Hirota equation and Bethe ansatz

合集下载

高分子材料

高分子材料
一种即韧又硬的皮革态。此时,非晶态区处于高弹态, 具有柔韧性, 晶态区则具有较高的强度和硬度, 两者复合组成皮革态。
2. 高分子材料的机械性能特点 (1)强度低
100 MPa, 比 金属低得多, 但由于其重量轻、密度小, 许多高聚物的比强度还是很高的, 某些 工程塑料的比强度比钢铁和其他金属 还高。对于粘弹性的高聚物,其强度 主要受温度和变形速度的影响。
另一类高分子化合物的分子中虽然也包含了成千上万个结 构单元,但是所有的结构单元都是相同的,是由很多相同的 单元连接在一起的,不少天然的有机高分子材料都有这样的 结构,例如天然橡胶的主要成分是异戊二烯,棉纤维的主要 成分是纤维素。
构成大分子的最小重复结构单元,简称结构单元,或 称链节。构成结构单元的小分子称单体。
随着温度的升高,高聚物的力学
状态发生变化,在脆化温度Tb以下, 高聚物处于硬玻璃态;在Tb~Tg之间 处于软玻璃态;在略高于Tg时处于皮 革态;在高于Tg较多时处于橡胶态; 在接近于粘流温度Tf时处于半固态。
相应地,高聚物的性能由硬脆逐渐变 为强硬、强韧、柔韧高分子材料
高分子材料又称为高分子聚合物(简称高聚物),是以高分子化合 物为主要组分的有机材料。高分子化合物是指相对分子质量很大 的化合物,其相对分子质量一般在5000以上,有的甚至高达几百 万。高分子化合物由低分子化合物通过聚合反应获得。组成高分 子化合物的低分子化合物称作单体。
高分子材料的发展概况 (1)蒙昧期:19世纪中叶以前人们是无意识地使用高分子 材料。 (2)萌芽期:20世纪初期出现化学改性和人工合成的高分 子。 (3)争鸣期:20世纪初期到30年代高分子 (Macromolecule Polymer)概念形 成。 1920年德国学者H.Staudinger发表了他的划时代的文献 “论聚合”,提出异戊二烯构成橡胶,葡萄糖构成淀粉,纤 维素氨基酸构成蛋白质,都是以共价键彼此连接,提出高分 子长链结构的概念。

(完整word版)物理化学基本概念

(完整word版)物理化学基本概念

物理化学概念及术语A B C D E F G H I J K L M N O P Q R S T U V W X Y Z概念及术语 (16)BET公式BET formula (16)DLVO理论 DLVO theory (16)HLB法hydrophile—lipophile balance method (16)pVT性质 pVT property (16)ζ电势 zeta potential (16)阿伏加德罗常数 Avogadro’number (16)阿伏加德罗定律 Avogadro law (16)阿累尼乌斯电离理论Arrhenius ionization theory (16)阿累尼乌斯方程Arrhenius equation (17)阿累尼乌斯活化能 Arrhenius activation energy (17)阿马格定律 Amagat law (17)艾林方程 Erying equation (17)爱因斯坦光化当量定律 Einstein’s law of photochemical equivalence (17)爱因斯坦-斯托克斯方程 Einstein-Stokes equation (17)安托万常数 Antoine constant (17)安托万方程 Antoine equation (17)盎萨格电导理论Onsager’s theory of conductance (17)半电池half cell (17)半衰期half time period (18)饱和液体 saturated liquids (18)饱和蒸气 saturated vapor (18)饱和吸附量 saturated extent of adsorption (18)饱和蒸气压 saturated vapor pressure (18)爆炸界限 explosion limits (18)比表面功 specific surface work (18)比表面吉布斯函数 specific surface Gibbs function (18)比浓粘度 reduced viscosity (18)标准电动势 standard electromotive force (18)标准电极电势 standard electrode potential (18)标准摩尔反应焓 standard molar reaction enthalpy (18)标准摩尔反应吉布斯函数 standard Gibbs function of molar reaction (18)标准摩尔反应熵 standard molar reaction entropy (19)标准摩尔焓函数 standard molar enthalpy function (19)标准摩尔吉布斯自由能函数 standard molar Gibbs free energy function (19)标准摩尔燃烧焓 standard molar combustion enthalpy (19)标准摩尔熵 standard molar entropy (19)标准摩尔生成焓 standard molar formation enthalpy (19)标准摩尔生成吉布斯函数 standard molar formation Gibbs function (19)标准平衡常数 standard equilibrium constant (19)标准氢电极 standard hydrogen electrode (19)标准态 standard state (19)标准熵 standard entropy (20)标准压力 standard pressure (20)标准状况 standard condition (20)表观活化能apparent activation energy (20)表观摩尔质量 apparent molecular weight (20)表面活性剂surfactants (21)表面吸附量 surface excess (21)表面张力 surface tension (21)表面质量作用定律 surface mass action law (21)波义尔定律 Boyle law (21)波义尔温度 Boyle temperature (21)波义尔点 Boyle point (21)玻尔兹曼常数 Boltzmann constant (22)玻尔兹曼分布 Boltzmann distribution (22)玻尔兹曼公式 Boltzmann formula (22)玻尔兹曼熵定理 Boltzmann entropy theorem (22)泊Poise (22)不可逆过程 irreversible process (22)不可逆过程热力学thermodynamics of irreversible processes (22)不可逆相变化 irreversible phase change (22)布朗运动 brownian movement (22)查理定律 Charle's law (22)产率 yield (23)敞开系统 open system (23)超电势 over potential (23)沉降 sedimentation (23)沉降电势 sedimentation potential (23)沉降平衡 sedimentation equilibrium (23)触变 thixotropy (23)粗分散系统 thick disperse system (23)催化剂 catalyst (23)单分子层吸附理论 mono molecule layer adsorption (23)单分子反应 unimolecular reaction (23)单链反应 straight chain reactions (24)弹式量热计 bomb calorimeter (24)道尔顿定律 Dalton law (24)道尔顿分压定律 Dalton partial pressure law (24)德拜和法尔肯哈根效应Debye and Falkenhagen effect (24)德拜立方公式 Debye cubic formula (24)德拜-休克尔极限公式 Debye-Huckel’s limiting equation (24)等焓过程 isenthalpic process (24)等焓线isenthalpic line (24)等几率定理 theorem of equal probability (24)等温等容位Helmholtz free energy (25)等温等压位Gibbs free energy (25)等温方程 equation at constant temperature (25)低共熔点 eutectic point (25)低共熔混合物 eutectic mixture (25)低会溶点 lower consolute point (25)低熔冰盐合晶 cryohydric (26)第二类永动机 perpetual machine of the second kind (26)第三定律熵 Third—Law entropy (26)第一类永动机 perpetual machine of the first kind (26)缔合化学吸附 association chemical adsorption (26)电池常数 cell constant (26)电池电动势 electromotive force of cells (26)电池反应 cell reaction (27)电导 conductance (27)电导率 conductivity (27)电动势的温度系数 temperature coefficient of electromotive force (27)电化学极化 electrochemical polarization (27)电极电势 electrode potential (27)电极反应 reactions on the electrode (27)电极种类 type of electrodes (27)电解池 electrolytic cell (28)电量计 coulometer (28)电流效率current efficiency (28)电迁移 electro migration (28)电迁移率 electromobility (28)电渗 electroosmosis (28)电渗析 electrodialysis (28)电泳 electrophoresis (28)丁达尔效应 Dyndall effect (28)定容摩尔热容 molar heat capacity under constant volume (28)定容温度计 Constant voIume thermometer (28)定压摩尔热容 molar heat capacity under constant pressure (29)定压温度计 constant pressure thermometer (29)定域子系统 localized particle system (29)动力学方程kinetic equations (29)动力学控制 kinetics control (29)独立子系统 independent particle system (29)对比摩尔体积 reduced mole volume (29)对比体积 reduced volume (29)对比温度 reduced temperature (29)对比压力 reduced pressure (29)对称数 symmetry number (29)对行反应reversible reactions (29)对应状态原理 principle of corresponding state (29)多方过程polytropic process (30)多分子层吸附理论 adsorption theory of multi—molecular layers (30)二级反应second order reaction (30)二级相变second order phase change (30)法拉第常数 faraday constant (31)法拉第定律 Faraday’s law (31)反电动势back E。

Rational Solutions of the A_4^{(1)} Painlev'e Equation

Rational Solutions of the A_4^{(1)} Painlev'e Equation
In the third section, from the residue theorem, we get necessary condition for the parameters (αi)0≤i≤4 to have rational solutions. In addition, we transform the parameters to the fundamental domain of W˜ (A(41)); 0 ≤ αi ≤ 1 (0 ≤ i ≤ 4).
(αi, αi+1, αi+2, αi+3, αi+4) =
±
1 3
(1,
1,
1,
0,
0)
mod Z
±
1 3
(1,
−1,
−1,
1,
0)
mod Z.
(3) For some i = 0, 1, . . . , 4,
(αi, αi+1, αi+2, αi+3, αi+4) =
5j5j((11,,21,,11,,31,,31))
Introduction
In this paper, we will classify all of rational solutions of the A(41) Painlev´e equation. The A(41) Painlev´e equation is a member of the family of the A(n1) Painlev´e equations found by Noumi-Yamada [7]. The A(21) Painlev´e equation corresponds to the fourth Painlev´e equation. The A(41) Painlev´e equation is the first equation of the A(n1) Painlev´e equations, which are not the original Painlev´e equations.

T.W. ANDERSON (1971). The Statistical Analysis of Time Series. Series in Probability and Ma

T.W. ANDERSON (1971). The Statistical Analysis of Time Series. Series in Probability and Ma

425 BibliographyH.A KAIKE(1974).Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes.Annals Institute Statistical Mathematics,vol.26,pp.363-387. B.D.O.A NDERSON and J.B.M OORE(1979).Optimal rmation and System Sciences Series, Prentice Hall,Englewood Cliffs,NJ.T.W.A NDERSON(1971).The Statistical Analysis of Time Series.Series in Probability and Mathematical Statistics,Wiley,New York.R.A NDRE-O BRECHT(1988).A new statistical approach for the automatic segmentation of continuous speech signals.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-36,no1,pp.29-40.R.A NDRE-O BRECHT(1990).Reconnaissance automatique de parole`a partir de segments acoustiques et de mod`e les de Markov cach´e s.Proc.Journ´e es Etude de la Parole,Montr´e al,May1990(in French).R.A NDRE-O BRECHT and H.Y.S U(1988).Three acoustic labellings for phoneme based continuous speech recognition.Proc.Speech’88,Edinburgh,UK,pp.943-950.U.A PPEL and A.VON B RANDT(1983).Adaptive sequential segmentation of piecewise stationary time rmation Sciences,vol.29,no1,pp.27-56.L.A.A ROIAN and H.L EVENE(1950).The effectiveness of quality control procedures.Jal American Statis-tical Association,vol.45,pp.520-529.K.J.A STR¨OM and B.W ITTENMARK(1984).Computer Controlled Systems:Theory and rma-tion and System Sciences Series,Prentice Hall,Englewood Cliffs,NJ.M.B AGSHAW and R.A.J OHNSON(1975a).The effect of serial correlation on the performance of CUSUM tests-Part II.Technometrics,vol.17,no1,pp.73-80.M.B AGSHAW and R.A.J OHNSON(1975b).The influence of reference values and estimated variance on the ARL of CUSUM tests.Jal Royal Statistical Society,vol.37(B),no3,pp.413-420.M.B AGSHAW and R.A.J OHNSON(1977).Sequential procedures for detecting parameter changes in a time-series model.Jal American Statistical Association,vol.72,no359,pp.593-597.R.K.B ANSAL and P.P APANTONI-K AZAKOS(1986).An algorithm for detecting a change in a stochastic process.IEEE rmation Theory,vol.IT-32,no2,pp.227-235.G.A.B ARNARD(1959).Control charts and stochastic processes.Jal Royal Statistical Society,vol.B.21, pp.239-271.A.E.B ASHARINOV andB.S.F LEISHMAN(1962).Methods of the statistical sequential analysis and their radiotechnical applications.Sovetskoe Radio,Moscow(in Russian).M.B ASSEVILLE(1978).D´e viations par rapport au maximum:formules d’arrˆe t et martingales associ´e es. Compte-rendus du S´e minaire de Probabilit´e s,Universit´e de Rennes I.M.B ASSEVILLE(1981).Edge detection using sequential methods for change in level-Part II:Sequential detection of change in mean.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-29,no1,pp.32-50.426B IBLIOGRAPHY M.B ASSEVILLE(1982).A survey of statistical failure detection techniques.In Contribution`a la D´e tectionS´e quentielle de Ruptures de Mod`e les Statistiques,Th`e se d’Etat,Universit´e de Rennes I,France(in English). M.B ASSEVILLE(1986).The two-models approach for the on-line detection of changes in AR processes. In Detection of Abrupt Changes in Signals and Dynamical Systems(M.Basseville,A.Benveniste,eds.). Lecture Notes in Control and Information Sciences,LNCIS77,Springer,New York,pp.169-215.M.B ASSEVILLE(1988).Detecting changes in signals and systems-A survey.Automatica,vol.24,pp.309-326.M.B ASSEVILLE(1989).Distance measures for signal processing and pattern recognition.Signal Process-ing,vol.18,pp.349-369.M.B ASSEVILLE and A.B ENVENISTE(1983a).Design and comparative study of some sequential jump detection algorithms for digital signals.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-31, no3,pp.521-535.M.B ASSEVILLE and A.B ENVENISTE(1983b).Sequential detection of abrupt changes in spectral charac-teristics of digital signals.IEEE rmation Theory,vol.IT-29,no5,pp.709-724.M.B ASSEVILLE and A.B ENVENISTE,eds.(1986).Detection of Abrupt Changes in Signals and Dynamical Systems.Lecture Notes in Control and Information Sciences,LNCIS77,Springer,New York.M.B ASSEVILLE and I.N IKIFOROV(1991).A unified framework for statistical change detection.Proc.30th IEEE Conference on Decision and Control,Brighton,UK.M.B ASSEVILLE,B.E SPIAU and J.G ASNIER(1981).Edge detection using sequential methods for change in level-Part I:A sequential edge detection algorithm.IEEE Trans.Acoustics,Speech,Signal Processing, vol.ASSP-29,no1,pp.24-31.M.B ASSEVILLE, A.B ENVENISTE and G.M OUSTAKIDES(1986).Detection and diagnosis of abrupt changes in modal characteristics of nonstationary digital signals.IEEE rmation Theory,vol.IT-32,no3,pp.412-417.M.B ASSEVILLE,A.B ENVENISTE,G.M OUSTAKIDES and A.R OUG´E E(1987a).Detection and diagnosis of changes in the eigenstructure of nonstationary multivariable systems.Automatica,vol.23,no3,pp.479-489. M.B ASSEVILLE,A.B ENVENISTE,G.M OUSTAKIDES and A.R OUG´E E(1987b).Optimal sensor location for detecting changes in dynamical behavior.IEEE Trans.Automatic Control,vol.AC-32,no12,pp.1067-1075.M.B ASSEVILLE,A.B ENVENISTE,B.G ACH-D EVAUCHELLE,M.G OURSAT,D.B ONNECASE,P.D OREY, M.P REVOSTO and M.O LAGNON(1993).Damage monitoring in vibration mechanics:issues in diagnos-tics and predictive maintenance.Mechanical Systems and Signal Processing,vol.7,no5,pp.401-423.R.V.B EARD(1971).Failure Accommodation in Linear Systems through Self-reorganization.Ph.D.Thesis, Dept.Aeronautics and Astronautics,MIT,Cambridge,MA.A.B ENVENISTE and J.J.F UCHS(1985).Single sample modal identification of a nonstationary stochastic process.IEEE Trans.Automatic Control,vol.AC-30,no1,pp.66-74.A.B ENVENISTE,M.B ASSEVILLE and G.M OUSTAKIDES(1987).The asymptotic local approach to change detection and model validation.IEEE Trans.Automatic Control,vol.AC-32,no7,pp.583-592.A.B ENVENISTE,M.M ETIVIER and P.P RIOURET(1990).Adaptive Algorithms and Stochastic Approxima-tions.Series on Applications of Mathematics,(A.V.Balakrishnan,I.Karatzas,M.Yor,eds.).Springer,New York.A.B ENVENISTE,M.B ASSEVILLE,L.E L G HAOUI,R.N IKOUKHAH and A.S.W ILLSKY(1992).An optimum robust approach to statistical failure detection and identification.IFAC World Conference,Sydney, July1993.B IBLIOGRAPHY427 R.H.B ERK(1973).Some asymptotic aspects of sequential analysis.Annals Statistics,vol.1,no6,pp.1126-1138.R.H.B ERK(1975).Locally most powerful sequential test.Annals Statistics,vol.3,no2,pp.373-381.P.B ILLINGSLEY(1968).Convergence of Probability Measures.Wiley,New York.A.F.B ISSELL(1969).Cusum techniques for quality control.Applied Statistics,vol.18,pp.1-30.M.E.B IVAIKOV(1991).Control of the sample size for recursive estimation of parameters subject to abrupt changes.Automation and Remote Control,no9,pp.96-103.R.E.B LAHUT(1987).Principles and Practice of Information Theory.Addison-Wesley,Reading,MA.I.F.B LAKE and W.C.L INDSEY(1973).Level-crossing problems for random processes.IEEE r-mation Theory,vol.IT-19,no3,pp.295-315.G.B ODENSTEIN and H.M.P RAETORIUS(1977).Feature extraction from the encephalogram by adaptive segmentation.Proc.IEEE,vol.65,pp.642-652.T.B OHLIN(1977).Analysis of EEG signals with changing spectra using a short word Kalman estimator. Mathematical Biosciences,vol.35,pp.221-259.W.B¨OHM and P.H ACKL(1990).Improved bounds for the average run length of control charts based on finite weighted sums.Annals Statistics,vol.18,no4,pp.1895-1899.T.B OJDECKI and J.H OSZA(1984).On a generalized disorder problem.Stochastic Processes and their Applications,vol.18,pp.349-359.L.I.B ORODKIN and V.V.M OTTL’(1976).Algorithm forfinding the jump times of random process equation parameters.Automation and Remote Control,vol.37,no6,Part1,pp.23-32.A.A.B OROVKOV(1984).Theory of Mathematical Statistics-Estimation and Hypotheses Testing,Naouka, Moscow(in Russian).Translated in French under the title Statistique Math´e matique-Estimation et Tests d’Hypoth`e ses,Mir,Paris,1987.G.E.P.B OX and G.M.J ENKINS(1970).Time Series Analysis,Forecasting and Control.Series in Time Series Analysis,Holden-Day,San Francisco.A.VON B RANDT(1983).Detecting and estimating parameters jumps using ladder algorithms and likelihood ratio test.Proc.ICASSP,Boston,MA,pp.1017-1020.A.VON B RANDT(1984).Modellierung von Signalen mit Sprunghaft Ver¨a nderlichem Leistungsspektrum durch Adaptive Segmentierung.Doctor-Engineer Dissertation,M¨u nchen,RFA(in German).S.B RAUN,ed.(1986).Mechanical Signature Analysis-Theory and Applications.Academic Press,London. L.B REIMAN(1968).Probability.Series in Statistics,Addison-Wesley,Reading,MA.G.S.B RITOV and L.A.M IRONOVSKI(1972).Diagnostics of linear systems of automatic regulation.Tekh. Kibernetics,vol.1,pp.76-83.B.E.B RODSKIY and B.S.D ARKHOVSKIY(1992).Nonparametric Methods in Change-point Problems. Kluwer Academic,Boston.L.D.B ROEMELING(1982).Jal Econometrics,vol.19,Special issue on structural change in Econometrics. L.D.B ROEMELING and H.T SURUMI(1987).Econometrics and Structural Change.Dekker,New York. D.B ROOK and D.A.E VANS(1972).An approach to the probability distribution of Cusum run length. Biometrika,vol.59,pp.539-550.J.B RUNET,D.J AUME,M.L ABARR`E RE,A.R AULT and M.V ERG´E(1990).D´e tection et Diagnostic de Pannes.Trait´e des Nouvelles Technologies,S´e rie Diagnostic et Maintenance,Herm`e s,Paris(in French).428B IBLIOGRAPHY S.P.B RUZZONE and M.K AVEH(1984).Information tradeoffs in using the sample autocorrelation function in ARMA parameter estimation.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-32,no4, pp.701-715.A.K.C AGLAYAN(1980).Necessary and sufficient conditions for detectability of jumps in linear systems. IEEE Trans.Automatic Control,vol.AC-25,no4,pp.833-834.A.K.C AGLAYAN and R.E.L ANCRAFT(1983).Reinitialization issues in fault tolerant systems.Proc.Amer-ican Control Conf.,pp.952-955.A.K.C AGLAYAN,S.M.A LLEN and K.W EHMULLER(1988).Evaluation of a second generation reconfigu-ration strategy for aircraftflight control systems subjected to actuator failure/surface damage.Proc.National Aerospace and Electronic Conference,Dayton,OH.P.E.C AINES(1988).Linear Stochastic Systems.Series in Probability and Mathematical Statistics,Wiley, New York.M.J.C HEN and J.P.N ORTON(1987).Estimation techniques for tracking rapid parameter changes.Intern. Jal Control,vol.45,no4,pp.1387-1398.W.K.C HIU(1974).The economic design of cusum charts for controlling normal mean.Applied Statistics, vol.23,no3,pp.420-433.E.Y.C HOW(1980).A Failure Detection System Design Methodology.Ph.D.Thesis,M.I.T.,L.I.D.S.,Cam-bridge,MA.E.Y.C HOW and A.S.W ILLSKY(1984).Analytical redundancy and the design of robust failure detection systems.IEEE Trans.Automatic Control,vol.AC-29,no3,pp.689-691.Y.S.C HOW,H.R OBBINS and D.S IEGMUND(1971).Great Expectations:The Theory of Optimal Stop-ping.Houghton-Mifflin,Boston.R.N.C LARK,D.C.F OSTH and V.M.W ALTON(1975).Detection of instrument malfunctions in control systems.IEEE Trans.Aerospace Electronic Systems,vol.AES-11,pp.465-473.A.C OHEN(1987).Biomedical Signal Processing-vol.1:Time and Frequency Domain Analysis;vol.2: Compression and Automatic Recognition.CRC Press,Boca Raton,FL.J.C ORGE and F.P UECH(1986).Analyse du rythme cardiaque foetal par des m´e thodes de d´e tection de ruptures.Proc.7th INRIA Int.Conf.Analysis and optimization of Systems.Antibes,FR(in French).D.R.C OX and D.V.H INKLEY(1986).Theoretical Statistics.Chapman and Hall,New York.D.R.C OX and H.D.M ILLER(1965).The Theory of Stochastic Processes.Wiley,New York.S.V.C ROWDER(1987).A simple method for studying run-length distributions of exponentially weighted moving average charts.Technometrics,vol.29,no4,pp.401-407.H.C S¨ORG¨O and L.H ORV´ATH(1988).Nonparametric methods for change point problems.In Handbook of Statistics(P.R.Krishnaiah,C.R.Rao,eds.),vol.7,Elsevier,New York,pp.403-425.R.B.D AVIES(1973).Asymptotic inference in stationary gaussian time series.Advances Applied Probability, vol.5,no3,pp.469-497.J.C.D ECKERT,M.N.D ESAI,J.J.D EYST and A.S.W ILLSKY(1977).F-8DFBW sensor failure identification using analytical redundancy.IEEE Trans.Automatic Control,vol.AC-22,no5,pp.795-803.M.H.D E G ROOT(1970).Optimal Statistical Decisions.Series in Probability and Statistics,McGraw-Hill, New York.J.D ESHAYES and D.P ICARD(1979).Tests de ruptures dans un mod`e pte-Rendus de l’Acad´e mie des Sciences,vol.288,Ser.A,pp.563-566(in French).B IBLIOGRAPHY429 J.D ESHAYES and D.P ICARD(1983).Ruptures de Mod`e les en Statistique.Th`e ses d’Etat,Universit´e deParis-Sud,Orsay,France(in French).J.D ESHAYES and D.P ICARD(1986).Off-line statistical analysis of change-point models using non para-metric and likelihood methods.In Detection of Abrupt Changes in Signals and Dynamical Systems(M. Basseville,A.Benveniste,eds.).Lecture Notes in Control and Information Sciences,LNCIS77,Springer, New York,pp.103-168.B.D EVAUCHELLE-G ACH(1991).Diagnostic M´e canique des Fatigues sur les Structures Soumises`a des Vibrations en Ambiance de Travail.Th`e se de l’Universit´e Paris IX Dauphine(in French).B.D EVAUCHELLE-G ACH,M.B ASSEVILLE and A.B ENVENISTE(1991).Diagnosing mechanical changes in vibrating systems.Proc.SAFEPROCESS’91,Baden-Baden,FRG,pp.85-89.R.D I F RANCESCO(1990).Real-time speech segmentation using pitch and convexity jump models:applica-tion to variable rate speech coding.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-38,no5, pp.741-748.X.D ING and P.M.F RANK(1990).Fault detection via factorization approach.Systems and Control Letters, vol.14,pp.431-436.J.L.D OOB(1953).Stochastic Processes.Wiley,New York.V.D RAGALIN(1988).Asymptotic solutions in detecting a change in distribution under an unknown param-eter.Statistical Problems of Control,Issue83,Vilnius,pp.45-52.B.D UBUISSON(1990).Diagnostic et Reconnaissance des Formes.Trait´e des Nouvelles Technologies,S´e rie Diagnostic et Maintenance,Herm`e s,Paris(in French).A.J.D UNCAN(1986).Quality Control and Industrial Statistics,5th edition.Richard D.Irwin,Inc.,Home-wood,IL.J.D URBIN(1971).Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test.Jal Applied Probability,vol.8,pp.431-453.J.D URBIN(1985).Thefirst passage density of the crossing of a continuous Gaussian process to a general boundary.Jal Applied Probability,vol.22,no1,pp.99-122.A.E MAMI-N AEINI,M.M.A KHTER and S.M.R OCK(1988).Effect of model uncertainty on failure detec-tion:the threshold selector.IEEE Trans.Automatic Control,vol.AC-33,no12,pp.1106-1115.J.D.E SARY,F.P ROSCHAN and D.W.W ALKUP(1967).Association of random variables with applications. Annals Mathematical Statistics,vol.38,pp.1466-1474.W.D.E WAN and K.W.K EMP(1960).Sampling inspection of continuous processes with no autocorrelation between successive results.Biometrika,vol.47,pp.263-280.G.F AVIER and A.S MOLDERS(1984).Adaptive smoother-predictors for tracking maneuvering targets.Proc. 23rd Conf.Decision and Control,Las Vegas,NV,pp.831-836.W.F ELLER(1966).An Introduction to Probability Theory and Its Applications,vol.2.Series in Probability and Mathematical Statistics,Wiley,New York.R.A.F ISHER(1925).Theory of statistical estimation.Proc.Cambridge Philosophical Society,vol.22, pp.700-725.M.F ISHMAN(1988).Optimization of the algorithm for the detection of a disorder,based on the statistic of exponential smoothing.In Statistical Problems of Control,Issue83,Vilnius,pp.146-151.R.F LETCHER(1980).Practical Methods of Optimization,2volumes.Wiley,New York.P.M.F RANK(1990).Fault diagnosis in dynamic systems using analytical and knowledge based redundancy -A survey and new results.Automatica,vol.26,pp.459-474.430B IBLIOGRAPHY P.M.F RANK(1991).Enhancement of robustness in observer-based fault detection.Proc.SAFEPRO-CESS’91,Baden-Baden,FRG,pp.275-287.P.M.F RANK and J.W¨UNNENBERG(1989).Robust fault diagnosis using unknown input observer schemes. In Fault Diagnosis in Dynamic Systems-Theory and Application(R.Patton,P.Frank,R.Clark,eds.). International Series in Systems and Control Engineering,Prentice Hall International,London,UK,pp.47-98.K.F UKUNAGA(1990).Introduction to Statistical Pattern Recognition,2d ed.Academic Press,New York. S.I.G ASS(1958).Linear Programming:Methods and Applications.McGraw Hill,New York.W.G E and C.Z.F ANG(1989).Extended robust observation approach for failure isolation.Int.Jal Control, vol.49,no5,pp.1537-1553.W.G ERSCH(1986).Two applications of parametric time series modeling methods.In Mechanical Signature Analysis-Theory and Applications(S.Braun,ed.),chap.10.Academic Press,London.J.J.G ERTLER(1988).Survey of model-based failure detection and isolation in complex plants.IEEE Control Systems Magazine,vol.8,no6,pp.3-11.J.J.G ERTLER(1991).Analytical redundancy methods in fault detection and isolation.Proc.SAFEPRO-CESS’91,Baden-Baden,FRG,pp.9-22.B.K.G HOSH(1970).Sequential Tests of Statistical Hypotheses.Addison-Wesley,Cambridge,MA.I.N.G IBRA(1975).Recent developments in control charts techniques.Jal Quality Technology,vol.7, pp.183-192.J.P.G ILMORE and R.A.M C K ERN(1972).A redundant strapdown inertial reference unit(SIRU).Jal Space-craft,vol.9,pp.39-47.M.A.G IRSHICK and H.R UBIN(1952).A Bayes approach to a quality control model.Annals Mathematical Statistics,vol.23,pp.114-125.A.L.G OEL and S.M.W U(1971).Determination of the ARL and a contour nomogram for CUSUM charts to control normal mean.Technometrics,vol.13,no2,pp.221-230.P.L.G OLDSMITH and H.W HITFIELD(1961).Average run lengths in cumulative chart quality control schemes.Technometrics,vol.3,pp.11-20.G.C.G OODWIN and K.S.S IN(1984).Adaptive Filtering,Prediction and rmation and System Sciences Series,Prentice Hall,Englewood Cliffs,NJ.R.M.G RAY and L.D.D AVISSON(1986).Random Processes:a Mathematical Approach for Engineers. Information and System Sciences Series,Prentice Hall,Englewood Cliffs,NJ.C.G UEGUEN and L.L.S CHARF(1980).Exact maximum likelihood identification for ARMA models:a signal processing perspective.Proc.1st EUSIPCO,Lausanne.D.E.G USTAFSON, A.S.W ILLSKY,J.Y.W ANG,M.C.L ANCASTER and J.H.T RIEBWASSER(1978). ECG/VCG rhythm diagnosis using statistical signal analysis.Part I:Identification of persistent rhythms. Part II:Identification of transient rhythms.IEEE Trans.Biomedical Engineering,vol.BME-25,pp.344-353 and353-361.F.G USTAFSSON(1991).Optimal segmentation of linear regression parameters.Proc.IFAC/IFORS Symp. Identification and System Parameter Estimation,Budapest,pp.225-229.T.H¨AGGLUND(1983).New Estimation Techniques for Adaptive Control.Ph.D.Thesis,Lund Institute of Technology,Lund,Sweden.T.H¨AGGLUND(1984).Adaptive control of systems subject to large parameter changes.Proc.IFAC9th World Congress,Budapest.B IBLIOGRAPHY431 P.H ALL and C.C.H EYDE(1980).Martingale Limit Theory and its Application.Probability and Mathemat-ical Statistics,a Series of Monographs and Textbooks,Academic Press,New York.W.J.H ALL,R.A.W IJSMAN and J.K.G HOSH(1965).The relationship between sufficiency and invariance with applications in sequential analysis.Ann.Math.Statist.,vol.36,pp.576-614.E.J.H ANNAN and M.D EISTLER(1988).The Statistical Theory of Linear Systems.Series in Probability and Mathematical Statistics,Wiley,New York.J.D.H EALY(1987).A note on multivariate CuSum procedures.Technometrics,vol.29,pp.402-412.D.M.H IMMELBLAU(1970).Process Analysis by Statistical Methods.Wiley,New York.D.M.H IMMELBLAU(1978).Fault Detection and Diagnosis in Chemical and Petrochemical Processes. Chemical Engineering Monographs,vol.8,Elsevier,Amsterdam.W.G.S.H INES(1976a).A simple monitor of a system with sudden parameter changes.IEEE r-mation Theory,vol.IT-22,no2,pp.210-216.W.G.S.H INES(1976b).Improving a simple monitor of a system with sudden parameter changes.IEEE rmation Theory,vol.IT-22,no4,pp.496-499.D.V.H INKLEY(1969).Inference about the intersection in two-phase regression.Biometrika,vol.56,no3, pp.495-504.D.V.H INKLEY(1970).Inference about the change point in a sequence of random variables.Biometrika, vol.57,no1,pp.1-17.D.V.H INKLEY(1971).Inference about the change point from cumulative sum-tests.Biometrika,vol.58, no3,pp.509-523.D.V.H INKLEY(1971).Inference in two-phase regression.Jal American Statistical Association,vol.66, no336,pp.736-743.J.R.H UDDLE(1983).Inertial navigation system error-model considerations in Kalmanfiltering applica-tions.In Control and Dynamic Systems(C.T.Leondes,ed.),Academic Press,New York,pp.293-339.J.S.H UNTER(1986).The exponentially weighted moving average.Jal Quality Technology,vol.18,pp.203-210.I.A.I BRAGIMOV and R.Z.K HASMINSKII(1981).Statistical Estimation-Asymptotic Theory.Applications of Mathematics Series,vol.16.Springer,New York.R.I SERMANN(1984).Process fault detection based on modeling and estimation methods-A survey.Auto-matica,vol.20,pp.387-404.N.I SHII,A.I WATA and N.S UZUMURA(1979).Segmentation of nonstationary time series.Int.Jal Systems Sciences,vol.10,pp.883-894.J.E.J ACKSON and R.A.B RADLEY(1961).Sequential and tests.Annals Mathematical Statistics, vol.32,pp.1063-1077.B.J AMES,K.L.J AMES and D.S IEGMUND(1988).Conditional boundary crossing probabilities with appli-cations to change-point problems.Annals Probability,vol.16,pp.825-839.M.K.J EERAGE(1990).Reliability analysis of fault-tolerant IMU architectures with redundant inertial sen-sors.IEEE Trans.Aerospace and Electronic Systems,vol.AES-5,no.7,pp.23-27.N.L.J OHNSON(1961).A simple theoretical approach to cumulative sum control charts.Jal American Sta-tistical Association,vol.56,pp.835-840.N.L.J OHNSON and F.C.L EONE(1962).Cumulative sum control charts:mathematical principles applied to their construction and use.Parts I,II,III.Industrial Quality Control,vol.18,pp.15-21;vol.19,pp.29-36; vol.20,pp.22-28.432B IBLIOGRAPHY R.A.J OHNSON and M.B AGSHAW(1974).The effect of serial correlation on the performance of CUSUM tests-Part I.Technometrics,vol.16,no.1,pp.103-112.H.L.J ONES(1973).Failure Detection in Linear Systems.Ph.D.Thesis,Dept.Aeronautics and Astronautics, MIT,Cambridge,MA.R.H.J ONES,D.H.C ROWELL and L.E.K APUNIAI(1970).Change detection model for serially correlated multivariate data.Biometrics,vol.26,no2,pp.269-280.M.J URGUTIS(1984).Comparison of the statistical properties of the estimates of the change times in an autoregressive process.In Statistical Problems of Control,Issue65,Vilnius,pp.234-243(in Russian).T.K AILATH(1980).Linear rmation and System Sciences Series,Prentice Hall,Englewood Cliffs,NJ.L.V.K ANTOROVICH and V.I.K RILOV(1958).Approximate Methods of Higher Analysis.Interscience,New York.S.K ARLIN and H.M.T AYLOR(1975).A First Course in Stochastic Processes,2d ed.Academic Press,New York.S.K ARLIN and H.M.T AYLOR(1981).A Second Course in Stochastic Processes.Academic Press,New York.D.K AZAKOS and P.P APANTONI-K AZAKOS(1980).Spectral distance measures between gaussian pro-cesses.IEEE Trans.Automatic Control,vol.AC-25,no5,pp.950-959.K.W.K EMP(1958).Formula for calculating the operating characteristic and average sample number of some sequential tests.Jal Royal Statistical Society,vol.B-20,no2,pp.379-386.K.W.K EMP(1961).The average run length of the cumulative sum chart when a V-mask is used.Jal Royal Statistical Society,vol.B-23,pp.149-153.K.W.K EMP(1967a).Formal expressions which can be used for the determination of operating character-istics and average sample number of a simple sequential test.Jal Royal Statistical Society,vol.B-29,no2, pp.248-262.K.W.K EMP(1967b).A simple procedure for determining upper and lower limits for the average sample run length of a cumulative sum scheme.Jal Royal Statistical Society,vol.B-29,no2,pp.263-265.D.P.K ENNEDY(1976).Some martingales related to cumulative sum tests and single server queues.Stochas-tic Processes and Appl.,vol.4,pp.261-269.T.H.K ERR(1980).Statistical analysis of two-ellipsoid overlap test for real time failure detection.IEEE Trans.Automatic Control,vol.AC-25,no4,pp.762-772.T.H.K ERR(1982).False alarm and correct detection probabilities over a time interval for restricted classes of failure detection algorithms.IEEE rmation Theory,vol.IT-24,pp.619-631.T.H.K ERR(1987).Decentralizedfiltering and redundancy management for multisensor navigation.IEEE Trans.Aerospace and Electronic systems,vol.AES-23,pp.83-119.Minor corrections on p.412and p.599 (May and July issues,respectively).R.A.K HAN(1978).Wald’s approximations to the average run length in cusum procedures.Jal Statistical Planning and Inference,vol.2,no1,pp.63-77.R.A.K HAN(1979).Somefirst passage problems related to cusum procedures.Stochastic Processes and Applications,vol.9,no2,pp.207-215.R.A.K HAN(1981).A note on Page’s two-sided cumulative sum procedures.Biometrika,vol.68,no3, pp.717-719.B IBLIOGRAPHY433 V.K IREICHIKOV,V.M ANGUSHEV and I.N IKIFOROV(1990).Investigation and application of CUSUM algorithms to monitoring of sensors.In Statistical Problems of Control,Issue89,Vilnius,pp.124-130(in Russian).G.K ITAGAWA and W.G ERSCH(1985).A smoothness prior time-varying AR coefficient modeling of non-stationary covariance time series.IEEE Trans.Automatic Control,vol.AC-30,no1,pp.48-56.N.K LIGIENE(1980).Probabilities of deviations of the change point estimate in statistical models.In Sta-tistical Problems of Control,Issue83,Vilnius,pp.80-86(in Russian).N.K LIGIENE and L.T ELKSNYS(1983).Methods of detecting instants of change of random process prop-erties.Automation and Remote Control,vol.44,no10,Part II,pp.1241-1283.J.K ORN,S.W.G ULLY and A.S.W ILLSKY(1982).Application of the generalized likelihood ratio algorithm to maneuver detection and estimation.Proc.American Control Conf.,Arlington,V A,pp.792-798.P.R.K RISHNAIAH and B.Q.M IAO(1988).Review about estimation of change points.In Handbook of Statistics(P.R.Krishnaiah,C.R.Rao,eds.),vol.7,Elsevier,New York,pp.375-402.P.K UDVA,N.V ISWANADHAM and A.R AMAKRISHNAN(1980).Observers for linear systems with unknown inputs.IEEE Trans.Automatic Control,vol.AC-25,no1,pp.113-115.S.K ULLBACK(1959).Information Theory and Statistics.Wiley,New York(also Dover,New York,1968). K.K UMAMARU,S.S AGARA and T.S¨ODERSTR¨OM(1989).Some statistical methods for fault diagnosis for dynamical systems.In Fault Diagnosis in Dynamic Systems-Theory and Application(R.Patton,P.Frank,R. Clark,eds.).International Series in Systems and Control Engineering,Prentice Hall International,London, UK,pp.439-476.A.K USHNIR,I.N IKIFOROV and I.S AVIN(1983).Statistical adaptive algorithms for automatic detection of seismic signals-Part I:One-dimensional case.In Earthquake Prediction and the Study of the Earth Structure,Naouka,Moscow(Computational Seismology,vol.15),pp.154-159(in Russian).L.L ADELLI(1990).Diffusion approximation for a pseudo-likelihood test process with application to de-tection of change in stochastic system.Stochastics and Stochastics Reports,vol.32,pp.1-25.T.L.L A¨I(1974).Control charts based on weighted sums.Annals Statistics,vol.2,no1,pp.134-147.T.L.L A¨I(1981).Asymptotic optimality of invariant sequential probability ratio tests.Annals Statistics, vol.9,no2,pp.318-333.D.G.L AINIOTIS(1971).Joint detection,estimation,and system identifirmation and Control, vol.19,pp.75-92.M.R.L EADBETTER,G.L INDGREN and H.R OOTZEN(1983).Extremes and Related Properties of Random Sequences and Processes.Series in Statistics,Springer,New York.L.L E C AM(1960).Locally asymptotically normal families of distributions.Univ.California Publications in Statistics,vol.3,pp.37-98.L.L E C AM(1986).Asymptotic Methods in Statistical Decision Theory.Series in Statistics,Springer,New York.E.L.L EHMANN(1986).Testing Statistical Hypotheses,2d ed.Wiley,New York.J.P.L EHOCZKY(1977).Formulas for stopped diffusion processes with stopping times based on the maxi-mum.Annals Probability,vol.5,no4,pp.601-607.H.R.L ERCHE(1980).Boundary Crossing of Brownian Motion.Lecture Notes in Statistics,vol.40,Springer, New York.L.L JUNG(1987).System Identification-Theory for the rmation and System Sciences Series, Prentice Hall,Englewood Cliffs,NJ.。

麦克斯韦方程组

麦克斯韦方程组
复数形式 对于正弦时变场,可以使用复矢量将电磁场定律表示为复数形式。
在复数形式的电磁场定律中,由于复数场量和源量都只是空间位置的函数,在求解时,不必 再考虑它们与时间的依赖关系。因此,对讨论正弦时变场来说面采用复数形式的电磁场定律 是较为方便的。 注记 采用不同的单位制,麦克斯韦方程组的形式会稍微有所改变,大致形式仍旧相同,只是不同 的常数会出现在方程内部不同位置。 国际单位制是最常使用的单位制,整个工程学领域都采用这种单位制,大多数化学家也都使 用这种单位制,大学物理教科书几乎都采用这种单位制。其它常用的单位制有高斯单位制、 洛伦兹-赫维赛德单位制(Lorentz-Heavisideunits)和普朗克单位制。由厘米-克-秒制衍生 的高斯单位制,比较适合于教学用途,能够使得方程看起来更简单、更易懂。洛伦兹-赫维 赛德单位制也是衍生于厘米-克-秒制,主要用于粒子物理学;普朗克单位制是一种自然单位 制,其单位都是根据自然的性质定义,不是由人为设定。普朗克单位制是研究理论物理学非 常有用的工具,能够给出很大的启示。在本页里,除非特别说明,所有方程都采用国际单位 制。 这里展示出麦克斯韦方程组的两种等价表述。第一种表述如下:
注意: (1)在不同的惯性参照系中,麦克斯韦方程组有同样的形式。 (2)应用麦克斯韦方程组解决实际问题,还要考虑介质对电磁场的影响。例如在均匀各向同 性介质中,电磁场量与介质特性量有下列关系:
在非均匀介质中,还要考虑电磁场量在界面上的边值关系。在利用 t=0时场量的初值条件, 原则上可以求出任一时刻空间任一点的电磁场,即 E(x,y,z,t)和 B(x,y,z,t)。
1855年至 1865年,麦克斯韦在全面地审视了库仑定律、毕奥—萨伐尔定律和法拉第定律的 基础上,把数学分析方法带进了电磁学的研究领域,由此导致麦克斯韦电磁理论的诞生。 方程组成 麦克斯韦方程组乃是由四个方程共同组成的:[1] 高斯定律:该定律描述电场与空间中电荷分布的关系。电场线开始于正电荷,终止于负电荷。 计算穿过某给定闭曲面的电场线数量,即其电通量,可以得知包含在这闭曲面内的总电荷。 更详细地说,这定律描述穿过任意闭曲面的电通量与这闭曲面内的电荷之间的关系。 高斯磁定律:该定律表明,磁单极子实际上并不存在。所以,没有孤立磁荷,磁场线没有初 始点,也没有终止点。磁场线会形成循环或延伸至无穷远。换句话说,进入任何区域的磁场 线,必需从那区域离开。以术语来说,通过任意闭曲面的磁通量等于零,或者,磁场是一个 无源场。 法拉第感应定律:该定律描述时变磁场怎样感应出电场。电磁感应是制造许多发电机的理论 基础。例如,一块旋转的条形磁铁会产生时变磁场,这又接下来会生成电场,使得邻近的闭 合电路因而感应出电流。 麦克斯韦-安培定律:该定律阐明,磁场可以用两种方法生成:一种是靠传导电流(原本的 安培定律),另一种是靠时变电场,或称位移电流(麦克斯韦修正项)。 在电磁学里,麦克斯韦修正项意味着时变电场可以生成磁场,而由于法拉第感应定律,时变 磁场又可以生成电场。这样,两个方程在理论上允许自我维持的电磁波传播于空间。 麦克斯韦电磁场理论的要点可以归结为: ①几分立的带电体或电流,它们之间的一切电的及磁的作用都是通过它们之间的中间区域传 递的,不论中间区域是真空还是实体物质。 ②电能或磁能不仅存在于带电体、磁化体或带电流物体中,其大部分分布在周围的电磁场中。 ③导体构成的电路若有中断处,电路中的传导电流将由电介质中的位移电流补偿贯通,即全 电流连续。且位移电流与其所产生的磁场的关系与传导电流的相同。 ④磁通量既无始点又无终点,即不存在磁荷。 ⑤光波也是电磁波。 麦克斯韦方程组有两种表达方式。 1.积分形式的麦克斯韦方程组是描述电磁场在某一体积或某一面积内的数学模型。表达式 为:

黎曼猜想英语

黎曼猜想英语

黎曼猜想英语The Riemann Hypothesis, named after the 19th-century mathematician Bernhard Riemann, is one of the most profound and consequential conjectures in mathematics. It is concerned with the distribution of the zeros of the Riemann zeta function, a complex function denoted as $$\zeta(s)$$, where $$s$$ is a complex number. The hypothesis posits that all non-trivial zeros of this analytical function have their real parts equal to $$\frac{1}{2}$$.To understand the significance of this conjecture, one must delve into the realm of number theory and the distribution of prime numbers. Prime numbers are the building blocks of arithmetic, as every natural number greater than 1 is either a prime or can be factored into primes. The distribution of these primes, however, has puzzled mathematicians for centuries. The Riemann zeta function encodes information about the distribution of primes through its zeros, and thus, the Riemann Hypothesis is directly linked to understanding this distribution.The zeta function is defined for all complex numbers except for $$s = 1$$, where it has a simple pole. For values of $$s$$ with a real part greater than 1, it converges to a sum over the positive integers, as shown in the following equation:$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$。

Lattice geometry of the Hirota equation

Lattice geometry of the Hirota equation

a r X i v:solv-int/99713v18J ul1999Lattice geometry of the Hirota equation Adam Doliwa Instytut Fizyki Teoretycznej,Uniwersytet Warszawski ul.Ho˙z a 69,00-681Warszawa,Poland e-mail:doliwa@.pl Abstract Geometric interpretation of the Hirota equation is presented as equation describing the Laplace sequence of two-dimensional quadri-lateral lattices.Different forms of the equation are given together with their geometric interpretation:(i)the discrete coupled Volterra sys-tem for the coefficients of the Laplace equation,(ii)the gauge invariant form of the Hirota equation for projective invariants of the Laplace sequence,(iii)the discrete Toda system for the rotation coefficients and (iv)the original form of the Hirota equation for the τ-function of the quadrilateral lattice.Keywords:Integrable discrete geometry;Hirota equation 1IntroductionThe integrable discrete geometry deals with lattice submanifolds described by integrable equations.Among the integrable discrete (difference)equations an important role is played by the Hirota equation [12]which is the discrete analog of the two-dimensional Toda system [17].Both the Toda system and the Hirota equation are important in the theory of integrable equations and in their applications.It turns out that the two-dimensional Toda system was studied in classical differential geometry and describes the so called Laplace sequences of two-dimensional conjugate nets [3].The lattice geometric interpretation of the discrete Toda system was found in [6]and is based on the observation that the discrete analog of1the conjugate net on a surface,which is given by the two-dimensional lattice made of planar quadrilaterals[18],allows for definition of the correspond-ing Laplace sequence of discrete conjugate nets.Since then,the multidi-mensional quadrilateral lattice[10](multidimensional lattice made of planar quadrilaterals–the integrable discrete analog of a multidimensional conju-gate net)became one of the central notions of the integrable discrete geom-etry.In particular,many classical results of the theory of conjugate nets and of their reductions have been generalized recently to the discrete level [1,16,2,7,11,14,5,9].The goal of the present article is to reinterpret and expand results ob-tained in[6]using new notions provided by the general theory of quadrilateral lattices.Different formulations of the Hirota equations are reviewed and,for each of them,the geometric interpretation of the corresponding functions is given.In Sections2and3we reformulate,using more convenient notation,re-sults found in[6].In Section4we present the discrete analog of the standard version of the Toda system as an equation governing Laplace transformations of the rotation coefficients.Then in Section5,basing on the geometric inter-pretation of theτ–function of the quadrilateral lattice given in[9],we show that theτ–functions of the Laplace sequence of quadrilateral lattices solve the original Hirota’s form of the discrete Toda system—this last resultfills out the missing point of paper[6].2Laplace transformations of quadrilateral lat-ticesDefinition2.1.Two dimensional quadrilateral lattice is a mapping of the two dimensional integer lattice into M dimensional projective space such that elementary quadrilaterals of the lattice are planar:x:Z2→P M,T1T2x∈ x,T1x,T2x .In the above definition T i,i=1,2,denotes the shift operator along the i-th direction of the lattice.In the non-homogenous coordinates of the projective space a two dimen-sional quadrilateral lattice is represented by the mapping x:Z2→R M2L (x )L (x )T i ij x i T x T j xj -1x T i T j x ij T ij L (x )j T Figure 1:Laplace transformation of quadrilateral latticessatisfying the Laplace equation [6]∆1∆2x =(T 1A 12)∆2x +(T 2A 21)∆2x ,(2.1)which is equivalent to the planarity condition;here ∆i =T i −1,i =1,2,is the partial difference operator,and the functions A 12,A 21:Z 2→R ,define the position of the point T 1T 2x with respect to the points x ,T 1x and T 2x .Planarity of elementary quadrilaterals implies that the ”tangent”lines containing opposite sides of an elementary quadrilateral intersect.The Laplace transformation L ij ,i =j of the lattice x is defined [6,11]as intersection of the line x,T i x with the line T −1j x,T i T −1j x (see Figure 1).Using elementary calculations one can show the following results [6,11].Proposition 2.1.In the non-homogenous representation the Laplace trans-formation L ij (x )of the quadrilateral lattice x is given byL ij (x )=x −1T j A ji (T i A ij +1)−1,(2.3)L ij (A ji )=T −1j T i L ij (A ij )Proposition2.3.Under the assumption that the transformed lattices are non-degenerate,i.e.their quadrilaterals do not degenerate to segments or points,we haveL ij◦L ji=L ji◦L ij=id.(2.5) In this way given two dimensional quadrilateral lattice x one can define a sequence of quadrilateral latticesx(l)=L l12(x),l∈N,L−112=L21.In analogy to the Laplace sequence of conjugate nets,the above sequence can be called the Laplace sequence of quadrilateral lattices.Equations(2.3)-(2.4) can be then rewritten in the form∆2A(l)21(T1A(l)12+1)(A(l+1)12+1),(2.6)∆1A(l)12(T2A(l)21+1)(A(l−1)21+1),(2.7)which is the discrete analog of the coupled Volterra system.3Projective invariants of the Laplace sequence The planarity of elementary quadrilaterals of the quadrilateral lattice and the construction of the Laplace sequence are essentially of the projective nature[6].It would be therefore interesting to know the pure projective-geometric version of the equation describing the Laplace sequence of quadri-lateral lattices.The basic numeric invariant of projective transformations is the so called cross-ratio of four collinear points,which is given in the affine representation ascr(a,b;c,d)= c−a d−b ;notice the simple identitycr(a,b;c,d)=cr(b,a;d,c).(3.1)4Define the function K ij as the cross-ratio of x ,L ij (x ),T i x and T j L ij (x ).Elementary calculations show thatT i x −L ij (x )=1+A jiT j A ji ∆i x ,T j L ij (x )−L ij (x )=1T j A ji ∆i x ,and,therefore,K ij =cr(x ,L ij (x );T i x ,T j L ij (x ))=A ji (T i A ij +1)−T j A ji(T i K ij )(T j K ij )(T i K ij +1)(T j K ij +1)K (l )+1 T 1 K (l −1)+1(T 1K (l ))(T 2K (l )),(3.4)known as the gauge invariant form of the Hirota equation.4Rotation coefficients of the quadrilaterallatticeAs it was shown in[10]it is convenient to reformulate the Laplace equation (2.1)as a first order system.We introduce the suitably scaled tangent vectors X i ,i =1,2,∆i x =(T i H i )X i ,(4.1)5x X i X j T j X i(T j Q ij )X j T jx T i xT i X jT i T j xFigure 2:Definition of the rotation coefficientsin such a way that the j -th variation of X i is proportional to X j only (see Figure 2)∆j X i =(T j Q ij )X j ,i =j,(4.2)the coefficients Q ij in equation (4.2)are called the rotation coefficients.The scaling factors H i in equation (4.1),called the Lam´e coefficients,satisfy the linear equations∆i H j =(T i H i )Q ij ,i =j ,adjoint to (4.2);moreoverA ij =∆j H iQ ij,L ij (H j )=T −1j Q ij ∆jH jthe tangent vectors of the new lattice are given byL ij(X i)=−∆i X i+∆i Q ijQ ij Xi.From above formulas follow transformation rules for the rotation coeffi-cients.Proposition4.2.The rotation coefficients transform according toL ij(Q ij)=T−1j T i Q ij−Q ij T i T j Q ijQ ij.(4.4)Equations(4.3)and(4.4)can be rewritten in terms of the function Q= Q12as∆2∆1Q(l)Q(l−1) −T2Q(l+1)T j -1X j ~T i -1i X ~X j~T j -1X i~T i -1Q ~ij ()X i ~T i -1T i -1T j -1xx xx Figure 3:Definition of the backward dataadjoint to system (5.1)Since the forward and backward rotation coefficients Q ij and ˜Qij describe the same lattice x but from different points of view,then one cannot expect that they are independent.Indeed,defining the functions ρi :Z 2→R ,i =1,2,as the proportionality factors between X i and T i ˜Xi (both vectors are proportional to ∆i x ):X i =−ρi (T i ˜X i ),T i H i =−1ρi =1−(T i Q ji )(T j Q ij ),i =j .(5.2)The right hand side of equation (5.2)is symmetric with respect to the interchange of i and j ,which implies the existence of a potential τ:Z 2→R ,8such thatρi=T iτ(T iτ)(T jτ)=1−(T i Q ji)(T j Q ij),i=j.(5.3)The potentialτconnecting the forward and backward data is theτ-function of the quadrilateral lattice[9].Let usfind the Laplace transformation of theτ-function.Formulas(4.3) and(4.4)imply that1−(T i L ij(Q ji))(T j L ij(Q ij))=Q ij T i T j Q ijT iτT jτ,(5.4)which,due to equation(5.3),allows for identificationL ij(τ)=τQ ij.(5.5) It should be mentioned here that the above formula was strongly suggested by the identification of the Schlesinger transformation of the theory of the mul-ticomponent Kadomtsev–Petviashvili hierarchy[4,13,15]with the Laplace transformation of conjugate nets[8].Corollary5.2.The geometric meaning ofτij as the Laplace transformation L ij(τ)of theτ-function applies for any dimension of the quadrilateral lattice.Finally,equation(5.3)rewritten in terms of theτ-function and its Laplace transformations take the following formτ(l)T1T2τ(l)=(T1τ(l))(T2τ(l))−(T1τ(l−1))(T2τ(l+1)),(5.6) which is the original Hirota’s bilinear form of the discrete Toda system.6ConclusionThe geometric interpretation of the Hirota equation(integrable discrete ana-log of the Toda system)is given by the Laplace sequence of quadrilateral9lattices,therefore various representations of the lattice give different versions of the equation.In the paper we presented four different forms of the Hi-rota equation:(i)the discrete coupled Volterra system(2.6)-(2.7)for the coefficients of the Laplace equations,(ii)the gauge invariant form of the Hi-rota equation(3.4)for projective invariants of the Laplace sequence,(iii)the discrete Toda system for the rotation coefficients(4.5),and(iv)the origi-nal form of the Hirota equation(5.6)for theτ-function of the quadrilateral lattice.AcknowledgementsThe author would like to thank the organizers of the SIDE III meeting for invitation and support.References[1]A.Bobenko and U.Pinkall,Discrete isothermic surfaces,J.reine angew.Math.475(1996),187–208.[2]J.Cie´s li´n ski,A.Doliwa,and P.M.Santini,The integrable discrete ana-logues of orthogonal coordinate systems are multidimensional circular lattices,Phys.Lett.A235(1997),480–488.[3]G.Darboux,Le¸c ons sur la th´e orie g´e n´e rale des surfaces I–IV,Gauthier–Villars,Paris,1887–1896.[4]E.Date,M.Kashiwara,M.Jimbo,and T.Miwa,Transformation groupsfor soliton equations,Nonlinear integrable systems—classical the-ory and quantum theory,Proc.of RIMS Symposium(M.Jimbo and T.Miwa,eds.),World Scientific,Singapore,1983,pp.39–119.[5]A.Doliwa,Quadratic reductions of quadrilateral lattices,J.Geom.Phys.30(1999)169–186.[6][7]A.Doliwa,S.V.Manakov,and P.M.Santini,¯∂-reductions of the multi-dimensional quadrilateral lattice:the multidimensional circular lattice, Comm.Math.Phys.196(1998),1–18.[8]A.Doliwa,M.Ma˜n as,L.Mart´ınez Alonso,E.Medina,and P.M.Santini,Multicomponent KP hierarchy and classical transformations of conjugate nets,J.Phys.A32(1999)1197–1216.[9]A.Doliwa and P.M.Santini,The symmetric and Egorov reductions ofthe quadrilateral lattice,solv-int/9907012.[10]。

Arrhenius equation - Wikipedia

Arrhenius equation - Wikipedia

Where
k is the rate constant T is the absolute temperature (in kelvin) A is the pre-exponential factor, a constant for each chemical reaction that defines the rate due to frequency of
Arrhenius equation
Contents
1 2 3 4 Equation Arrhenius plot Modified Arrhenius' equation Theoretical interpretation of the equation 4.1 Arrhenius' Concept of Activation Energy 4.2 Collision theory 4.3 Transition state theory 4.4 Limitations of the idea of Arrhenius activation energy See also References Bibliography External links
frequency factor
attempt frequency
Given the small temperature range kinetic studies occur in, it is reasonable to approximate the activation energy as being independent of the temperature. Similarly, under a wide range of practical conditions, the weak temperature dependence of the pre-exponential factor is negligible compared to the temperature dependence of the factor; except in the case of "barrierless" diffusion-limited reactions, in which case the pre-exponential factor is dominant and is directly observable.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
At present it is gradually realized that quantum and classical integrable systems have a deeper connection than the common assertion that the latter are obtained from the former
5.2 Generalized Baxter's relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Factorization formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6 A1-models
33
6.1 General solution to discrete Liouville equation . . . . . . . . . . . . . . . . . . 33
6.2 Di erent forms of Baxter's relation . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 On elliptic and trigonometric cases . . . . . . . . . . . . . . . . . . . . . . . . 15
Joint Institute of Chemical Physics, Kosygina str. 4, 117334, Moscow, Russia and ITEP, 117259, Moscow, Russia
2.2 Quantum monodromy matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Quantum transfer matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2
scattering method has a very di erent meaning in classical and quantum contexts, to say nothing about more speci c tools having no analogues like the nite-gap integration technique (from the classical side) or the Bethe ansatz (from the quantum side).
7 Conclusion
39
1 Introduction
Modern developments of the theory of integrable systems are characterized by substantial interaction between methods speci c for classical and quantum cases which so far did not intersect. For a long time classical and quantum integrable models were studuied on their own grounds that was quite natural since the very questions used to be asked in the both cases usually did not have common points. An advantage of exploring interrelations between classical and quantum methods became clear already in the early days of the quantum inverse scattering method (QISM) 1]. As a result of its classical limit, the notion of r-matrix was introduced. The r-matrix plays a fundamental role in the advanced hamiltonian theory of classical integrable equations, providing a universal frame of quadratic Poisson bracket algebras.
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4 Nested Bethe ansatz as a chain of Backlund transformations
20
4.1 Zero curvature representation and auxiliary linear problems . . . . . . . . . . . 20
4.2 Functions Qt(u) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Analytic conditions in u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
well. This phenomenon was "experimentally" observed in many di erent examples. The earliest ones are non-linear equations for correlation functions in the Ising model obtained in 3]. In particular, it has been shown 4], 5] that the pair spin correlation function in the Ising model on square lattice in the self-dual point obeys the di erence analogue of the well known Toda chain equation. The list of examples of a similar type was substantially enlarged about ten years ago 6, 7], when it was discovered that correlation functions in many other integrable models of quantum eld theory obey integrable (in general di erential-di erence) classical equations. Examples of other types include thermodynamic Bethe ansatz equations in the model-independent form 8] and functional relations for transfer matrices in quantum integrable models 9, 10]. They can be represented in the form of the purely classical di erence Hirota equation 11] (a di erence analogue of the two-dimensional Toda chain). Other aspects of the classical-quantum connections can be found in 12]{ 16].
2.4 Functional relations and determinant formulas . . . . . . . . . . . . . . . . . . 13
2.5 Bilinear form of the fusion rules for rectangular diagrams . . . . . . . . . . . . 14
4.3 Bethe equations as a dynamical system in discrete time . . . . . . . . . . . . . 24
5 Di erence equations for the functions Qt
26
5.1 General solution to the bilinear relations . . . . . . . . . . . . . . . . . . . . . 27
In other respects, theories of classical and quantum integrable systems so far developed separately and looked like two di erent branches of mathematical physics with their own notions, methods and traditions. For instance, even such a universal approach as the inverse
相关文档
最新文档