. 【解析】【分析】 (1)先根据勾股定理求得5AB =,设⊙M 的半径长为R ,则45BM R =,过M 作MH ⊥BC ,垂足为点H ,根据相似三角形的对应边成比例得到MB MH AB AC =,最后根据⊙M 与直线BC 相切,即MA =MH ,即可求解;(2)设AP =x ,得到CP =4﹣x ,CQ =8﹣2x ,BQ =2x ,过Q 作QG ⊥AB ,垂足为点G ,根据三角函数可得4525BG QG x x ==,,根据PM ⊥AB ,5cosA AM AC AP AB ===52565MA AN NG 45x x x ===,,,最后在Rt △QNG 中,根据勾股定理即可求解; (3)当点P 在线段AC 上,设以NQ 为直径的⊙O 与⊙M 的另一个交点为点E ,连接EN ,MO ,则MO ⊥EN ,根据以NQ 为直径的⊙O 与⊙M 的公共弦所在直线恰好经过点P ,PM ⊥AB ,MA =MN ,得到PN =P A ,∠P AN=∠ANE ,再根据∠ACB =90°,得到∠P AN +∠B =90°,∠NMO =∠B ,连接AQ ,根据 M 、O 分别是线段AN 、NQ 的中点,得到MO ∥AQ ,∠NMO =∠BAQ ,∠BAQ =∠B , QA =QB ,在Rt △QAC 中,根据勾股定理得,QA 2=AC 2+QC 2即可求解;当点P 在线段AC 的延长112上,即11x 2=. 【详解】(1)解:如图1,在Rt△ABC中,∵∠ACB=90°,AC=4,BC=8,∴22AB4845=+=设⊙M半径长为R,则BM45R=-过M作MH⊥BC,垂足为点H,∴MH∥AC,∵MH∥AC,∴△BHM∽△BCA,∴MB MH AB AC=∵⊙M与直线BC相切,∴MA=MH,∴454 45R R-=∴R55=-,即M的半径长为55-;(2)如图2,∵AP =x ,∴CP =4﹣x ,∵CQ =2CP ,∴CQ =8﹣2x ,∴BQ =BC ﹣CQ =8﹣(8﹣2x )=2x ,过Q 作QG ⊥AB ,垂足为点G , ∵cos BG BC B BQ AB==, ∴2BG x =,∴BG 5x =同理: QG 5x =∵PM ⊥AB ,∴∠AMP =90°,∴cosA AM AC AP AB ===∵AP =x ,∴MA AN x x ==,∴NG 5x = 在Rt △QNG 中,根据勾股定理得,QN 2=NG 2+QG 2,∴222y ⎛⎫⎫=+ ⎪⎪⎝⎭⎭∴y =0<x <4);(3)当点P 在线段AC 上,如图3,设以NQ 为直径的⊙O 与⊙M 的另一个交点为点E ,连接EN ,MO , 则MO ⊥EN ,∴∠NMO+∠ANE=90°,∵以NQ为直径的⊙O与⊙M的公共弦所在直线恰好经过点P,即P、E、N在同一直线上,又∵PM⊥AB,MA=MN,∴PN=P A,∴∠P AN=∠ANE,∵∠ACB=90°,∴∠P AN+∠B=90°,∴∠NMO=∠B,连接AQ,∵M、O分别是线段AN、NQ的中点,∴MO∥AQ,∴∠NMO=∠BAQ,∴∠BAQ=∠B,∴QA=QB,在Rt△QAC中,根据勾股定理得,QA2=AC2+QC2,∴(2x)2=42+(8﹣2x)2,∴5 x2 =同理:当点P在线段AC的延长112上,11x2=即线段AP的长为52或112.【点睛】此题考查圆的综合题,涉及到相似三角形的判定和性质、解直角三角形,还涉及到了分类讨论的思想,熟练掌握各知识点的融会贯通是解题关键.。
中考仿真模拟测试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣20162.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 904. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣85.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y66.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 37.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A.7B.38C.78D.589.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°10.已知二次函数的与的部分对应值如下表:-1 0 1 3 -3131下列结论:①抛物线开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二.填空题(共4小题)11.在实数117,-(-1),3π, 1.21,313113113,5中,无理数有______个.12.若正六边形的边长为3,则其面积为_____.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=.16.计算:8﹣(12)﹣1﹣|21-|17.如图,已知线段AB.(1)仅用没有刻度直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C处放置一块镜子,小明站在BC的延长线上,当小明在镜子中刚好看到树的顶点A时,测得小明到镜子的距离CD=2米,小明的眼睛E到地面的距离ED=1.5米;②将镜子从点C沿BC的延长线向后移动10米到点F处,小明向后移动到点H处时,小明的眼睛G又刚好在镜子中看到树的顶点A,这时测得小明到镜子的距离FH=3米;③计算树的高度AB;21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张. (1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由. 23.如图,AB 是⊙O 的直径,点C 、E 在⊙O 上,∠B =2∠ACE ,在BA 的延长线上有一点P ,使得∠P =∠BAC ,弦CE 交AB 于点F ,连接AE .(1)求证:PE 是⊙O 切线;(2)若AF =2,AE =EF =10,求OA 的长.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H. (1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.答案与解析一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣2016 【答案】B【解析】【分析】根据零次幂直接回答即可.【详解】解:20160=1.故选:B.【点睛】本题是对零次幂的考查,熟练掌握零次幂知识是解决本题的关键.2.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.【答案】A【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:它的俯视图为.故选A.点睛:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 90【答案】B【解析】∵∠DFE=135°,∴∠CFE=180°-135°=45°.∵AB∥CD,∴∠ABE=∠CFE=45°.故选B.4. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.5.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y6【答案】C【解析】【分析】根据整式运算依次判断即可.【详解】解:A、6x6÷2x3=3x3,故选项A错误;B、x2+x2=2x2,故选项B错误;C、﹣2x2y(x﹣y)=﹣2x3y+2x2y2,故选项C正确;D、(﹣3xy2)3=﹣27x3y6,故选项D错误;故选:C.【点睛】本题是对整式乘除的考查,熟练掌握积的乘方,单项式乘多项式及单项式除以单项式运算是解决本题的关键.6.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 3【答案】A 【解析】 【分析】如图,过点D 作DF ⊥AC 于F ,由角平分线的性质可得DF=DE=1,在Rt △BED 中,根据30度角所对直角边等于斜边一半可得BD 长,在Rt △CDF 中,由∠C=45°,可知△CDF 为等腰直角三角形,利用勾股定理可求得CD 的长,继而由BC=BD+CD 即可求得答案. 【详解】如图,过点D 作DF ⊥AC 于F ,∵AD 为∠BAC 的平分线,且DE ⊥AB 于E ,DF ⊥AC 于F , ∴DF=DE=1,在Rt △BED 中,∠B=30°, ∴BD=2DE=2,在Rt △CDF 中,∠C=45°, ∴△CDF 为等腰直角三角形, ∴CF=DF=1,∴22DF CF +2, ∴BC=BD+CD=22+, 故选A.【点睛】本题考查了角平分线的性质,含30度角的直角三角形的性质,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.7.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.【答案】D 【解析】 【分析】直接根据”上加下减”的原则进行解答即可.【详解】解:由”上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1, 解得n=2. 故选D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A. 7B.38C.78D.58【答案】C 【解析】 【分析】如图,过点D 作DG BE ⊥,垂足为G ,则GD 3=,首先证明AEB ≌GED ,由全等三角形的性质可得到AE EG =,设AE EG x ==,则ED 4x =-,在Rt DEG 中依据勾股定理列方程求解即可. 【详解】如图所示:过点D 作DG BE ⊥,垂足为G ,则GD 3=,A G ∠∠=,AEB GED ∠∠=,AB GD 3==,AEB ∴≌GED ,AE EG ∴=,设AE EG x ==,则ED 4x =-,在Rt DEG 中,222ED GE GD =+,222x 3(4x)+=-,解得:7x 8=, 故选C .【点睛】本题考查了矩形的性质、勾股定理的应用、全等三角形的判定与性质,依据题意列出关于x 的方程是解题的关键.9.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°【答案】B 【解析】 【分析】先根据等腰三角形得出OAB ∠的度数,再证的AOC ∆是等边三角形,最后根据圆周角定理求解即可. 【详解】连接OA ,∵o OBA 20∠=,OB OA = ∴o OAB=OBA 20∠∠= ∵AC OC =且OC OA = ∴AOC ∆是等边三角形 ∴6OA 0C ∠=︒∴BA OA OAB 60204=0C C =-︒-∠︒=∠∠︒ ∴=2=80BOC BAC ∠∠︒ 故选B.【点睛】本题主要考查了等腰三角形的性质,等边三角形的判定及性质,圆周角定理,正确作出辅助线证出AOC ∆是等边三角形是解本题的关键.10.已知二次函数的与的部分对应值如下表:-1 0 1 3-3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【详解】解:根据二次函数的图象具有对称性,由表格可知,二次函数y=ax2+bx+c有最大值,当x=033 22 +=时,取得最大值,可知抛物线的开口向下,故①正确;其图象的对称轴是直线x=32,故②错误;当x>32时,y随x的增大而减小,当x<32时,y随x的增大而增大,故③正确;根据x=0时,y=1,x=﹣1时,y=﹣3,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×32=3,小于3+1=4,故④错误.故选B.考点:1、抛物线与x轴的交点;2、二次函数的性质二.填空题(共4小题)11.在实数117,-(-1),3π1.21,3131131135中,无理数有______个.【答案】2【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】在所列实数中,无理数有π3,5这2个,故答案为2.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.若正六边形的边长为3,则其面积为_____.【答案】273 2【解析】【分析】根据题意画出图形,由正六边形的特点求出∠AOB的度数及OG的长,再由△OAB的面积即可求解.【详解】解:∵此多边形为正六边形,如图:∴∠AOB=3606︒=60°;∵OA=OB,∴△OAB是等边三角形,∴OA=AB=3,∴OG=OA•cos30°=3×3332∴S△OAB=12×AB×OG=12×3×332934∴S六边形=6S△OAB=6×9342732.2732;【点睛】此题主要考查正多边形的计算问题,关键是由正六边形的特点求出∠AOB的度数及OG的长.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.【答案】6+25【解析】详解】解:设E(x,x),∴B(2,x+2),∵反比例函数kyx=(k≠0,x>0)的图象过点B. E.∴x2=2(x+2),115x∴=+,215x=-(舍去),()2215625k x∴==+=+,故答案为625+14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.【答案】134.【解析】【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF=22F0G G+=413,∴EF=413﹣4,∴PD+PE的长度最小值为413﹣4,故答案为:413﹣4.【点睛】本题考查了正方形的性质和勾股定理,构直角三角形是解题的关键.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=【答案】21aa+,322【解析】【分析】先对括号内第一项因式分解同时将除法化为乘法,然后利用乘法分配律进行计算,再把结果相加,最后把a 的值代入计算即可.【详解】原式=2(1)1()(1) (1)(1)aaa a a-++ +-=11aaa+ -+=21aa+,当2a=时,原式=2(2)12+=322.16.计算:8﹣(12)﹣1﹣|21-|【答案】2﹣1【解析】【分析】先化简二次根式和绝对值,计算负整数幂,然后再计算得出结果即可.【详解】解:原式=22﹣2﹣(2﹣1)=22﹣2﹣2+1=2﹣1.【点睛】本题是对实数运算的考查,熟练掌握二次根式化简及负整数幂运算是解决本题的关键.17.如图,已知线段AB.(1)仅用没有刻度的直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.【答案】(1)见解析;(2)2.【解析】【分析】(1)以AB为边作等边三角形DAB,再以DB为边作等边三角形DBC,然后连接AC,则△ABC满足条件;(2)利用△ABD为等边三角形可确定等腰△ABC的外接圆的半径.【详解】解:(1)如图:△ABC为所求;(2)∵△ABD和△BCD为等边三角形,∴DA=DB=DC=AB,∴等腰△ABC的外接圆的半径为2,故答案2.点睛:本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.【答案】见解析【解析】【分析】先证四边形BDCE是平行四边形,再证CD=BD,即可证明是菱形.【详解】证明:∵BE∥CD,CE∥AB,∴四边形BDCE是平行四边形,∵∠ACB=90°,CD是AB边上的中线,∴CD=BD,∴平行四边形BDCE是菱形.【点睛】本题是对菱形判定的考查,熟练掌握菱形的判定是解决本题的关键.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?【答案】(1)详见解析;(2)432.【解析】【分析】(1)由阅读量为2本的人数及其百分比求得总人数,总人数剑气其他阅读数量的人数求得3本的人数,继而用阅读3本的人数除以总人数可得m的值;(2)用总人数乘以样本中阅读数量为3、4、5本人数所占的比例即可得.【详解】解:(1)被调查的学生人数为10÷20%=50人,阅读3本的人数为50﹣(4+10+14+6)=16,所以课外阅读量的众数是3本,则m%=1650×100%=32%,即m=32,补全图形如下:(2)估计该校600名学生中能完成此目标的有600×1614650++=432(人).【点睛】此题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C 处放置一块镜子,小明站在BC 的延长线上,当小明在镜子中刚好看到树的顶点A 时,测得小明到镜子的距离CD =2米,小明的眼睛E 到地面的距离ED =1.5米; ②将镜子从点C 沿BC 的延长线向后移动10米到点F 处,小明向后移动到点H 处时,小明的眼睛G 又刚好在镜子中看到树的顶点A ,这时测得小明到镜子的距离FH =3米; ③计算树高度AB ;【答案】树的高度AB 为15米 【解析】 【分析】设AB =x 米,BC =y 米,先证△ABC ∽△EDC ,得到1.52x y =,再证△ABF ∽△GHF ,得到101.53x y +=,从而求出x 的值即可.【详解】解:设AB =x 米,BC =y 米, ∵∠ABC =∠EDC =90°,∠ACB =∠ECD , ∴△ABC ∽△EDC ,∴AB BCED DC =, ∴1.52x y =, ∵∠ABF =∠GHF =90°,∠AFB =∠GFH , ∴△ABF ∽△GHF ,∴AB BFGH HF =, ∴101.53x y +=, ∴1023y y +=, 解得:y =20, 把y =20代入1.52x y =中得201.52x =, 解得x =15,∴树的高度AB 为15米.【点睛】本题是对相似三角形的综合考查,熟练掌握相似三角形判定及相似比是解决本题的关键.21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?【答案】(1)y=20﹣6x(x>0);(2)这时山顶的温度大约是14.21℃;(3)飞机离地面的高度为9千米【解析】【分析】(1)根据等量关系:高出地面x千米处的温度=地面温度-6℃×高出地面的距离,列出函数关系式;(2)把给出的自变量高出地面的距离0.965km代入一次函数求得;(3)把给出的函数值高出地面x千米处的温度-34℃代入一次函数求得x.【详解】解:(1)由题意得,y与x之间的函数关系式y=20﹣6x(x>0);(2)由题意得,x=0.965km,∴y=20﹣6×0.965=14.21(℃),则这时山顶温度大约是14.21℃;(3)由题意得,y=﹣34℃时,代入y=20﹣6x得,﹣34=20﹣6x,解得x=9km,答:飞机离地面的高度为9千米.【点睛】本题考查了一次函数的应用,比较简单,读懂题目信息,理解随着高度的增加,温度降低列出关系式是解题的关键.22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字的一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张.(1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由.【答案】(1)14;(2)这个游戏公平.【解析】【分析】(1)将所有可能的情况在图中表示出来,再根据概率公式计算可得;(2)计算出和为大于32和不大于32的概率,即可得到游戏是否公平【详解】解:(1)画树状图如下:由树状图知共有16种等可能结果,其中两次都恰好抽到2的有4种结果,所以两次都恰好抽到2的概率为14.(2)这个游戏公平.因为P(小贝获胜)=P(小晶获胜)=12.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.如图,AB是⊙O的直径,点C、E在⊙O上,∠B=2∠ACE,在BA的延长线上有一点P,使得∠P=∠BAC,弦CE交AB于点F,连接AE.(1)求证:PE是⊙O的切线;(2)若AF=2,AE=EF10,求OA的长.【答案】(1)见解析;(2)OA=5【解析】【分析】(1)连接OE,根据圆周角定理得到∠AOE=∠B,根据圆周角定理得到∠ACB=90°,求得∠OEP=90°,于是得到结论;(2)根据等腰三角形的性质得到∠OAE=∠OEA,∠EAF=∠AFE,再根据相似三角形的性质即可得到结论.【详解】解:(1)连接OE ,∴∠AOE =2∠ACE ,∵∠B =2∠ACE ,∴∠AOE =∠B ,∵∠P =∠BAC ,∴∠ACB =∠OEP ,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠OEP =90°,∴PE 是⊙O 的切线;(2)∵OA =OE ,∴∠OAE =∠OEA ,∵AE =EF ,∴∠EAF =∠AFE ,∴∠OAE =∠OEA =∠EAF =∠AFE ,∴△AEF ∽△AOE , ∴AE AF OA AE=, ∵AF =2,AE =EF 10∴OA =5.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定,切线的判定,正确的作出辅助线是解题的关键.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y 轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H.(1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.【答案】(1)2y x 2x 3=--+,(-1,4) (2)(-2,3),31711722⎛⎫-+-+ ⎪ ⎪⎝⎭,,31711722⎛--- ⎝⎭, (3)(-4,-5),(23-,359) 【解析】分析】 (1)将A(-3,0)、B(1,0)、D(0,3),代入y=ax 2+bx+3求出即可;(2)求出直线AD 的解析式,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,利用△ADE 与△ACD 面积相等,得出直线EC 和直线EH 的解析式,联立出方程组求解即可;(3) (3)分两种情况讨论:①点P 在对称轴左侧;②点P 在对称轴右侧.【详解】(1)设抛物线的解析式为2y ax bx c(a 0)=++<,∵抛物线过点A(-3,0),B(1,0),D(0,3), ∴93003a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得,a=-1,b=-2,c=3,∴抛物线解析式为2y x 2x 3=--+,顶点C(-1,4);(2)如图1,∵A(-3,0),D(0,3),∴直线AD 的解析式为y=x+3,设直线AD 与CH 交点为F ,则点F 的坐标为(-1,2)∴CF=FH,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,由平行间距离处处相等,平行线分线段成比例可知,△ADE 与△ACD 面积相等,∴直线EC 的解析式为y=x+5,直线EH 的解析式为y=x+1,分别与抛物线解析式联立,得25x 23y x y x =+⎧⎨=--+⎩,21x 23y x y x =+⎧⎨=--+⎩,解得点E 坐标为(-2,3),⎝⎭,⎝⎭; (3)①若点P 在对称轴左侧(如图2),只能是△CPQ∽△ACH,得∠PCQ=∠CAH, ∴PQ CH 2CQ AH==, 分别过点C 、P 作x 轴的平行线,过点Q 作y 轴的平行线,交点为M 和N ,由△CQM∽△QPN, 得PQ PN QN CQ MQ CM===2, ∵∠MCQ=45°,设CM=m ,则MQ=m ,PN=QN=2m ,MN=3m ,∴P 点坐标为(-m-1,4-3m),将点P 坐标代入抛物线解析式,得()()2m 12m 1343m -++++=-,解得m=3,或m=0(与点C 重合,舍去)∴P 点坐标为(-4,-5);②若点P 在对称轴右侧(如图①),只能是△PCQ∽△ACH,得∠PCQ=∠ACH, ∴PQ AH 1CQ CH 2==, 延长CD 交x 轴于M ,∴M(3,0)过点M 作CM 垂线,交CP 延长线于点F ,作FNx 轴于点N , ∴PQ FM 1CQ CM 2==, ∵∠MCH=45°,CH=MH=4∴MN=FN=2,∴F 点坐标为(5,2),∴直线CF 的解析式为y=111x 33-+, 联立抛物线解析式,得211133x 23y x y x ⎧=-+⎪⎨⎪=--+⎩,解得点P 坐标为(23-,359), 综上所得,符合条件的P 点坐标为(-4,-5),(23-,359).【点睛】本题考查了二次函数的综合应用以及相似三角形的应用,二次函数的综合应用是初中阶段的重点题型,特别注意分类讨论思想的应用.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD 中,P 为CD 边上的一个动点,当点P 位于何处时,∠APB 最大?并说明理由;问题解决(3)如图③,在一幢大楼AD 上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.【答案】(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)410米.【解析】【分析】(1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小(2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB 均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;(3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.【详解】解:(1)∠AEB>∠ACB,理由如下:如图1,过点E作EF⊥AB于点F,∵在矩形ABCD中,AB=2AD,E为CD中点,∴四边形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案为>;(2)当点P位于CD的中点时,∠APB最大,理由如下:假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故点P位于CD的中点时,∠APB最大:(3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,由题意知DP=OQ=,∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,BD=11.6米, AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小刚与大楼AD之间的距离为4米时看广告牌效果最好.【点睛】本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年初中物理中考仿真试题(3) 一、选择题 1、医生在诊断时使用听诊器,听诊器能( ) A.减少声音在传播过程中的能量损耗 B.改变心跳的频率,使音调变调 C.改变心跳的音色,使声音好听一些 D.使心脏振幅增加,响度增大 2、棉花糖是很多小朋友喜爱的食物。做棉花糖时将白糖放在棉糖机的圆盘上,白糖很快化成糖水,旋转的圆盘将糖水甩出,就可以看到一丝丝的糖绕在小棍上,这样,就做成了既好看又好吃的棉花糖。在整个过程中发生的物态变化有( )
A.熔化、凝华 B.熔化、液化 C.汽化、凝固 D.熔化、凝固 3、如图所示是安置在收费站的电动栏杆,它是( ) A.省力杠杆 B.费力杠杆 C.等臂杠杆 D.无法确定 4、如图是一款利用电磁悬浮技术制作的没有“地轴”的地球仪,其原理是:将空心金属球放在通电的线圈上,电磁场在金属球表面产生涡流,涡流与磁场作用形成磁力,从而实现地球仪的悬空静止。当地球仪悬空静止时,下列说法中正确的是( )
A.地球仪没有受到重力的作用 B. 地球仪此时受到的合力为零 C.地球仪受到磁力与重力是一对作用力与反作用力 D. 地球仪受到磁场的磁力大于它受到的重力 5、公共汽车上的一些设施和做法与物理原理相对应,其中正确的一组是( ) A.方向盘上裹着皮套-----用来减小摩擦 B.使用IC收费卡-----利用了超声波原理 C.后门上安装摄像头-----利用凸透镜成正立放大的实像 D.“汽车转弯,请抓好扶手”-----防止由于惯性对人体造成伤害 6、有一种专门存放贵重物品的“银行”,为了防止物品被冒领,“银行”必须记录下存放者的“手纹”、“眼纹”和“声纹”,今后存放者只能凭借这些本人独有的特征才能取走物品。这里的“声纹”主要记录的是人说话的( ) A.音调 B.响度 C.音色 D.三者都有 7、电磁辐射对人体健康的影响已经引起了人们的广泛关注。以下活动中,几乎不会对人体产生电磁辐射的是( ) A.玩电脑游戏 B.使用电子表 C.接听手机 D.看电视 8、2010年3月5日,我国在西吕卫星发射中心用“长征三号丙”运载火箭成功地将“鑫诺三号”通信卫星送入 太空,关于火箭和卫星,以下说话中错误的是( ) A.火箭表而涂有遇高温易熔化、汽化的物殊材料,是为了防止火箭与空气作用产生高温而被破坏 B.火箭发射过程中燃料燃烧释放的化学能全部转化为火箭和卫星的机械能 C.卫星上板状的两翼是太阳能电池板,它能把太阳能转化为电能供卫星使用 D.卫星通过接收与发射电滋波与地面互相传递信息 9、根据你对生活中物理量的认识,指出下列数据符合实际的是( ) A.萍乡地区此时的气温大约足68℃ B.两个鸡蛋的质量大约是1kg C.家用彩电的电功率约为120w D.世界跨栏名将刘翔110m栏的平均速度为72km/h 10、若给你一只弹簧秤、一杯水、细线和一个金属块,你能完成下列四种实验中的哪几种?( ) ①测金属块的质量 ②测金属块浸没在水中的浮力 ③金属块的体积 ④测金属块的密度 A.① B.①② C.①②③ D.①②③④ 11、干电池是一种常用、方便的电源.以下关于干电池的说法中正确的是( ) 2
A.有的干电池提供直流电,有的干电池提供交流电 B.常用的1号、5号、7号干电池的电压随号数的增大而增大 C.对外供电的干电池是把电能转化为化学能的装置 D.多数干电池中有汞、镉等重金属元素,随便丢弃会污染环境。所以,废弃的干电池应该集中分类处理 12、 两个灯泡额定功率都是40W,第一个灯泡的额定电压是220V,第二个灯泡额定电压是36V,当它们正常发光时( )
A. 第一个灯泡较亮 B. 第二个灯泡较亮 C. 两个灯泡同样亮 D. 第一个灯泡的亮度远大于第二个灯泡
二、填空题 13、为了确定标示不清的铅蓄电池的正、负极,李敏同学将该电池和一螺丝管相连,闭合开关S后,小磁针静止时的指向如图所示,由此可以判断a端是通电螺线管的_____极,c端是铅蓄电池的____极。
14、如图所示,金鱼吐出的气泡在水中上升的过程中,气泡受到水的压强将 (填“变大”、“变小”或“不变”);气泡受到水的浮力将 (填“变大”、“变小”或“不变”)。
15、重均为10N的铁球和正方体木块置于水平桌面上,如图所示。静止时,铁球对桌面的压力为 N,此时 对桌面的压强小。
16、清晨草叶上常挂有晶莹的露珠,这是由于夜间温度低,空气中的水蒸气_____形成的,在阳光照射下这些露珠又会慢慢消失,是由于露珠发生了_____的缘故。
17、三个电阻值均为10Ω的电阻R1、R2、R3串联后接在电压恒定为U的电路中,某同学误将一只电流表并联在电阻R2两端,如图12,发现电流表的示数为1.5 A,据此可知电源电压U为 V;若用一只电压表代替电流表并联在R2两端,则电压表的示数为 V。
18、路灯灯丝容易烧断,电工小张在原来电灯的位置,再接入一盏相同的白炽灯,虽然这两盏灯的亮度比原来一盏灯还要暗,但是能解决路灯容易烧坏的问题。你认为这两盏灯的连接方式是 ;这样做与原来相比 省电(填“能”或“不能”)。
19、如图所示为家用压力锅,有18、20和22等型号,这里的“型号20”是指锅身的直径是20 (填单位);用高压锅煮食物时,因为高压锅具有良好的密封性,使得水蒸气不易外泄从而增大了锅内气压,提高了水的 。
20、某学习小组对一辆在平直公路上做直线运动的小车进行观测研究。他们记录了小车在某段时间内通过的路程与所用的时间,并根据记录的数据绘制了路程与时间的关系图象,如图18所示。根据图象可知,2~5秒内,小车的平均速度是 ;若小车受到的牵引力为100N;5~7秒内小车的功率是 。
三、作图题 21、(1)画出图14中光线AO经平面镜后的反射光线,并标出反射角的大小。 (2)倒在地上的一块砖,被F拉起并绕O点转动。请你画出在如图15所示的位置时,砖块所受重力的示意图和拉力F的力臂L。
(3)如图16(甲)是一个“一开三孔”开关(即一个开关和一个三孔插座连在一起),如图16(乙)是插座背面的电路接线图,请将其连接完整,使开关能控制插座。
四、实验探究题 22、在实验课中,为了测定密度小于水的小物块受到的浮力大小,现有如下器材:①小物块,②钩码.③弹簧测力计,④烧杯,⑤溢水杯,⑥杠杆,⑦天平,⑧细线,⑨直尺,⑩量筒。 (1)请根据所提供的器材设计一个测量方案(测量方案不必写出),要求该方案最简便、测得的浮力误差最小。写出你测浮力时必须用的器材,需直接测量的物理量,浮力的大小及实验依据的原理。器材(填写编号):_______________;需直接测量的物理量:_________________;浮力的大小(用所测量的量表示);F=___________;实验原理:_________________。 (2)若将装满水的溢水杯放在已调好的天平上进行测量。当天平平衡时向溢水杯轻轻地放入小物块,溢出的水用量筒接走,当物块静止时,天平将 ;(选填“保持平衡”或“失去平衡”)从量筒读出溢出的水的体积为12cm3,则小物块的质量为: g。 23、在“凸透镜成像规律”实验中,晓华同学进行了如下两个探究: (1)为研究像距与焦距的关系,他选用焦距不同的三个凸透镜进行实验,实验数据记录如右表。分析表中数据可知,保持物距不变时,焦距越大,则像距越 (选填:“大”或“小”)。 (2)晓华用若干个发光二极管组成形状如“E”的发光物体,如图(甲)所示将发光物体、凸透镜和光屏依次组装到光具座上并调整好,在光屏上成的像如图(乙)所示如果只将“E”,换成“R”,并在同一位置观察,光屏上成的像应是图17(丙)中的 (填数字序号)。
(3)若物距调整为20cm,晓华同学想得到一个缩小的像,他应选用三个透镜中焦距为 cm的凸透镜。 物距 u/cm 实验序号 焦距f/cm 像距v/cm
15 1 8 17 2 10 30 3 12 60 五、综合应用题
24、能源问题是现代社会发展的三大基本要素之一. (1)能源家族中:①柴薪、②煤炭、③石油、④天然气、⑤水能、⑥风能、⑦太阳能、⑧地热能等,在大量耗用各种能源时,会造成空气污染的有 ;会造成水土流失和沙漠化的有 (填题序号);
(2)黄冈市城区正在进行天然气工程,有人表示赞同,有人表示反对,小刚同学收集如下两组有关数据: 热值q /J·m-3 当地价格/元·m-3 每户月平均用气量/m3 更换灶具费用/元 煤 气 约4×107 9 6 0 天然气 约8×107 15 3 70
请你决策: (选填“A”或“B”) A.继续使用煤气 B.更换使用天然气 简单说明你作出这样决策的理由是: . 24、我国迅速进入汽车社会的同时,汽车尾气对人们的身体健康构成巨大的威协。为了减少汽车尾气排放,提高城市的空气质量。我国自主研发的一种油电混合动力汽车(具备内燃机、电动机两种动力装置),这种汽车的每种动力装置的额定功率都是50kW,充电一次可贮存200kw·h的电能。
(1)若该车只由电动机提供动力,每次充电后,可正常工作多少小时? (2)目前车用乙醇汽油的热值约为4.0×107J/kg,经测量,汽车每消耗1kg的这种汽油就要向空气中排放2.2kg的二氧化碳,汽车行驶消耗一次充电的电能,相当减少向空气排放多少㎏二氧化碳?
(3)如果该车动力装置的机械效率为75%,它正常工作1min所做的有用功是多少J? 25、中国汽车业发展迅速,成为拉动中国经济的主力。小满家购买某型号四轮汽车的质量为1.6×103Kg,每个轮子与地面的接触面积为20cm2。当它以60Km/h的速度在平直路面上匀速行驶时,受到的阻力为600N。每行驶100Km消耗汽油量为8L。完全燃烧1L汽油释放的能量为3.7×107J(取g=10N/Kg)。求:
(1)汽车静止时对路面的压强。 (2)汽车以60Km/h的速度匀速行驶时,牵引力的功率。 (3) 汽车以60Km/h的速度匀速行驶时,汽车的效率。 26、在南极考察中使用的海洋破冰船,针对不同的冰层有不同的破冰方法。其中一种破冰的方法是:接触冰面前,船全速航行,船体大部分冲上冰面,就可以把冰压碎。
(1)当破冰船航行于海面时,它的排水体积约为1500m3,求船自身的重力。 (2)在一次破冰行动中,当船冲到冰面上时,船的排水体积变为原来的三分之一,船与冰层接触面积为5m2,此时破冰船对冰层的压强是多少?(海水的密度取1.0×103㎏/m3)