2014江苏苏州中考数学试卷

合集下载

2014年江苏省苏州市中考数学模拟试卷及答案

2014年江苏省苏州市中考数学模拟试卷及答案
(2)在这次测试中,学生跳绳次数的众数落在第▲小组内,中位数落在第▲小组内.
(3)若次数在110以上(含110次)为达标,试估计该校初三毕业生中达标的人数约为多少人.
25.(6分)如图,在一个坡角为15°的斜坡上有一棵树,高为AB.当太阳光与水平线成50°时,测得该树在斜坡上的树影BC的长为7米,求树高.(精确到0.1m)
三、解答题
19.(5分)计算
20.(5分)解方程: ;
21.(6分)解不等式组,并求出其最小整数解:
22.(6分)如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DE=CF,连接DF、AE,AE的延长线交DF于点M.
(1)求证:AE=DF
(2)AM⊥DF.
23.(本题满分6分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?
江苏省苏州市2014年中考数学模拟试卷
1. 的值是()
A.±5 B.5 C.–5D.625
2.下列运算正确的是()
A. B. C. D.
3.下列图形中,既是轴对称图形,又是中心对称图形的是()
4.⊙O1和⊙O2的半径分别为3cm、4cm,圆心距O1O2为5cm,则这两圆的位置关系是()
A.内切B.外切C.内含D.相交
③sin∠COA= ;④AC+OB=12 .其中正确的结论有()
A.1个B.2个在“爱心传递”活动中,共捐款37400元,请你将数字37400用科学计数法并保留两个有效数字表示为.
12.函数y= 中,自变量x的取值范围是.
13.分解因式:3 2+6 +3=______________.
(2)点B(m,-2)也在反比例函数 的图象上,连接AB,与x轴交于点C,若AC与x轴正方向的夹角为β,求sinβ的值;

江苏省苏州市2014年中考二模数学试卷 有答案

江苏省苏州市2014年中考二模数学试卷  有答案

2014年苏州市中考二模 数学试卷 有答案本试卷由选择题、填空题和解答题三大题组成.共29小题,满分130分.考试时间120分钟.一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,有只有一个是正确的,请将答案填在答题卷上.)1.如果2x =014,那么4x -的值是 ( ▲ ) A .±2010B .2010C .-2010D .20142.下列计算正确的是 ( ▲ ) A .235x y xy += B .4416x x x ⋅= C .826(4)(2)2x x x ÷= D .3249()a a a ⋅= 3.下列图形中,既是轴对称图形又是中心对称图形的有 ( ▲ )A .4个B .3个C .2个D .1个 (第4题图) 4.如图是由六个棱长为1的正方体组成的几何体,其俯视图的面积是 ( ▲ ) A .3 B .4 C .5 D .65.已知22916x y -=,32x y +=,则3x y -的值为 ( ▲ ) A . 8B .4C. D . 26.下列关于x 的方程中一定有实数根的是 ( ▲ ) A .x 2-x +2=0B .x 2+x -2=0C .x 2+x +2=0D .x 2+1=07.关于二次函数y = -2x 2+3,下列说法中正确的是 ( ▲ )①若分式21x xx --的值为0,则0x =或1;②两圆的半径R 、r 分别是方程2320x x -+=的两根,且圆心距3d =,则两圆外切; ③对角线互相垂直的四边形是菱形;④将抛物线22y x =向左平移4个单位,再向上平移1个单位可得到抛物()2241y x =-+. A .0个B .1个C .2个D .3个9. 如图,在△ABC 中,∠C =90°,AC =BC ,AB =2,点O 为AB 的中点,以点O 为圆心作半圆与边AC 相切于点D .则图中阴影部分的面积为 ( ▲ ) A .14π-B .18π-C .324π-D .24π- 10.如图,点A 、B 在反比例函数xky =的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,且△AOC 的面积为9,则k 的值为( ▲ ) A .9B .3C .6D .23第9题图 第10题图二、填空题(本大题共8小题,每小题3分,共24分,把答案填在答题卷相应的空格内.)11.函数1y 中自变量x 的取值范围是 ▲ . 12.一组数据2、-2、4、1、0的中位数是 ▲ .13.分解因式:2b 2-8b +8= ▲ .14.如图,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若∠ADE=126°,则∠DBC 的度数为 ▲ .15.如图,△ABC 中,∠ACB=90°,AB=8cm ,D 是AB 的中点.现将△BCD 沿BA 方向平移1cm ,得到△EFG ,FG 交AC 于H ,则GH 的长等于 ▲ cm .16.已知一个圆锥的母线长为10cm ,将侧面展开后所得扇形的圆心角是144°,则这个圆锥的底面圆的半径是 ▲ cm .第14题图 第15题图17.如图,在△ABC 中,以AC 边为直径的⊙O 交BC 于点D ,过点B 作BG ⊥AC 交⊙O 于点E 、H ,连AD 、ED 、EC ,若BD =8,DC =6,则CE 的长为 ▲ . 18.如图,已知点A 1,A 2,…,A 2014在函数y =2x 2位于第二象限的图象上,点B 1,B 2,…,B 2014在函数y =2x 2位于第一象限的图象上,点C 1,C 2,…,C 2014在y 轴的正半轴上,若四边形OA 1C 1B 1、C 1A 2C 2B 2,…,C 2013A都是正方形,则正方形CA CB 的边长为 ▲ .第17题图 第18题图三、解答题(本大题共10小题,共76分,解答应写出必要的计算过程、推演步骤或文字说明.)19.(本题5分)计算:(219tan303π-⎛⎫++︒ ⎪⎝⎭20.(本题5分)先化简,再求值:221112x x xx x ⎛⎫--÷⎪++⎝⎭,其中x =21.(本题5分)解方程:228224x x x x x +-=+--22.(本题6分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.(1)本次抽测的男生有▲ 人,抽测成绩的众数是▲ ;(2)请你将图2中的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?23.(本题6分)如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是▲ .(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率。

2024年江苏省苏州市中考真题数学试卷含答案解析

2024年江苏省苏州市中考真题数学试卷含答案解析

2024年江苏省苏州市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.用数轴上的点表示下列各数,其中与原点距离最近的是()A.3-B.1C.2D.32.下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.3.苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.102.4710⨯D.1224710⨯⨯C.12247102.4710⨯B.10【答案】C【分析】本题考查的是科学记数法-表示较大的数,把一个大于10的数记成10na⨯的形式,其中a 是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.根据科学记数法-表示较大的数的方法解答.【详解】解:122470000000000 2.4710=⨯,故选:C .4.若1a b >-,则下列结论一定正确的是( )A .1a b+<B .1a b -<C .a b >D .1a b+>【答案】D【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变.直接利用不等式的性质逐一判断即可.【详解】解:1a b >-,A 、1a b +>,故错误,该选项不合题意;B 、12a b ->-,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意;故选:D .5.如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒【答案】B 【分析】题目主要考查平行线的性质求角度,根据题意得出60BAD ∠=︒,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵AB CD ,2120∠=︒,∴2180BAD ∠+∠=︒,∴60BAD ∠=︒,∴3180155BAD ∠=︒-∠-∠=︒,故选:B6.某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择( )A .甲、丁B .乙、戊C .丙、丁D .丙、戊【答案】C 【分析】本题主要考查了用中位数做决策,由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要选择100克以上的一个盲盒和100克以下的盲盒一个,根据选项即可得出正确的答案.【详解】解:由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要从第6号盲盒和第7号盲盒里选择100克以上的一个盲盒和100克以下的盲盒一个,因此可排除甲、丁,乙、戊,丙、戊故选:C .7.如图,点A 为反比例函数()10y x x =-<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例()40y x x =>的图象交于点B ,则AO BO 的值为( )A .12B .14C D .13∴11122ACO S=⨯-= ,142BDO S =⨯= ∵OA OB ⊥,∴90AOC OBD BOD ∠=∠=︒-∠,∴AOC OBD △∽△,8.如图,矩形ABCD 中,AB ,1BC =,动点E ,F 分别从点A ,C 同时出发,以每秒1个单位长度的速度沿AB ,CD 向终点B ,D 运动,过点E ,F 作直线l ,过点A 作直线l 的垂线,垂足为G ,则AG 的最大值为( )A B 2C .2D .1【答案】D 【分析】连接AC ,BD 交于点O ,取OA 中点H ,连接GH ,根据直角三角形斜边中线的性质,可以得出G 的轨迹,从而求出AG 的最大值.∵四边形ABCD 是矩形,∴90ABC ∠=︒,OA OC =,AB ∴在Rt ABC △中,AC AB =∴112OA OC AC ===,二、填空题9.计算:32x x ⋅= .【答案】5x 【分析】利用同底数幂的乘法解题即可.【详解】解:32325x x x x +⋅==,故答案为:5x .【点睛】本题考查了同底数幂的乘法,掌握相应的运算法则是解题的关键.10.若2a b =+,则()2b a -= .【答案】4【分析】本题考查了求代数式的值,把2a b =+整体代入化简计算即可.【详解】解:∵2a b =+,∴()2b a -()22b b ⎡⎤=-+⎣⎦()22b b =--()22=-4=,故答案为:4.11.如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是 .12.如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠= .∵OB OC =,OBC ∠∴OCB OBC ∠=∠∴801OC OC B ∠∠=︒-113.直线1:1l y x =-与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15︒,得到直线2l ,则直线2l 对应的函数表达式是 .设1l 与y 轴的交点为点B ,令0x =,得1y =-;令y =∴()1,0A ,()0,1B - ,∴1OA =,1OB =,即45OAB OBA ∠=∠=︒14.铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O , AB 所在圆的圆心C 恰好是ABO 的内心,若AB == .(结果保留π)∵六条弧所对应的弦构成一个正六边形,∴60,AOB OA ∠=︒=∴AOB 为等边三角形,∵圆心C 恰好是ABO 15.二次函数()20y ax bx c a =++≠的图象过点()0,A m ,()1,B m -,()2,C n ,()3,D m -,其中m ,n 为常数,则mn的值为 .16.如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE ,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD = .则90AHE ACB ︒∠=∠=,又∴AHE ACB ∽,三、解答题17.计算:()042-+-.【答案】2【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式413=+-2=.18.解方程组:27233x y x y +=⎧⎨-=⎩.【答案】31x y =⎧⎨=⎩【分析】本题考查的是解二元一次方程组,解题的关键是掌握加减消元法求解.根据加减消元法解二元一次方程组即可.【详解】解:27233x y x y +=⎧⎨-=⎩①②-①②得,44y =,解得,1y =.将1y =代入①得3x =.∴方程组的解是31x y =⎧⎨=⎩19.先化简,再求值:2212124x x x x x +-⎛⎫+÷ ⎪--.其中3x =-.20.如图,ABC 中,AB AC =,分别以B ,C 为圆心,大于12BC 长为半径画弧,两弧交于点D ,连接BD ,CD ,AD ,AD 与BC 交于点E .(1)求证:ABD ACD △≌△;(2)若2BD =,120BDC ∠=︒,求BC 的长.21.一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)等可能的结果:(春,夏),(春,秋),(春,冬),(夏,春)春),(秋,夏),(秋,冬),(冬,春),(冬,夏),(冬,秋)在12个等可能的结果中,抽取的书签1张为“春”,1张为122.某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B (乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据以上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为______°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.【答案】(1)见解析(2)72(3)本校七年级800名学生中选择项目B(乒乓球)的人数约为240人【分析】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.(1)利用C组的人数除以所占百分比求出总人数,然后用总人数减去A、B、C、E组的人数,最后补图即可;(2)用360︒乘以E组所占百分比即可;(3)用800乘以B组所占百分比即可.÷=,【详解】(1)解:总人数为915%60D组人数为6061891215----=,补图如下:(2)解:123607260︒⨯=︒,故答案为:72;(3)解:1880024060⨯=(人).答:本校七年级800名学生中选择项目23.图①是某种可调节支撑架,BC 为水平固定杆,竖直固定杆AB BC ⊥,活动杆AD 可绕点A 旋转,CD 为液压可伸缩支撑杆,已知10cm AB =,20cm BC =,50cm AD =.(1)如图②,当活动杆AD 处于水平状态时,求可伸缩支撑杆CD 的长度(结果保留根号);(2)如图③,当活动杆AD 绕点A 由水平状态按逆时针方向旋转角度α,且3tan 4α=(α为锐角),求此时可伸缩支撑杆CD 的长度(结果保留根号).由题意可知,90B A ∠=∠=︒,又CE AD ⊥ ,∴四边形ABCE 为矩形.20BC =由题意可知,四边形ABFG 为矩形,90AGD ∴=︒△.在Rt AGD 中,tan DG AG α==34DG AG ∴=.24.如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A -,()6,0C ,反比例函数()0,0k y k x x=≠>的图象与AB 交于点(),4D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0k y k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.45∴∠=︒.BAC∥轴,PN x∴∠=∠=︒,∠NQM BLN BAC4525.如图,ABC 中,AB =D 为AB 中点,BAC BCD ∠=∠,cos ADC ∠=,O 是ACD 的外接圆.(1)求BC 的长;(2)求O 的半径.又22,AD=DE=∴.1∴在Rt AED△中,22=-=AE AD DEBAC BCD△∽△,26.某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D 1001次列车从A 站始发,经停B 站后到达C 站,G 1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表A 站B 站C 站车次发车时刻到站时刻发车时刻到站时刻D 10018:009:309:5010:50G 10028:25途经B 站,不停车10:30请根据表格中的信息,解答下列问题:(1)D 1001次列车从A 站到B 站行驶了______分钟,从B 站到C 站行驶了______分钟;(2)记D 1001次列车的行驶速度为1v ,离A 站的路程为1d ;G 1002次列车的行驶速度为2v ,离A 站的路程为2d .①12v v =______;②从上午8:00开始计时,时长记为t 分钟(如:上午9:15,则75t =),已知1240v =千米/小时(可换算为4千米/分钟),在G 1002次列车的行驶过程中()25150t ≤≤,若1260d d -=,求t 的值.27.如图①,二次函数2y x bx c =++的图象1C 与开口向下的二次函数图象2C 均过点()1,0A -,()3,0B .(1)求图象1C 对应的函数表达式;(2)若图象2C 过点()0,6C ,点P 位于第一象限,且在图象2C 上,直线l 过点P 且与x 轴平行,与图象2C 的另一个交点为Q (Q 在P 左侧),直线l 与图象1C 的交点为M ,N (N 在M 左侧).当PQ MP QN =+时,求点P 的坐标;(3)如图②,D ,E 分别为二次函数图象1C ,2C 的顶点,连接AD ,过点A 作AF AD ⊥.交图象2C 于点F ,连接EF ,当EF AD ∥时,求图象2C 对应的函数表达式.由二次函数的对称性得,∴PM NQ =.又PQ MP QN =+ ,而PQ PH PM ∴=.设()02PH t t =<<,则点将1x t =+代入(2y x =-+将21x t =+代入()(1y x =+P M y y = ,()(22t t ∴-+∴四边形IGJF 为矩形,IF GJ ∴=,IG FJ =.设2C 对应的函数表达式为 点D ,E 分别为二次函数图象将1x =分别代入22y x =-得4,4D E y y a =-=-,∴()1,4D -,()1,4E a -,4DG ∴=,2AG =,EG =。

2014年苏州市初中毕业暨升学考试数学试卷

2014年苏州市初中毕业暨升学考试数学试卷

2014年苏州市初中毕业暨升学考试数学试卷(满分120分考试时间120分钟)一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.(-3)×3的结果是()A.-9B.0C.9D.-62.已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A.30°B.60°C.70°D.150°3.有一组数据:1,3,3,4,5,这组数据的众数为()A.1B.3C.4D.54.若式子-在实数范围内有意义,则x的取值范围是()A.x≤-4B.x≥-4C.x≤4D.x≥45.如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A.B.C.D.6.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°(第5题图)(第6题图)7.下列关于x的方程有实数根的是()A.x2-x+1=0B.x2+x+1=0C.(x-1)(x+2)=0D.(x-1)2+1=08.二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则代数式1-a-b的值为()A.-3B.-1C.2D.59.如图,港口A在观测站O的正东方向,OA=4km.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4kmB.2kmC.2kmD.(+1)km10.如图,△AOB为等腰三角形,顶点A的坐标为(2,底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A'O'B,点A的对应点A'在x轴上,则点O'的坐标为()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上..........11.的倒数是.12.已知地球的表面积约为510000000km2,数510000000用科学记数法可以表示为.13.已知正方形ABCD的对角线AC=则正方形ABCD的周长为.14.某学校计划开设A,B,C,D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门.为了了解各门课程的选修人数,现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有人.15.如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=.16.某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道x m,乙工程队平均每天疏通河道y m,则(x+y)的值为.17.如图,在矩形ABCD中,.以点B为圆心,BC长为半径画弧,交边AD于点E,若AE·ED=,则矩形ABCD的面积为.18.如图,直线l与半径为4的☉O相切于点A,P是☉O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x-y)的最大值是.(第17题图)(第18题图)三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(本题满分5分)计算:22+|-1|-.20.(本题满分5分)解不等式组:--21.(本题满分5分)先化简,再求值:--,其中x=-1.22.(本题满分6分)解分式方程:--=3.23.(本题满分6分)如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB.连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.24.(本题满分7分)如图,已知函数y=-x+b的图象与x轴、y轴分别交于点A,B,与函数y=x的图象交于点M,点M的横坐标为2.在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=-x+b和y=x的图象于点C,D.(1)求点A的坐标;(2)若OB=CD,求a的值.25.(本题满分7分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色.请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.26.(本题满分8分)如图,已知函数y=(x>0)的图象经过点A,B,点A的坐标为(1,2).过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC,OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.27.(本题满分8分)如图,已知☉O上依次有A,B,C,D四个点,,连接AB,AD,BD,弦AB不经过圆心O.延长AB到E,使BE=AB.连接EC,F是EC的中点,连接BF.(1)若☉O的半径为3,∠DAB=120°,求劣弧的长.(2)求证:BF=BD.(3)设G是BD的中点.探索:在☉O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.28.(本题满分9分)如图,已知l1⊥l2,☉O与l1,l2都相切,☉O的半径为2cm.矩形ABCD的边AD,AB分别与l1,l2重合,AB=4cm,AD=4cm.若☉O与矩形ABCD沿l1同时..向右移动,☉O的移动速度为3 cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).(1)如图①,连接OA,AC,则∠OAC的度数为°;(2)如图②,两个图形移动一段时间后,☉O到达☉O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm).当d<2时,求t的取值范围.(解答时可以利用备用图画出相关示意图)29.(本题满分10分)如图,二次函数y=a(x2-2mx-3m2)(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A,B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD∥AB,连接AD.过点A作射线AE 交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a.(2)求证:为定值.(3)设该二次函数图象的顶点为F.探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF,AD,AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.2014年苏州市初中毕业暨升学考试数学试卷参考答案1.A2.A3.B4.D5.D6.B7.C8.B9.C10.C11.12.5.1×10813.414.24015.16.2017.518.219.解:原式=4+1-2=3.20.解:解x-1>2,得x>3.解2+x≥2(x-1),得x≤4.所以不等式组的解集是3<x≤4.21.解:原式=---=--.当x=1时,原式=-.22.解:去分母,得x-2=3x-3.解得x=.检验:当x=时,x-1≠0,所以x=是原方程的解.23.(1)证明:∵CD绕点C顺时针方向旋转90°得CE,∴CD=CE,∠DCE=90°.∵∠ACB=90°,∴∠BCD=90°-∠ACD=∠FCE.在△BCD和△FCE中,∴△BCD≌△FCE.(2)解:由△BCD≌△FCE,得∠BDC=∠E.∵EF∥CD,∴∠E=180°-∠DCE=90°.∴∠BDC=90°.24.解:(1)∵点M在函数y=x的图象上,且横坐标为2,∴点M的纵坐标为2.∵点M(2,2)在一次函数y=-x+b的图象上,∴-×2+b=2.∴b=3.∴一次函数的表达式为y=-x+3.令y=0,得x=6.∴点A的坐标为(6,0).(2)由题意得C-,D(a,a).∵OB=CD,∴a--=3.∴a=4.25.解:用树状图表示:∴P(A,C两个区域所涂颜色不相同)=.26.解:(1)∵反比例函数y=的图象经过点A(1,2),∴k=2.∵AC∥y轴,AC=1,∴点C的坐标为(1,1).∵CD∥x轴,点D在函数图象上,∴点D的坐标为(2,1).∴S△OCD=×1×1=.(2)∵BE=AC,∴BE=.∵BE⊥CD,∴点B的纵坐标为.∴点B的横坐标为.∴点E的横坐标为.∴CE=-1=.27.(1)解:连接OB,OD.∵∠DAB=120°,∴所对圆心角的度数为240°.∴∠BOD=120°.∵☉O的半径为3,∴劣弧的长为×π×3=2π.(2)证明:连接AC.∵AB=BE,∴点B为AE的中点.∵F是EC的中点,∴BF为△EAC的中位线.∴BF=AC.∵,∴,∴.∴BD=AC.∴BF=BD.(3)解:过点B作AE的垂线,与☉O的交点即为所求的点P.∵BF为△EAC的中位线,∴BF∥AC.∴∠FBE=∠CAE.∵,∴∠CAB=∠DBA.∴∠FBE=∠DBA.∵BP⊥AE,∴∠GBP=∠FBP.∵G为BD的中点,∴BG=BD.∴BG=BF.∵BP=BP,∴△PBG≌△PBF.∴PG=PF.28.解:(1)105°.(2)如图,当O1,A1,C1恰好在同一直线上时,设☉O1与l1的切点为E,连接O1E.可得O1E=2,O1E⊥l1.在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=.∴∠C1A1D1=60°.在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E=.∵A1E=AA1-OO1-2=t-2,∴t-2=,∴t=+2.∴OO1=3t=2+6.(3)①当直线AC与☉O第一次相切时,设移动时间为t1.如图,此时☉O移动到☉O2的位置,矩形ABCD移动到A2B2C2D2的位置.设☉O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2C2.由(2)可得∠C2A2D2=60°,∴∠GA2F=120°.∴∠O2A2F=60°.在Rt△A2O2F中,O2F=2,∴A2F=.∵OO2=3t1,AF=AA2+A2F=4t1+,∴4t1+-3t1=2,∴t1=2-.②当直线AC与☉O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时为位置二,第二次相切时为位置三.由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等.∴+2--=t2-,∴t2=2+2.综上所述,当d<2时,t的取值范围是2-<t<2+2.29.(1)解:将C(0,-3)代入函数表达式得a(0-3m2)=-3.∴a=.(2)证明:如图,过点D,E分别作x轴的垂线,垂足为M,N.由a(x2-2mx-3m2)=0,解得x1=-m,x2=3m.∴A(-m,0),B(3m,0).∵CD∥AB,∴点D的坐标为(2m,-3).∵AB平分∠DAE,∴∠DAM=∠EAN.∵∠DMA=∠ENA=90°,∴△ADM∽△AEN.∴.设点E的坐标为--,.∴----∴x=4m.∴(定值).(3)解:连接FC并延长,与x轴负半轴交于一点,此点即为所求的点G.由题意得,二次函数图象顶点F的坐标为(m,-4).过点F作FH⊥x轴于点H.∵tan∠CGO=,tan∠FGH=,∴,∴OG=3m.此时,GF==4,AD==3, ∴.由(2)得,∴AD∶GF∶AE=3∶4∶5.∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点横坐标为-3m.。

苏州市2014年中考模拟数学试卷 有答案

苏州市2014年中考模拟数学试卷 有答案

苏州市2014年中考模拟数学试卷 有答案数 学 2014.5初三学生考试答题须知:1.所有题目都须在答卷纸上(数学、物理、英语、化学、政治、历史选择题均在答题卡上)作答,答在试卷和草稿纸上无效;2.答题前,考生务必将学校、班级、姓名、考试号、考场号、座位号,用0.5毫米黑色墨水签字笔填写在答卷纸的相应位置上(答卷纸最左侧),英语、化学、政治、历史的考试号用2B 铅笔涂在答题卡相应的位置上;3.答卷纸上答客观题(选择题)必须用2B 铅笔涂在相应的位置,数学、物理、英语、化学、政治、历史选择题均答在答题卡上,须用2B 铅笔把答题卡上对应题目的答案标号涂黑,修改答案时用绘图橡皮轻擦干净,不要擦破,保持答题卡清洁,不要折叠、弄破,不能任意涂画或作标记;4.答卷纸上答主观题(非选择题)必须用0.5毫米黑色墨水签字笔写在指定的位置上,不在答题区域内的答案一律无效,不得用其它笔答题,若修改答案,用笔划去或用橡皮擦去,不能用涂改液、修正带等。

一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是 符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相对应的位置上. 1.在﹣3,﹣1,0,2这四个数中,最小的数是(▲)A .﹣3B .﹣1C .0D .2 2.下列运算正确的是(▲)A .326a a a =B .325()a a -=C .3=-D .2336(3)9ab a b =3. 数据5,7,5,8,6,13,5的中位数是A .5B .6C .7D .84. 下列说法中错误的是(▲)A .某种彩票的中奖率为1%,买100张彩票一定有1张中奖B .从装有10个红球的袋子中,摸出1个白球是不可能事件C .为了解一批日光灯的使用寿命,可采用抽样调查的方式D .掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是615. 如图所示的工件的主视图是(▲)A .B .C .D .6. 函数13-+=x x y 中自变量x 的取值范围是(▲) A .x ≥-3; B .x ≠1; C .x ≥-3且x ≠1; D .x ≠-3且x ≠1.7.已知点A(-1,y 1)、B(2,y 2)都在双曲线y = 3+2mx 上,且y 1>y 2,则m 的取值范围是(▲)A .m <0B .m >0C .m >- 3 2D .m <- 328.如图,在平面直角坐标中,等腰梯形ABCD 的下底在x 轴上,且B 点坐标为(4,0),D 点坐标为(0,3),则AC 长为(▲)A .4B .5C .6D .不能确定(第8题) (第9题) (第10题) 9. 如图,把一个斜边长为2且含有300角的直角三角板ABC 绕直角顶点C 顺时针旋转900到△A 1B 1C ,则在旋转过程中这个三角板扫过的图形的面积是(▲)A .πB .34π D .1112π10. 如图1,四边形ABCD 是边长为23的正方形,长方形AEFG 的宽AE 72=,长EF .将长方形AEFG 绕点A 顺时针旋转15°得到长方形AMNH (如图2),这时BD 与MN 相交于点O .则在图2中,D 、N 两点间的距离是(▲)A .5B .23C .32 D.7二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上.11.计算:32-= ▲ . 12.分解因式3269a a a -+=▲ .13.用科学记数法表示5700000为 ▲ .14.已知扇形的圆心角为60°,弧长等于3π,则该扇形的半径是 ▲ . 15.一个样本为1,3,2,2, c b a ,,.已知这个样本的众数为3,平均数为2, 那么这个样本的方差为 ▲ .16.如图,在矩形ABCD 中,以点A 为圆心,AD 的长为半径画弧,交AB 于点E ,取BC 的中点F ,过点F 作一直线与AB 平行,且交弧DE 于点G ,则∠AGF 的度数为 ▲ .(第16题图) (第17题图) (第18题图)17.如图,已知动点A 在函数(x>o)的图象上,AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,延长CA 至点D ,使AD=AB ,延长BA 至点E ,使AE=AC.直线DE 分别交x 轴,y 轴于点P,Q.当QE :DP=4:9时,图中的阴影部分的面积等于 ▲ .18. 如图,射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM =MB =2cm ,QM =4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P 为圆心,cm 为半径的圆与△ABC 的边相切(切点在边上),请写出t 可取的一切值 ▲ (单位:秒)三、解答题:(本大题共11小题,共76分.)19.(本题满分5分)计算:)2152cos60++2π-⎛⎫-- ⎪⎝⎭20.(本题满分5分) 解不等式组:2153112x x x -<⎧⎪⎨-+≥⎪⎩21.(本题满分5分)先化简,再求值:222x 1x 12+xx 2x+1x +x --⋅-,其中13-=x .22.(本题满分6分) 解分式方程:.23.(本题满分6分) 如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,过点A 作AG ∥DB 交CB 的延长线于点G . (1)求证:DE ∥BF ;(2)若∠G =90°,求证:四边形DEBF 是菱形.24.(6分)某学校举行的“校园好声音”比赛中,甲、乙、丙三位评委对选手的综合表现,分别给出“待定”或“通过”的结论.(1)写出三位评委给出A 选手的所有可能的结论:(2)对于选手A ,只有甲、乙两位评委给出相同结论的概率是多少?25. (8分) 2013年1月1日新交通法规开始实施.为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“行人闯红灯现象”进行问卷调查,调查分为“A :从不闯红灯;B :偶尔闯红灯;C :经常闯红灯;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中的信息,解答下列问题:(1)本次调查共选取________________名居民;(2)求扇形统计图中“C ”所对扇形的圆心角的度数,并将条形统计图补充完整; (3)如果该社区共有居民1600人,估计有多少人从不闯红灯?26.(本小题6分)如图,某文化广场灯柱AB 被钢缆CD 固定,已知CB =3米,且4sin 5DCB ∠=. (1)求钢缆CD 的长度;(2)若AD =2米,灯的顶端E 距离A 处1.6米,且∠EAB =120°,则灯的顶端E 距离地面多少米?27.(本题满分8分)已知:在△ABC 中,以AC 边为直径的⊙O 交BC 于点D ,在劣弧AD ⌒上取一点E 使∠EBC = ∠DEC ,延长BE 依次交AC 于G ,交⊙O 于H . (1)求证:AC ⊥BH(2)若∠ABC = 45°,⊙O 的直径等于10,BD =8,求图1图2A DE28.(本题满分10分)如图1,在△ABC中,∠C=90°,A C=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)求线段AD的长;(2)若EF⊥AB,当点E在斜边AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围);②当x取何值时,y有最大值?并求出最大值.(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.图1 备用图29. (本题满分11分)如图1,已知直线y=kx与抛物线y=交于点A(3,6).(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN 的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?数学答案一、A,C,B,A,B, C,D,B,D ,A二、11.; 12. 2)3(-a a ;13. 6107.5⨯;14. 1; 15.78;16. 150°三、19. 9;20. x ≤-13;21.2333,3+x ;22.,21=x 是原方程的解。

往年江苏省苏州市中考数学真题及答案

往年江苏省苏州市中考数学真题及答案

往年江苏省苏州市中考数学真题及答案一、选择题(共10小题,每小题3分,共30分)1.(3分)(往年•苏州)(﹣3)×3的结果是()A.﹣9B.0C.9D.﹣62.(3分)(往年•苏州)已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A.30°B.60°C.70°D.150°3.(3分)(往年•苏州)有一组数据:1,3,3,4,5,这组数据的众数为()A.1B.3C.4D.54.(3分)(往年•苏州)若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣4B.x≥﹣4C.x≤4D.x≥45.(3分)(往年•苏州)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A.B.C.D.6.(3分)(往年•苏州)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°7.(3分)(往年•苏州)下列关于x的方程有实数根的是()A.x2﹣x+1=0B.x2+x+1=0C.(x﹣1)(x+2)=0D.(x﹣1)2+1=08.(3分)(往年•苏州)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3B.﹣1C.2D.59.(3分)(往年•苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4kmB.2kmC.2kmD.(+1)km10.(3分)(往年•苏州)如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x 轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)二、填空题(共8小题,每小题3分,共24分)11.(3分)(往年•苏州)的倒数是.12.(3分)(往年•苏州)已知地球的表面积约为510000000km2,数510000000用科学记数法可表示为.13.(3分)(往年•苏州)已知正方形ABCD的对角线AC=,则正方形ABCD的周长为.14.(3分)(往年•苏州)某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解各门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有人.15.(3分)(往年•苏州)如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=.16.(3分)(往年•苏州)某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为.17.(3分)(往年•苏州)如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=,则矩形ABCD的面积为.18.(3分)(往年•苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是.三、解答题(共11小题,共76分)19.(5分)(往年•苏州)计算:22+|﹣1|﹣.20.(5分)(往年•苏州)解不等式组:.21.(5分)(2015•东莞)先化简,再求值:÷(1+),其中x=﹣1.22.(6分)(往年•苏州)解分式方程:+=3.23.(6分)(往年•苏州)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.24.(7分)(往年•苏州)如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.25.(7分)(往年•苏州)如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A、C两个区域所涂颜色不相同的概率.26.(8分)(往年•苏州)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.27.(8分)(往年•苏州)如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.(1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;(2)求证:BF=BD;(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.28.(9分)(往年•苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD 的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O 的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).29.(10分)(往年•苏州)如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m是常数,且a>0,m >0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D 在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.往年年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(往年•苏州)(﹣3)×3的结果是()A.﹣9B.0C.9D.﹣6【解答】解:原式=﹣3×3=﹣9,故选:A.2.(3分)(往年•苏州)已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A.30°B.60°C.70°D.150°【解答】解:∵∠α和∠β是对顶角,∠α=30°,∴根据对顶角相等可得∠β=∠α=30°.故选:A.3.(3分)(往年•苏州)有一组数据:1,3,3,4,5,这组数据的众数为()A.1B.3C.4D.5【解答】解:这组数据中3出现的次数最多,故众数为3.故选:B4.(3分)(往年•苏州)若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣4B.x≥﹣4C.x≤4D.x≥4【解答】解:依题意知,x﹣4≥0,解得x≥4.故选:D.5.(3分)(往年•苏州)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A.B.C.D.【解答】解:设圆的面积为6,∵圆被分成6个相同扇形,∴每个扇形的面积为1,∴阴影区域的面积为4,∴指针指向阴影区域的概率==.故选:D.6.(3分)(往年•苏州)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°【解答】解:∵△AB D中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选:B.7.(3分)(往年•苏州)下列关于x的方程有实数根的是()A.x2﹣x+1=0B.x2+x+1=0C.(x﹣1)(x+2)=0D.(x﹣1)2+1=0【解答】解:A、△=(﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以A选项错误;B、△=12﹣4×1×1=﹣3<0,方程没有实数根,所以B选项错误;C、x﹣1=0或x+2=0,则x1=1,x2=﹣2,所以C选项正确;D、(x﹣1)2=﹣1,方程左边为非负数,方程右边为0,所以方程没有实数根,所以D选项错误.故选:C.8.(3分)(往年•苏州)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3B.﹣1C.2D.5【解答】解:∵二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),∴a+b﹣1=1,∴a+b=2,∴1﹣a﹣b=1﹣(a+b)=1﹣2=﹣1.故选:B.9.(3分)(往年•苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4kmB.2kmC.2kmD.(+1)km【解答】解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离(即AB的长)为2km.故选:C.10.(3分)(往年•苏州)如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x 轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)【解答】解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为(,).故选:C.二、填空题(共8小题,每小题3分,共24分)11.(3分)(往年•苏州)的倒数是.【解答】解:的倒数是,故答案为:.12.(3分)(往年•苏州)已知地球的表面积约为510000000km2,数510000000用科学记数法可表示为 5.1×108.【解答】解:510 000 000=5.1×108.故答案为:5.1×108.13.(3分)(往年•苏州)已知正方形ABCD的对角线AC=,则正方形ABCD的周长为 4 .【解答】解:∵正方形ABCD的对角线AC=,∴边长AB=÷=1,∴正方形ABCD的周长=4×1=4.故答案为:4.14.(3分)(往年•苏州)某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解各门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有240 人.【解答】解:C占样本的比例,C占总体的比例是,选修C课程的学生有1200×=240(人),故答案为:240.15.(3分)(往年•苏州)如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=.【解答】解:过点A作AE⊥BC于点E,∵AB=AC=5,∴BE=BC=×8=4,∠BAE=∠BAC,∵∠BPC=∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,由勾股定理得AE=,∴tan∠BPC=tan∠BAE=.故答案为:.16.(3分)(往年•苏州)某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为20 .【解答】解:设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,由题意,得,解得:.∴x+y=20.故答案为:20.17.(3分)(往年•苏州)如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=,则矩形ABCD的面积为 5 .【解答】解:如图,连接BE,则BE=BC.设AB=3x,BC=5x,∵四边形ABCD是矩形,∴AB=CD=3x,AD=BC=5x,∠A=90°,由勾股定理得:AE=4x,则DE=5x﹣4x=x,∵AE•ED=,∴4x•x=,解得:x=(负数舍去),则AB=3x=,BC=5x=,∴矩形ABCD的面积是AB×BC=×=5,故答案为:5.18.(3分)(往年•苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是 2 .【解答】解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴△APC∽△PBA,∴,∵PA=x,PB=y,半径为4,∴=,∴y=x2,∴x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2,故答案为:2.三、解答题(共11小题,共76分)19.(5分)(往年•苏州)计算:22+|﹣1|﹣.【解答】解:原式=4+1﹣2=3.20.(5分)(往年•苏州)解不等式组:.【解答】解:,由①得:x>3;由②得:x≤4,则不等式组的解集为3<x≤4.21.(5分)(2015•东莞)先化简,再求值:÷(1+),其中x=﹣1.【解答】解:=÷(+)=÷=×=,把,代入原式====.22.(6分)(往年•苏州)解分式方程:+=3.【解答】解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.23.(6分)(往年•苏州)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.【解答】(1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE(SAS).(2)解:由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°﹣∠DCE=90°,∴∠BDC=90°.24.(7分)(往年•苏州)如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.【解答】解:(1)∵点M在直线y=x的图象上,且点M的横坐标为2,∴点M的坐标为(2,2),把M(2,2)代入y=﹣x+b得﹣1+b=2,解得b=3,∴一次函数的解析式为y=﹣x+3,把y=0代入y=﹣x+3得﹣x+3=0,解得x=6,∴A点坐标为(6,0);(2)把x=0代入y=﹣x+3得y=3,∴B点坐标为(0,3),∵CD=OB,∴CD=3,∵PC⊥x轴,∴C点坐标为(a,﹣a+3),D点坐标为(a,a)∴a﹣(﹣a+3)=3,∴a=4.25.(7分)(往年•苏州)如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A、C两个区域所涂颜色不相同的概率.【解答】解:画树状图,如图所示:所有等可能的情况8种,其中A、C两个区域所涂颜色不相同的有4种,则P=.26.(8分)(往年•苏州)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.【解答】解;(1)y=(x>0)的图象经过点A(1,2),∴k=2.∵AC∥y轴,AC=1,∴点C的坐标为(1,1).∵CD∥x轴,点D在函数图象上,∴点D的坐标为(2,1).∴.(2)∵BE=,∴.∵BE⊥CD,点B的纵坐标=2﹣=,由反比例函数y=,点B的横坐标x=2÷=,∴点B的横坐标是,纵坐标是.∴CE=.27.(8分)(往年•苏州)如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.(1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;(2)求证:BF=BD;(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.【解答】(1)解:连接OB,OD,∵∠DAB=120°,∴所对圆心角的度数为240°,∴∠BOD=360°﹣240°=120°,∵⊙O的半径为3,∴劣弧的长为:×π×3=2π;(2)证明:连接AC,∵AB=BE,∴点B为AE的中点,∵F是EC的中点,∴BF为△EAC的中位线,∴BF=AC,∵=,∴+=+,∴=,∴BD=AC,∴BF=BD;(3)解:过点B作AE的垂线,与⊙O的交点即为所求的点P,∵BF为△EAC的中位线,∴BF∥AC,∴∠FBE=∠CAE,∵=,∴∠CAB=∠DBA,∵由作法可知BP⊥AE,∴∠GBP=∠FBP,∵G为BD的中点,∴BG=BD,∴BG=BF,在△PBG和△PBF中,,∴△PBG≌△PBF(SAS),∴PG=PF.28.(9分)(往年•苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD 的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O 的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105 °;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).【解答】解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E, 连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图位置一,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置, 设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2C2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t1,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.29.(10分)(往年•苏州)如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m是常数,且a>0,m >0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D 在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.【解答】(1)解:将C(0,﹣3)代入二次函数y=a(x2﹣2mx﹣3m2),则﹣3=a(0﹣0﹣3m2),解得 a=.(2)方法一:证明:如图1,过点D、E分别作x轴的垂线,垂足为M、N.由a(x2﹣2mx﹣3m2)=0,解得 x1=﹣m,x2=3m,则 A(﹣m,0),B(3m,0).∵CD∥AB,∴D点的纵坐标为﹣3,又∵D点在抛物线上,∴将D点纵坐标代入抛物线方程得D点的坐标为(2m,﹣3).∵AB平分∠DAE,∴∠DAM=∠EAN,∵∠DMA=∠ENA=90°,∴△ADM∽△AEN.∴==.设E坐标为(x,),∴=,∴x=4m,∴E(4m,5),∵AM=AO+OM=m+2m=3m,AN=AO+ON=m+4m=5m,∴==,即为定值.方法二:过点D、E分别作x轴的垂线,垂足为M、N,∵a(x2﹣2mx﹣3m2)=0,∴x1=﹣m,x2=3m,则A(﹣m,0),B(3m,0),∵CD∥AB,∴D点的纵坐标为﹣3,∴D(2m,﹣3),∵AB平分∠DAE,∴K AD+K AE=0,∵A(﹣m,0),D(2m,﹣3),∴K AD==﹣,∴K AE=,∴⇒x2﹣3mx﹣4m2=0,∴x1=﹣m(舍),x2=4m,∴E(4m,5),∵∠DAM=∠EAN=90°∴△ADM∽△AEN,∴,∵DM=3,EN=5,∴.(3)解:如图2,记二次函数图象顶点为F,则F的坐标为(m,﹣4),过点F作FH⊥x轴于点H.连接FC并延长,与x轴负半轴交于一点,此点即为所求的点G.∵tan∠CGO=,tan∠FGH=,∴=,∴,∵OC=3,HF=4,OH=m,∴OG=3m.∵GF===4,AD===3,∴=.∵=,∴AD:GF:AE=3:4:5,∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点的横坐标为﹣3m.。

江苏省苏州市工业园区2014届下学期初中九年级5月中考二模考试数学试卷 有答案

江苏省苏州市工业园区2014届下学期初中九年级5月中考二模考试数学试卷 有答案

江苏省苏州市工业园区2014届下学期初中九年级5月中考二模考试数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是 符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相对应的位置上. 1.在﹣3,﹣1,0,2这四个数中,最小的数是(▲)A .﹣3B .﹣1C .0D .2 2.下列运算正确的是(▲)A .326a a a =B .325()a a -=C .3=-D .2336(3)9ab a b =3. 数据5,7,5,8,6,13,5的中位数是A .5B .6C .7D .84. 下列说法中错误的是(▲)A .某种彩票的中奖率为1%,买100张彩票一定有1张中奖B .从装有10个红球的袋子中,摸出1个白球是不可能事件C .为了解一批日光灯的使用寿命,可采用抽样调查的方式D .掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是615. 如图所示的工件的主视图是(▲)A .B .C .D .6. 函数13-+=x x y 中自变量x 的取值范围是(▲) A .x ≥-3; B .x ≠1; C .x ≥-3且x ≠1; D .x ≠-3且x ≠1.7.已知点A(-1,y 1)、B(2,y 2)都在双曲线y = 3+2mx 上,且y 1>y 2,则m 的取值范围是(▲)A .m <0B .m >0C .m >- 3 2D .m <- 328.如图,在平面直角坐标中,等腰梯形ABCD 的下底在x 轴上,且B 点坐标为(4,0),D 点坐标为(0,3),则AC 长为(▲)A .4B .5C .6D .不能确定9. 如图,把一个斜边长为2且含有300角的直角三角板ABC 绕直角顶点C 顺时针旋转900到△A 1B 1C ,则在旋转过程中这个三角板扫过的图形的面积是(▲)A .πB .34π.1112π10. 如图1,四边形ABCD 是边长为23的正方形,长方形AEFG 的宽AE 72=,长EF =.将长方形AEFG 绕点A 顺时针旋转15°得到长方形AMNH (如图2),这时BD 与MN 相交于点O .则在图2中,D 、N 两点间的距离是(▲)A .5B .23C .32 D.7二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上. 11.计算:32-= ▲ .12.分解因式3269a a a -+= ▲ . 13.用科学记数法表示5700000为 ▲ . 14.已知扇形的圆心角为60°,弧长等于3π,则该扇形的半径是 ▲ .15.一个样本为1,3,2,2, c b a ,,.已知这个样本的众数为3,平均数为2, 那么这个样本的方差为 ▲ .16.如图,在矩形ABCD 中,以点A 为圆心,AD 的长为半径画弧,交AB 于点E ,17.如图,已知动点A 在函数(x>o)的图象上,AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,延长CA 至点D ,使AD=AB ,延长BA 至点E ,使AE=AC.直线DE 分别交x 轴,y 轴于点P,Q.当QE :DP=4:9时,图中的阴影部分的面积等于 ▲ .18. 如图,射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM=MB=2cm ,QM=4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P 为圆心,cm 为半径的圆与△ABC 的边相切(切点在边上),请写出t 可取的一切值 ▲ (单位:秒)三、解答题:(本大题共11小题,共76分.)19.(本题满分5分) 计算:)2152cos60++2π-⎛⎫--- ⎪⎝⎭20.(本题满分5分)解不等式组:215 3112xxx-<⎧⎪⎨-+≥⎪⎩21.(本题满分5分)先化简,再求值:222x1x12+xx2x+1x+x--⋅-,其中13-=x.22.(本题满分6分) 解分式方程:.23.(本题满分6分) 如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.24.(6分)某学校举行的“校园好声音”比赛中,甲、乙、丙三位评委对选手的综合表现,分别给出“待定”或“通过”的结论.(1)写出三位评委给出A选手的所有可能的结论:(2)对于选手A,只有甲、乙两位评委给出相同结论的概率是多少?25. (8分) 2013年1月1日新交通法规开始实施.为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“行人闯红灯现象”进行问卷调查,调查分为“A:从不闯红灯;B:偶尔闯红灯;C:经常闯红灯;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中的信息,解答下列问题:(1)本次调查共选取________________名居民;(2)求扇形统计图中“C ”所对扇形的圆心角的度数,并将条形统计图补充完整; (3)如果该社区共有居民1600人,估计有多少人从不闯红灯?26.(本小题6分)如图,某文化广场灯柱AB 被钢缆CD 固定,已知CB =3米,且4sin 5DCB ∠=.(1)求钢缆CD 的长度;(2)若AD =2米,灯的顶端E 距离A 处1.6米,且∠EAB =120°,则灯的顶端E 距离地面多少米?27.(本题满分8分)已知:在△ABC 中,以AC 边为直径的⊙O 交BC 于点D ,在劣弧AD ⌒上取一点E 使∠EBC = ∠DEC ,延长BE 依次交AC 于G ,交⊙O 于H .(1)求证:AC ⊥BH(2)若∠ABC = 45°,⊙O 的直径等于10,BD =8,求CE 的长.28.(本题满分10分) 如图1,在△ABC 中,∠C =90°,A C =3,BC =4,CD 是斜边AB 上的高,点E 在斜边AB 上,过点E 作直线与△ABC 的直角边相交于点F ,设AE =x ,△AEF 的面积为y .图1 备用图(1)求线段AD的长;(2)若EF⊥AB,当点E在斜边AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围);②当x取何值时,y有最大值?并求出最大值.(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.29. (本题满分11分)如图1,已知直线y=kx与抛物线y=交于点A(3,6).(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?初三数学答案一、A,C,B,A,B, C,D,B,D ,A二、11.; 12. 2)3(-a a ;13. 6107.5⨯;14. 1; 15.78;16. 150° 17.313; 18. t=2或3≤t ≤7或t=8. 三、19. 9;20. x ≤-13;21.2333,3+x ;22.,21=x 是原方程的解。

2014年江苏省苏州市中考数学模拟试题及答案

2014年江苏省苏州市中考数学模拟试题及答案

苏州市2014年中考数学模拟试题(考试时间:120分钟 总分:130分)一、选择题(本大题共10小题,每小题3分,共30分) 1.下列运算,正确的是 ( )A .13×(-3)=1 B .5-8=-3 C .2-3=-6 D .(-2013)0=02.有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在下列13名同学成绩的统计量中只需知道一个量,它是 ( )A .众数B .方差C .中位数D .平均数3.若a 的最小值为 ( )A .0B .3C .D .94.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有 ( ) A .54盏 B .55盏 C .56盏 D .57盏5.在△ABC 中,∠C =90°且△ABC 不是等腰直角三角形,设sinB =n ,当∠B 是最小的内角时,n 的取值范围是 ( )A .B .0<n<12C .D . 6.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为 ( ) A .16 B .17 C .18 D .197.如图,一个小立方块所搭的几何体,从不同的方向看所得到的平面图形中(小正方形中的数字表示在该位置的小立方块的个数),不正确的是 ( )8.如图,矩形AOBC 的面积为4,反比例函数y =kx的图象的一支经过矩形对角线的交点P ,则该反比例函数的解析式是 ( ) A .4y x=B .2y x=C .1y x =D .12y x=9.如图①,四边形ABCD 是边长为1的正方形,四边形EFGH 是边长为2的正方形,点D 与点F 重合,点B ,D(F),H 在同一条直线上,将正方形ABCD 沿F ⇒H 方向平移(如图②)至点B 与点H 重合时停止,设点D 、F 之间的距离为x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y ,则能大致反映y 与x 之间函数关系的图象是 ( )10.如图,甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边 开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲 的速度的4倍,则它们第2014次相遇在边 ( ) A .AB 上 B .BC 上 C .CD 上 D .DA 上二、填空题(本大题共8小题,每小题3分,共24分) 11.已知(x +y)2-2x -2y +1=0,则x +y =_______.12.已知x 、y 都是实数,且y +4,则y x =_______.13.某人用充值50元的IC 卡从A 地向B 地打长途电话,按通话时间收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若此人通话30分钟,则IC 卡上所余的钱为_______.14.关于x 的不等式组010x a x ->⎧⎨->⎩的整数解共有3个,则a 的取值范围是_______.15.如图,两个同心圆的圆心是O ,AD 是大圆的直径,大圆的弦AB ,BE 分别与小圆相切于点C ,F ,连BD ,则∠ABE +2∠D =_______.16.如图,将矩形纸片ABCD(AD>DC)的一角沿着过点D 的直线折叠,使点A 落在BC 边上,落点为E ,折痕交AB 边于点F .若BE :EC =m :n ,则AF :FB =_______(用含有m 、n 的代数式表示).17.设m>n>0,m 2+n 2=4mn ,则22m n mn-=_______.18.如图,⊙O 的半径为4 cm ,直线l 与⊙O 相交于A 、B 两点,AB =,P 为直线l 上一动点,以1 cm 为半径的⊙P 与⊙O 没有公共点,设PO =d cm ,则d 的范围是_______. 三、解答题:(本大题共11小题,共76分) 19.(8分) 解答下列各题(1)(4分)60tan )3(330+-+-π(2)(4分)解不等式组:52641154x x x x >-⎧⎪--⎨≥-⎪⎩20.(6分)化简:22222a b a ab b a b a ab a ⎛⎫++-÷⎪--⎝⎭,当b =-2时,请你为a 选择一个适当的值并代入求值.21.(6分)在学校组织的科学常识竞赛中,每班参加比赛的人数相同,成绩分为A ,B ,C ,D 四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在70分以上(包括70分)的人数为_______; (2)请你将表格补充完整:(3)请从不同角度对这次竞赛成绩的结果进行分析.(至少两个角度) 22.(6分)先阅读并完成第(1)题,再利用其结论解决第(2)题.(1)已知一元二次方程ax 2+bx +c =0(a ≠0)的两个实根为x 1,x 2,则有x 1+x 2=-b a ,x 1·x 2=ca.这个结论是法国数学家韦达最先发现并证明的,故把它称为“韦达定理”,利用此定理,可以不解方程就得出x 1+x 2和x 1·x 2的值,进而求出相关的代数式的值.请你证明这个定理;(2)对于一切不小于2的自然数n ,关于x 的一元二次方程x 2-(n +2)x -2n 2=0的两个根记作a n ,b n (n≥2),请求出()()()()()()223320112011111222222a b a b a b +++------的值.23.(7分)如图①,将一张直角三角形纸片△ABC 折叠,使点A 与点C 重合,这时DE 为折痕,△CBE 为等腰三角形;再继续将纸片沿△CBE的对称轴EF 折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.(1)如图②,正方形网格中的△.ABC 能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕; (2)如图③,在正方形网格中,以给定的BC 为一边,画出一个斜三角形ABC ,使其顶点A 在格点上,且△ABC 折成的“叠加矩形”为正方形;(3)若一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是什么?24.(6分)如图,一次函数y 1=k 1x +2与反比例函数y 2=2k x的图象交于点A(4,m)和B(-8,-2),与y 轴交于点C .(1)k 1=_______,k 2=_______;(2)根据函数图象可知,当y 1>y 2时,x 的取值范围是_______;(3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点.设直线OP 与线段AD 交于点E ,当S 四边形ODAC :S △CDE =3:1时,求点P 的坐标.25.(6分)已知点O为正方形ABCD的中心,M为射线OD上一动点(M与点O,D不重合),以线段AM 为一边作正方形AMEF,连FD.(1)当点M在线段OD上时(如图①),线段BM与DF有怎样的数量及位置关系?请判断并直接写出结果;(2)当点M在线段OD的延长线上时(如图②),(1)中的结论是否仍然成立?请结合图②说明理由.26.(6分)如图,四边形ABCD内接于⊙O,BC为⊙O的直径,E为DC边上一点,若AE∥BC.AE=EC=7,AD=6.(1)求AB的长;(2)求EG的长.27.(6分)在一个不透明的盒子里,装有四个分别标有数字-2,-4,0,6的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.(1)求小明、小华各取一次小球所确定的点(x,y)落在二次函数y=x2+x-2的图象上的概率;(2)求小明、小华各取一次小球所确定的数x、y满足y>x2+x-2的概率.28.(9分)某企业为打入国际市场,决定从A、B两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如下表:(单位:万美元)其中年固定成本与年生产的件数无关,m为待定常数,其值由生产A产品的原材料价格决定,预计6≤m≤8.另外,年销售x件B产品时需上交0.05x2万美元的特别关税.假设生产出来的产品都能在当年销售出去.(1)写出该厂分别投资生产A、B两种产品的年利润y1,y2与生产相应产品的件数x之间的函数关系并指明其自变量取值范围;(2)如何投资才可获得最大年利润?请你做出规划.29.(10分)已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,以O为原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.(1)求点C的坐标和过0、C、A三点的抛物线的解析式;(2)P是此抛物线的对称轴上一动点,当以P、O、C为顶点的三角形是等腰三角形时,请直接写出点P的坐标;(3)M(x,y)是此抛物线上一个动点,当△MOB的面积等于△OAB面积时,求M的坐标.参考答案1.B2.C3.B4.B5.A6.B7.B8.C 9.B 10.B11.1 12.64 13.20.6元 14.-3≤a<-2 15.180° 16.m nn+ 18.2cm ≤d<3cm 或 d>5cm19.(1)解:原式=3(2)解:解不等式(1)得x >-2解不等式(2)得x 9≤所以 29x -<≤20.原式=1a b+ 原式=-1. 21.(1)21人 (2)(3)①平均数相同的情况下,二班的成绩更好一些.(D 请一班的同学加强基础知识训练,争取更好的成绩. 22.(1)略 (2)10054024- 23.(3)由(2)可得,若一个三角形所折成的“叠加矩形”为正方形,那么三角形是满足一边长与该边上的高相等的直角三角形或锐角三角形.24.(1)k 1=12(2)-8<x<0或x>4;(3)P 的坐标为. 25.(1)BM =DF ,BM ⊥DF (2)成立26.(1)6.(2)113 27.(1)18(2)31628.(1)y 1=(10-m)x -20,(0≤x ≤200) y 2=-0.05x 2+10x -40,(0≤x ≤120)(2)当6≤m<7.6时,投资生产A 产品200件可获得最大年利润; 当m =7.6时,生产A 产品与生产B 产品均可获得最大年利润; 当7.6<m ≤8时,投资生产B 产品100件可获得最大年利润.29.(1)y =-x 2+.(2)P 点的坐标是1)或3)3-,3+(3)M 13),M 283),M 30),M 4(,73-)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏州市2014年中考数学试卷 (满分:130分 时间:120分钟)本试卷由选择题、填空题和解答题三大题组成。

共29小题,满分130分。

考试时间120分钟。

注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符。

2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须要0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题。

3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。

一、 选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

请将选择题的答案用2B 铅笔涂在答题卡相应位置上。

) 1. (2014江苏省苏州市,1,3分)(-3)×3的结果是 ( )A. -9B. 0C. 9D. -6【答案】A2. (2014江苏省苏州市,2,3分)已知∠α和∠β是对顶角.∠α=30°,则∠β的度数为( )A. 30°B. 60°C. 70°D. 150°【答案】A3. (2014江苏省苏州市,3,3分)有一组数据:1,3,3,4,5,这组数据的众数为( )A. 1B. 3C. 4D. 5【答案】B4. (2014江苏省苏州市,4,3分)若式子x -4在实数范围内有意义,则x 的取值范围是( )A. x ≤-4B. x≥-4C. x≤4D. x≥4【答案】D5. (2014江苏省苏州市,5,3分)如图,一个圆形转盘被分成6个圆心角都为60°的扇形.任意转动这个转盘1次,当转盘停止转动时,指针指向阴影的概率是 ( )A. 14B. 13C. 12D. 23第5题6. (2014江苏省苏州市,6,3分)如图,在△ABC 中,点D 在BC 上,AB=AD=DC ,∠B =80°,则∠C的度数为( )A. 30°B. 40°C. 45°D. 60°第6题【答案】B7. (2014江苏省苏州市,7,3分)下列关于x 的方程有实数根的是 ( )A. x 2-x +1=0 B. x 2+x +1=0 C. (x-1)(x +2)=0 D. (x-1)2+1=0【答案】C8. (2014江苏省苏州市,8,3分)二次函数y=ax 2+bx-1(a≠0)的图象经过点(1,1),则代数式1-a-b的值为( )A. -3B. -1C. 2D. 5【答案】B9. (2014江苏省苏州市,9,3分)如图,港口A 在观测站O 的正东方向,OA=4 km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为( )A. 4 kmB. 2 3 kmC. 2 2 kmD. ()3+1km第9题【答案】C10. (2014江苏省苏州市,10,3分)如图,△AOB 为等腰三角形,顶点A 的坐标为()2,5,底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A ′O ′B ′,点A的对应点A′在x轴上,则点O′的坐标为( ) A. ⎝⎛⎭⎫203,103 B. ⎝ ⎛⎭⎪⎫163,453 C. ⎝ ⎛⎭⎪⎫203,453 D. ⎝⎛⎭⎫163,43第10题二、 填空题(本大题共8小题,每小题3分,共24分。

吧答案直接填在答题卡相应位置上。

)11. (2014江苏省苏州市,11,3分) 32的倒数是________.【答案】2312. (2014江苏省苏州市,12,3分)已知地球的表面积约为510 000 000 km 2.数510 000000用科学记数法可以表示为________.【答案】5.1×10813. (2014江苏省苏州市,13,3分)已知正方形ABCD 的对角线AC=2,则正方形ABCD的周长为________.【答案】414. (2014江苏省苏州市,14,3分)某学校计划开设A ,B ,C ,D 四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门.为了了解各门课程的选修人数,现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数人数1 200名,由此可以估计选修C 课程的学生有________人.第14题【答案】24015. (2014江苏省苏州市,15,3分)如图,在△ABC 中,AB=AC=5,BC=8.若∠BPC=12∠BAC ,则tan ∠BPC=________.第15题【答案】4316. (2014江苏省苏州市,16,3分)某地准备对一段长120 m 的河道进行清淤疏通.若甲工程队先用 4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道x m ,乙工程队平均每天疏通河道y m ,则(x +y)的值为________.【答案】2017. (2014江苏省苏州市,17,3分)如图,在矩形ABCD 中,AB BC =35.以点B 为圆心,BC 长为半径画弧,交边AD 于点E ,若AE·ED=43,则矩形ABCD 的面积为________.第17题【答案】518. (2014江苏省苏州市,18,3分)如图,直线l 与半径为4的⊙O 相切于点A ,P 是⊙O上的一个动点(不与点A 重合),过点P 作PB⊥l,垂足为B ,连接PA.设PA=x ,PB=y ,则(x-y)的最大值是________.第18题【答案】2三、 解答题(本大题共11小题,共76分。

把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明。

作图时用2B 铅笔或黑色墨水签字笔) 19. (2014江苏省苏州市,19,5分)(本小题满分5分)计算:22+|-1|- 4.【答案】原式=4+1-2=3.20. (2014江苏省苏州市,20,5分) (本小题满分5分)解不等式组:⎩⎪⎨⎪⎧x -1>2,2+x≥2(x -1).【答案】解x-1>2,得x >3,解2+x ≥2(x-1),得≤4,所以不等式组的解集是3<x ≤4.21. (2014江苏省苏州市,21,5分)(本小题满分5分)先化简,再求值:xx 2-1÷⎝⎛⎭⎫1+1x -1,其中x=2-1. 【答案】原式=x (x +1)(x -1)÷x -1+1x -1=x(x +1)(x -1)×x -1x =1x +1.当x=2-1时,原式12-1+1=12=22.22. (2014江苏省苏州市,22,5分)(本小题满分6分)解分式方程:x x -1+21-x=3. 【答案】去分母,得x-2=3x-3.解得x=12.检验:当x=12时,x-1的值不等于0,所以x=12是原方程的解.23. (2014江苏省苏州市,23,5分)(本小题满分6分)如图,在Rt△ABC 中,∠ACB =90°,点D ,F 分别在AB ,AC 上,CF=CB.连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CE ,连接EF. (1) 求证:△BCD≌△FCE; (2) 若EF∥CD,求∠BDC 的度数.第23题【答案】(1) 证明:∵ CD 绕点C 顺时针方向旋转90°得CE ,∴ CD=CE ,∠DCE =90°.∵∠ACB=90°,∴ ∠BCD =90°-∠ACD=∠FCE.在△BCD 和△FCE 中,⎩⎪⎨⎪⎧CB =CF ,∠BCD =∠FCE,CD =CE ,∴ △BCD ≌△FCE ;(2) 解:由△BCD≌△FCE 得∠BDC=∠E.∵ EF∥CD,∴ ∠E =180°-∠DCE=90°,∴ ∠BDC=90°.24. (2014江苏省苏州市,24,5分) (本小题满分7分)如图,已知函数y=-12x +b 的图象与x 轴、y 轴分别交于点A ,B ,与函数y=x 的图象交于点M ,点M 的横坐标为2.在x 轴上有一点P(a ,0)(其中a >2),过点P 作x 轴的垂线,分别交函数y=-12x +b 和y=x的图象于点C ,D. (1) 求点A 的坐标; (2) 若OB=CD ,求a 的值.第24题【答案】(1) ∵ 点M 在函数y=x 的图象上,且横坐标为2,∴ 点M 的纵坐标为2.∵ 点M(2,2)在一次函数y=-12x +b 的图象上,∴ -12×2+b=2.∴ b=3.∴ 一次函数的表达式为y=-12x +3.令y=0,得x=6.∴ 点A 的坐标为(6,0);(2) 由题意得C ⎝ ⎛⎭⎪⎫a ,-12a +3,D(a ,a).∵ OB=CD,∴ a-⎝ ⎛⎭⎪⎫-12a +3=3,∴ a=4.25. (2014江苏省苏州市,25,5分)(本小题满分7分)如图,用红、蓝两种颜色随机地对A ,B ,C 三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色.请用列举法(画树状图或列表),求A 、C 两个区域所涂颜色不相同的概率.第25题【答案】用树状图表示:第25题∴ P(A ,C 两个区域所涂颜色不相同)=48=12.26. (2014江苏省苏州市,26,5分)(本小题满分8分)如图,已知函数y=kx(x >0)的图象经过点A ,B ,点A 的坐标为(1,2).过点A 作AC∥y 轴,AC=1(点C 位于点A 的下方),过点C 作CD∥x 轴,与函数的图象交于点D ,过点B 作BE ⊥CD ,垂足E 在线段CD 上,连接OC ,OD. (1) 求△OCD 的面积;(2) 当BE=12AC 时,求CE 的长.第26题【答案】(1) ∵ 反比例函数y=kx 的图象经过点A(1,2),∴ k=2.∵ AC∥y 轴,AC=1,∴ 点C 的坐标为(1,1).∵ CD ∥x 轴,点D 在函数图象上,∴ 点D 的坐标为(2,1).∴ S △OCD =12×1×1=12;(2) ∵ BE =12AC ,∴ BE=12.∵ BE ⊥CD ,∴ 点B 的纵坐标为32.∴ 点B 的横坐标为43.∴ CE=43-1=13.27. (2014江苏省苏州市,27,5分)(本小题满分8分)如图,已知⊙O 上依次有A ,B ,C ,D 四个点,AD ︵=BC ︵,连接AB ,AD ,BD ,弦AB 不经过⊙O.延长AB 到E ,使BE=AB.连接EC ,F 是EC 的中点,连接BF.(1) 若⊙O 的半径为3,∠DAB =120°,求劣弧BD ︵的长; (2) 求证:BF=12BD ;(3) 设G 是BD 的中点.探索:在⊙O 上是否存在点P(不同于点B),使得PG=PF ?并说明PB与AE 的位置关系.第27题【答案】(1) 连接OB ,OD.∵ ∠DAB =120°,∴ DCB ︵所对圆心角的度数为240°.∴ ∠BOD =120°.∵ ⊙O 的半径为3,∴ 劣弧BD ︵ 的长为120180×π×3=2π;(2) 证明:连接AC.∵ AB=BE,∴ 点B 为AE 的中点.∵ F 是EC 的中点,∴ BF 为△EAC 的中位线.∴ BF=12AC.∵ AD ︵=BD ︵,∴ AD ︵+AB ︵=BC ︵+AB ︵,∴ DAB ︵=CBA ︵.∴ BD=AC.∴ BF=12BD ;(3) 解:过点B 作AE 的垂线,与⊙O 的交点即为所求的点P.∵ BF 为△EAC 的中位线,∴ BF ∥AC.∴ ∠FBE =∠CAE.∵ AD ︵=BC ︵,∴ ∠CAB =∠DBA.∴ ∠FBE=∠DBA.∵ 由作法可知,BP ⊥AE ,∴ ∠GBP =∠FBP.∵ G 为BD 的中点,∴ BG=12BD.∴ BG =BF.∵BP=BP ,∴ △PBG ≌△PBF.∴ PG=PF.第27题28. (2014江苏省苏州市,28,5分)(本小题满分9分)如图,已知l 1⊥l 2,⊙O 与l 1,l 2都相切,⊙O 的半径为2 cm.矩形ABCD 的边AD ,AB 分别与l 1、l 2重合,AB=4 3 cm ,AD=4 cm.若⊙O 与矩形ABCD 沿l 1同时向右移动,⊙O 的移动速度为3 cm/s ,矩形ABCD 的移动速度为4 cm/s ,设移动时间为t(s).第28题(1) 如图①,连接OA ,AC ,则∠OAC 的度数为________;(2) 如图②,两个图形移动一段时间后,⊙O 到达⊙O 1的位置,矩形ABCD 到达A 1B 1C 1D 1的位置,此时点O 1,A 1,C 1恰好在同一直线上,求⊙O 移动的距离(即OO 1的长); (3) 在移动过程中,⊙O 到矩形对角线AC 所在直线的距离在不断变化,设该距离为d(cm).当d <2时,求t 的取值范围.(解答时可以利用备用图画出相关示意图) 【答案】(1) 105°;(2) 如图,当O 1,A 1,C 1恰好在同一直线上时,设⊙O 1与l 1的切点为E ,连接O 1E.可得O 1E=2,O 1E ⊥l 1.在Rt△A 1D 1C 1中,∵ A 1D 1=4,C 1D 1=43,∴ tan ∠C 1A 1D 1= 3.∴ ∠C 1A 1D 1=60°.在Rt△A 1O 1E 中,∠O 1A 1E =∠C 1A 1D 1=60°,∴ A 1E=2tan 60°=233.∴ A 1E=AA 1-OO 1-2=t-2.∴ t -2=233.∴ t=233+2.∴ OO 1=3t=23+6;第28题(3) ① 当直线AC 与⊙O 第一次相切时,设移动时间为t 1.如图,此⊙O 移动到⊙O 2的位置,矩形ABCD 移动到A 2B 2C 2D 2的位置.设⊙O 2与直线l 1,A 2C 2分别相切于点F ,G ,连接O 2F ,O 2G ,O 2A 2.∴ O 2F ⊥l 2,O 2G ⊥A 2C 2.由(2)可得∠C 2A 2D 2=60°,∴ ∠GA 2F =120°.∴ ∠O 2A 2F =60°.在Rt△A 2O 2F 中,O 2F=2,∴ A 2F=233.∵ OO 2=3t 1,AF=AA 2+A 2F=4t 1+233,∴ 4t 1+233-3t 1=2.∴ t 1=2-233;② 当直线AC 与⊙O 第二次相切时,设移动时间为t 2.记第一次相切时为位置一,点O 1,A 1,C 1共线时为位置二,第二次相切时为位置三.由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等.∴ 233+2-⎝ ⎛⎭⎪⎫2-233=t 2-⎝ ⎛⎭⎪⎫233+2.∴ t 2=2+2 3.综上所述,当d <2时,t 的取值范围是2-233<t <2+2 3.29. (2014江苏省苏州市,29,5分)(本小题满分10分)如图,二次函数y=a(x 2-2mx-3m 2)(其中a ,m 是常数,且a >0,m >0)的图象与x 轴分别交于点A ,B(点A 位于点B 的左侧),与y 轴交于点C(0,-3),点D 在二次函数的图象上,CD ∥AB ,连接AD.过点A 作射线AE 交二次函数的图象于点E ,AB 平分∠DAE. (1) 用含m 的代数式表示a ; (2) 求证:ADAE为定值;(3) 设该二次函数图象的顶点为F.探索:在x 轴的负半轴上是否存在点G ,连接GF ,以线段GF ,AD ,AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G 即可,并用含m 的代数式表示该点的横坐标;如果不存在,请说明理由.第29题【答案】(1)将C(0,-3)代入函数表达式得a(0-3m 2)=-3.∴ a=1m 2;(2)如图,过点D ,E分别作x 轴的垂线,垂足为M ,N.由a(x 2-2mx-3m 2)=0解得x 1=-m ,x 2=-3m.∴ A(-m ,0),B(3m ,0).∵ CD ∥AB ,∴ 点 D 的坐标为(2m ,-3).∵ AB 平分∠DAE ,∴ ∠DAM=∠EAN.∵ ∠DMA=∠ENA=90°,∴ △ADM ∽△AEN.∴AD AE =AM AN =DMEN.设点E 的坐标为⎣⎡⎦⎤x ,1m 2(x 2-2mx -3m 2),∴31m2(x 2-2mx -3m 2)=3m x -(-m ).∴ x=4m.∴ AD AE =AM AN =3m 5m =35(定值);(3)连接FC 并延长,与x 轴负半轴交于一点,此点即为所求的点G.由题意得:二次函数图象顶点F 的坐标为(m ,-4).过点F 作FH ⊥x 轴于点H.∵ tan ∠CGO=OC OG ,tan ∠FGH=HFHG ,∴OC OG =HF HG.∴ OG=3m.此时,GF=GH 2+HF 2=16m 2+16=4m 2+1,AD=AM 2+MD 2=9m 2+9=3m 2+1,∴GF AD =43.由(2)得AD AE =35,∴ AD ∶GF ∶AE =3∶4∶5,∴以线段GF ,AD ,AE 的长度为三边长的三角形是直角三角形,此时G 点横坐标为-3m.。

相关文档
最新文档