三角函数章节测试题A
《三角函数》单元测试卷含答案

《三角函数》单元测试卷A(含答案)一、选择题(本大题共10小题,每小题5分,共50分)1.已知点P(tanα,cosα)在第三象限,则角α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限2.集合M={x|x=±,k∈Z}与N={x|x=,k∈Z}之间的关系是()A.M NB.N MC.M=ND.M∩N=3.若将分针拨慢十分钟,则分针所转过的角度是()A.60°B.-60°C.30°D.-30°4.已知下列各角(1)787°,(2)-957°,(3)-289°,(4)1711°,其中在第一象限的角是()A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)5.设a<0,角α的终边经过点P(-3a,4a),那么sinα+2cosα的值等于()A. B.-C. D.-6.若cos(π+α)=-,π<α<2π,则sin(2π-α)等于()A.-B.C.D.±7.若α是第四象限角,则π-α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角8.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2B.C.2sin1D.sin29.如果sin x+cos x=,且0<x<π,那么cot x的值是()A.-B.-或-C.-D.或-10.若实数x满足log2x=2+sinθ,则|x+1|+|x-10|的值等于()A.2x-9B.9-2xC.11D.9二、填空题(本大题共6小题,每小题5分,共30分)11.tan300°+cot765°的值是_____________.12.若=2,则sinαcosα的值是_____________.13.不等式(lg20)2cos x>1,(x∈(0,π))的解集为_____________.14.若θ满足cosθ>-,则角θ的取值集合是_____________.15.若cos130°=a,则tan50°=_____________.-16.已知f (x )=,若α∈(,π),则f (cos α)+f (-cos α)可化简为___________.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)设一扇形的周长为C (C >0),当扇形中心角为多大时,它有最大面积?最大面积是多少?18.(本小题满分14分)设90°<α<180°,角α的终边上一点为P (x ,),且cos α=x ,求sin α与tan α的值.19.(本小题满分14分)已知≤θ≤π,sin θ=,cos θ=,求m 的值.20.(本小题满分15分)已知0°<α<45°,且lg(tan α)-lg(sin α)=lg(cos α)-lg(cot α)+2lg3-lg2,求cos 3α-sin 3α的值.21.(本小题满分15分)已知sin(5π-α)=cos(π+β)和cos(-α)=-cos(π+β),且0<α<π,0<β<π,求α和β的值. 三角函数单元复习题(一)答案一、选择题(本大题共10小题,每小题5分,共50分)1.B2.A3.A4.C5.A6.B7.C8.B9.C10.C二、填空题(本大题共6小题,每小题5分,共30分)11.1-12.13.(0,)14.{θ|2kπ-π<θ<2kπ+π,k ∈Z }15.-16.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)设一扇形的周长为C (C >0),当扇形中心角为多大时,它有最大面积?最大面积是多少?【解】设扇形的中心角为α,半径为r ,面积为S ,弧长为l ,则l +2r =C 即l =C -2r .∴S =lr =(C -2r )·r =-(r -)2+.故当r =时S max =,此时,α====2.∴当α=2时,S max =.18.(本小题满分14分)设90°<α<180°,角α的终边上一点为P (x ,),且cos α= x ,求sin α与tan α的值.【解】由三角函数的定义得:cos α=52 x x又cos α=x ,∴=x ,解得x =±.由已知可得:x<0,∴x=-.故cosα=-,sinα=,tanα=-.19.(本小题满分14分)已知≤θ≤π,sinθ=,cosθ=,求m的值.【解】由sin2θ+cos2θ=1得()2+()2=1,整理得m2-8m=0∴m=0或m=8.当m=0时,sinθ=-,cosθ=,与≤θ≤π矛盾,故m≠0.当m=8时,sinθ=,cosθ=-,满足≤θ≤π,所以m=8.20.(本小题满分15分)已知0°<α<45°,且lg(tanα)-lg(sinα)=lg(cosα)-lg(cotα)+2lg3 -lg2,求cos3α-sin3α的值.【分析】这是一道关于对数与三角函数的综合性问题,一般可通过化简已知等式、用求值的方法来解.【解】由已知等式得lg=lg∴9sinαcosα=2,-2sinαcosα=-,(sinα-cosα)2=.∵0°<α<45°,∴cosα>sinα,∴cosα-sinα=cos3α-sin3α=(cosα-sinα)(cos2α+sinαcosα+sin2α)=×(1+)=.21.(本小题满分15分)已知sin(5π-α)=cos(π+β)和cos(-α)=-cos(π+β),且0<α<π,0<β<π,求α和β的值.【分析】运用诱导公式、同角三角函数基本关系式及消元法.在三角关系中,一般可利用平方关系进行消元.【解】由已知得sinα=sinβ①cosα=cosβ②由①2+②2得sin2α+3cos2α=2.即sin2α+3(1-sin2α)=2,解得sinα=±,由于0<α<π所以sinα=.故α=或.当α=时,cosβ=,又0<β<π,∴β=当α=时,cosβ=-,又0<β<π,∴β=.综上可得:α=,β=或α=,β=.。
高一数学三角函数章节测试卷(含详解)

高一三角函数章节测试卷一、单选题(本大题共8小题,共40分)1. 将分针拨快10分钟,则分针转过的弧度数是( ) A. π3B. −π3C. π6D. −π62. 《掷铁饼者》取材于希腊的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的一只手臂长约为π4米,整个肩宽约为π8米.“弓”所在圆的半径约为1.25米.则掷铁饼者双手之间的距离约为(参考数据:√2≈1.414;√3≈1.732) ( )A. 1.612米B. 1.768米C. 1.868米D. 2.045米3. 已知θ是第四象限角,M (1,m )为其终边上一点,且sinθ=√55m ,则2sinθ−cosθsinθ+cosθ的值( ) A. 0B. 45C. 43D. 54. sin15∘cos75∘−cos15∘sin105∘=( ) A. −12B. 12C. −√32D. √325. 终边为一、三象限角平分线的角的集合是( ) A. {α|α=2kπ+π4,k ∈Z} B. {α|α=kπ+π2,k ∈Z} C. {α|α=2kπ+π2,k ∈Z}D. {α|α=kπ+π4,k ∈Z}6. 已知4sin α−2cos α5cos α+3sin α=57,则sinα⋅cosα的值为( ) A. −103B. 103C. −310D. 3107. 设a =cos π12,b =sin 41π6,c =cos 7π4,则( )A. a >c >bB. c >b >aC. c >a >bD. b >c >a8. 为了得到函数y =4sinxcosx ,x ∈R 的图象,只要把函数y =√3sin2x +cos2x ,x ∈R 图象上所有的点( )A. 向左平移π12个单位长度 B. 向右平移π12个单位长度 C. 向左平移π6个单位长度D. 向右平移π6个单位长度二、多选题(本大题共4小题,共20分)9. 下列化简结果正确的是( ) A. cos22∘sin52∘−sin22∘cos52∘=12B. sin15∘sin30∘sin75∘=14C. cos15∘−sin15∘=√22D. tan24∘+tan36∘1−tan24∘tan36∘=√310. 对于函数f (x )=sinx +cosx ,下列说法正确的有( ) A. 2π是一个周期B. 关于(π2,0)对称 C. 在[0,π2]上的值域为[1,√2]D. 在[π4,π]上递增11. 已知函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,将函数f(x)的图象上所有点的横坐标变为原来的23,纵坐标不变,再将所得函数图象向右平移π6个单位长度,得到函数g(x)的图象,则下列关于函数g(x)的说法正确的是( )A. g(x)的最小正周期为2π3 B. g(x)在区间[π9,π3]上单调递增 C. g(x)的图象关于直线x =4π9对称 D. g(x)的图象关于点(π9,0)成中心对称12. 绍兴市柯桥区棠棣村是浙江省美丽乡村,也是重要的研学基地,村口的大水车,是一道独特的风景.假设水轮半径为4米(如图所示),水轮中心O 距离水面2米,水轮每60秒按逆时针转动一圈,如果水轮上点P 从水中浮现时(图中P 0)开始计时,则( )A. 点P 第一次达到最高点,需要20秒B. 当水轮转动155秒时,点P 距离水面2米C. 在水轮转动的一圈内,有15秒的时间,点P 距水面超过2米D. 点P 距离水面的高度ℎ(米)与t(秒)的函数解析式为ℎ=4sin (π30t −π6)+2三、填空题(本大题共4小题,共20分)13. 函数f (x )=tan (πx −π4)的定义域为______.14. 要得到函数y =cos (x 2−π4)的图象,只需将y =sin x2的图象向左平移 个单位;15.1sin10∘−√3sin80∘的值为16. 已知cosα=13,且−π2<α<0,则cos (−α−π)sin (2π+α)tan (2π−α)sin (3π2−α)cos (π2+α)= .四、解答题(本大题共6小题,共70分)17. (本小题10分)已知sin x 2−2cos x2=0.(1)求tanx 的值;(2)求cos2xcos(5π4+x)sin(π+x)的值.18. (本小题12分)已知函数f(x)=sin (π4+x)sin (π4−x)+√3sin xcos x .(1)求f(π6)的值;(2)在△ABC 中,若f(A2)=1,求sinB +sinC 的最大值.19. (本小题12分)设函数f(x)=√32cos x +12sin x +1.(1)求函数f(x)的值域和单调递增区间;(2)当f(α)=95,且π6<α<2π3时,求sin(2α+2π3)的值.20. (本小题12分)已知函数f(x)=Asin(ωx +φ)(A >0,ω>0,0<φ<2π)的部分图象如图所示.(1)求函数f(x)的解析式;(2)若ℎ(x)=f(x)⋅f(x −π6),x ∈[0,π4],求ℎ(x)的取值范围.21. (本小题12分)已知函数f(x)=(sinx+cosx)2+2cos2x.(1)求函数y=f(x)周期及其单调递增区间;(2)当x∈[0,π2]时,求y=f(x)的最大值和最小值.22. (本小题12分)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边与单位圆交点为P(−45,35 ).(1)求cos(α+π4)和sin2α的值;(2)求的值.答案和解析1.解:将时钟拨快10分钟,则分针顺时针转过60°,∴将时钟拨快10分钟,分针转过的弧度数是−π3.故选B .2.解:由题得:弓所在的弧长为:l =π4+π4+π8=5π8;所以其所对的圆心角α=5π854=π2;∴两手之间的距离d =2Rsin π4=√2×1.25≈1.768.故选B .3.解:∵θ是第四象限角,M(1,m)为其终边上一点,则有m <0,∴|OM|=√1+m 2,则sin θ=√1+m2=√55m ,即m =−2,∴tanθ=−2,则2sinθ−cosθsinθ+cosθ=2tanθ−1tanθ+1=−4−1−1=5.故选D . 4.解:sin15∘cos75∘−cos15∘sin105∘=sin15°cos75°−cos15°sin75°=sin (15°−75°)=−sin60°=−√32.故选C .5.解:设角的终边在第一象限和第三象限角的平分线上的角为α,当角的终边在第一象限角的平分线上时,则α=2kπ+π4,k ∈Z ,当角的终边在第三象限角的平分线上时,则α=2kπ+5π4,k ∈Z ,综上,α=2kπ+π4,k ∈Z 或α=2kπ+5π4,k ∈Z ,即α=kπ+π4,k ∈Z ,终边在一、三象限角平分线的角的集合是:{α|α=kπ+π4,k ∈Z }.故选D .6.解:由4sinα−2cosα5cosα+3sinα=57,得4tanα−25+3tanα=57,解得tanα=3,∴sinα⋅cosα=sinα⋅cosαsin 2α+cos 2α=tanα1+tan 2α=31+32=310.故选D .7.解:b =sin41π6=sin(6π+5π6)=sin5π6=sinπ6=cosπ3,c =cos7π4=cosπ4,因为 π 2> π 3> π 4> π 12>0,且y =cos x 在(0,π2)是减函数,所以cosπ12>cosπ4>cosπ3,即a >c >b .故选A .8.因为y =4sinxcosx =2sin2x ,y =√3sin2x +cos2x =2sin (2x +π6)=2sin2(x +π12),所以为了得到函数y =4sinxcosx ,x ∈R 的图象,只要把函数y =√3sin2x +cos2x ,x ∈R 图象上所有的点向右平移π12个单位长度即可,故选:B9.解:A 中,cos 22∘sin 52∘−sin 22∘cos 52∘=sin30°=12,则A 正确,B 中,sin15°sin30°sin75°=sin15°sin30°sin (90°−15°)=sin15°cos15°sin30°=12sin30°sin30°=18,则B 错误,C 中,cos 15∘−sin 15∘=√2cos(45°+15°)=√22,则C 正确;D 中,tan 24∘+tan 36∘1−tan 24∘tan 36∘=tan60°=√3,则D 正确.故选ACD .10.解:因为函数f (x )=sinx +cosx =√2sin (x +π4),故它的一个周期为2π,故A 正确;令x =π2,得f (x )=√2sin (π2+π4)=√2sin 3π4=1,所以函数f (x )不关于(π2,0)对称,故B 不正确;当0≤x ≤π2时,π4≤x +π4≤3π4,所以√2×√22≤√2sin (x +π4)≤√2×1,即f (x )的值域为[1,√2],故C 正确;当π4≤x ≤π时,π2≤x +π4≤5π4,所以函数f (x )在[π4,π]上单调递减,故D 不正确.11.解:根据函数的图象:周期12T =5π12−(−π12)=π2,解得T =π,故ω=2.由图可得A =2,当x =5π12时,f(5π12)=2sin(5π6+φ)=−2,即5π6+φ=3π2+2kπ,k ∈Z ,由于|φ|<π,所以φ=2π3,所以f(x)=2sin(2x +2π3),函数f(x)的图象上所有点的横坐标变为原来的23,纵坐标不变,得到函数y =2sin(3x +2π3)的图象,再将所得函数图象向右平移π6个单位长度,得到函数g(x)=2sin(3x +π6)的图象, 故对于A :函数g(x)的最小正周期为T =2π3,故A 正确;对于B :由于x ∈[π9,π3],所以3x +π6∈[π2,7π6], 故函数g(x)在区间[π9,π3]上单调递减,故B 错误;对于C :当x =4π9时,g(4π9)=2sin(4π3+π6)=−2, 故函数g(x)的图象关于直线x =4π9对称,故C 正确;对于D :当x =π9时,g(π9)=2,故D 错误. 故选:AC .12.解:设点P 距离水面的高度为ℎ(米)和t(秒)的函数解析式为ℎ=Asin(ωt +φ)+B(A >0,ω>0,|φ|<π2),由题意,ℎmax =6,ℎmin =−2,∴{A +B =6−A +B =−2,解得{A =4B =2,∵T =2πω=60,∴ω=2πT =π30,则ℎ=4sin(π30t +φ)+2.当t =0时,ℎ=0,∴4sinφ+2=0,则sinφ=−12,又∵|φ|<π2,∴φ=−π6.ℎ=4sin(π30t −π6)+2,故D 正确;令ℎ=4sin(π30t −π6)+2=6,0⩽t ⩽60,∴sin(π30t −π6)=1,得t =20秒,故A 正确; 当t =155秒时,ℎ=4sin(π30×155−π6)+2=4sin5π+2=2,故B 正确; 4sin(π30×t −π6)+2>2,令0<π30×t −π6<π,解得5<t <35,故有30秒的时间,点P 距水面超过2米,故C 错误.故选:ABD .13.解:由πx −π4≠π2+kπ,k ∈Z ,可得x ≠k +34,k ∈Z ,即定义域为{x|x ≠k +34,k ∈Z}.故答案为{x|x ≠k +34,k ∈Z}.14.解:将函数y =sin x 2的图象上所有点向左平移π2个单位纵坐标不变,可得函数y =sin 12(x +π2)=sin(x 2+π4)=cos(π4−x 2)=cos(x 2−π4)的图象.故答案为: π2.15.解:原式=1sin10∘−√3cos10∘=cos10∘−√3sin10∘sin10∘cos10∘=4(12cos10∘−√32sin10∘)2sin10∘cos10∘=4cos(60∘+10∘)sin20∘=4cos70∘sin20∘=4sin20∘sin20∘=4,故答案为4.16.解:cos(−α−π)sin(2π+α)tan(2π−α)sin(3π2−α)cos(π2+α)=(−cosα)sinα(−tanα)(−cosα)(−sinα)=tanα,∵cosα=13,且−π2<α<0,∴sinα=−2√23,则原式=tanα=sinαcosα=−2√2.故答案为−2√2. 17.解:(1)∵f(x)=sin (π 4+x)sin (π 4−x)+√3sin xcos x=sin (π4+x)sin [π2−(π4+x)]+√3sinxcosx =sin (π4+x)cos (π4+x)+√3sinxcosx =12cos2x +√32sin2x =sin (2x +π6),∴f (π6)=sin (2×π6+π6)=1. (2)由f (A2)=sin (A +π6)=1,而0<A <π,可得A +π6=π2,即A =π3, ∴sinB +sinC =sinB +sin (2π3−B)=32sinB +√32cosB =√3sin (B +π6), ∵0<B <2π3,∴π6<B +π6<5π6,12<sin (B +π6)≤1,则√32<√3sin (B +π6)≤√3,故当B =π3时,sinB +sinC 取最大值,最大值为√3. 19.【答案】解:(1)由图象有A =√3,最小正周期T =43(7π12+π6)=π,所以ω=2πT=2,所以f(x)=√3sin(2x +φ).由f (7π12)=−√3,得2·7π12+φ=3π2+2kπ,k ∈Z ,所以φ=π3+2kπ,k ∈Z .又因为0<φ<2π,所以φ=π3.所以 f(x)=√3sin(2x +π3) .(2)由(1)可知f(x)=√3sin (2x +π3),ℎ(x)=f(x)⋅f(x −π6)=√3sin (2x +π3)×√3sin2x =3sin2x(12sin2x +√32cos2x)=32sin 22x +3√32sin2xcos2x =32·1−cos4x 2+3√34sin4x =32sin(4x −π6)+34.因为x ∈[0,π4],所以4x −π6∈[−π6,5π6],所以sin(4x −π6)∈[−12,1],所以ℎ(x)的取值范围为[0,94]. 20.解:(1)因为f(x)=(sinx +cosx)2+2cos 2x =2+sin2x +cos2x =√2sin(2x +π4)+2所以f(x)=√2sin(2x +π4)+2;所以f(x)的最小正周期为2π2=π;令−π2+2kπ≤2x +π4≤π2+2kπ,k ∈Z ,所以−3π8+kπ≤x ≤π8+kπ,k ∈Z 所以f(x)的单调递增区间为[−3π8+kπ,π8+kπ]k ∈Z;(2)因为x ∈[0,π2],所以2x +π4∈[π4,5π4],所以sin(2x +π4)∈[−√22,1]所以f(x)∈[1,2+√2],所以f(x)的最大值为2+√2,最小值为1.21.解:(1)由sin x 2−2cos x2=0,知cosx2≠0,∴tanx 2=2,∴tanx =2tan x21−tan 2x2=2×21−4=−43. (2)由(1),知tanx =−43,∴cos2x cos(5π4+x)sin(π+x)=cos2x −cos(π4+x)(−sinx)=22(√22cos x−√22sin x)sin x=√22(cos x−sin x)sin x=√2×cos x+sin x sin x=√2×1+tan xtan x =√24. 22.解:(1)由题意,|OP|=1,则sinα=35,cosα=−45,∴cos(α+π4)=cosαcos π4−sinαsin π4=−45×√22−35×√22=−7√210,sin2α=2sinαcosα=2×35×(−45)=−2425.(2)由(1)知,tanα=sinαcosα=−34,则3sin (π−α)−2cos (−α)5cos (2π−α)+3sin α=3sinα−2cosα5cosα+3sinα=3tanα−25+3tanα=3×(−34)−25+3×(−34)=−1711.。
三角函数章节练习题

三角函数1:弧度制及任意角的三角函数一、选择题1.将表的分针拨慢10分钟,则分针转过的角的弧度制是( )(A )3π (B )6π (C)- 3π (D) -6π ⒉已知cos tan θθ⋅<0,那么角θ是(A ).第一或第二象限角 (B).第二或第三象限角 (C ).第三或第四象限角 (D).第一或第四象限角3.已知扇形的周长为6cm ,面积是2cm 2,则扇形的圆心角的弧度数是( )(A )1 (B )4 (C)1或4 (D )2或44.tan(-3000)+tan450的值为 ( )(A )1+3 (B )1-3 (C )-1+3 (D) -1-3二、填空题5.如图,终边落在阴影部分的角的集合是 .6.已知角α的终边过点P (-4a,3a )(a <0),则2sinα+cos α的 值是 .2:诱导公式一、选择题1.若cos(-1000)=k,则tan800等于 ( )(A )k k 21- (B )-k k 21- (C )k k 21+ (D )-kk 21+2.已知函数f(x)=a sin(απ+x )+bcos(βπ+x ),且f(2009)=3,则f(2010)的值是( )(A )-1 (B )-2 (C )-3 (D )1 3.已知sin(απ+)=53,且α是第四象限角,那么cos(πα2-)的值是 ( ) (A )54(B )-54 (C )±54 (D )534.若3sin 5m m θ-=+且42cos 5m m θ-=+,其中2πθπ<<,则m 的取值范围是( )(A){}39, (B){}59-, (C){}08, (D){}8二、填空题5.已知tan(5)m π+=α,则sin(cos()sin cos()πππ+---+α-3)α(α)α= .6.若)2cos(sin x x +=π,则x 的取值范围是_________________。
三、解答题 7.求sin )322(ππ+n ·cos ))(34(Z n n ∈+ππ的值。
高中数学 第一章 三角函数 三角函数测试题 新人教A版必修4

三角函数测试题一、选择题1.化简0sin 600的值是( )A .0.5B .0.5-C .32D .32- 答案:D解析: 000003sin 600sin 240sin(18060)sin 602==+=-=-2.若10<<a ,ππ<<x 2,则11cos cos )(2--+---x xa ax x a x x a的值是( )A .1B .1-C .3D .3- 答案:A解析:21()cos cos 0,10,0,1(1)(1)1cos 1x xx a a x x x a x a x a x a --<->->-+=--+-=-- 3.若⎪⎭⎫ ⎝⎛∈3,0πα,则αsin log 33等于( ) A .αsin B .αsin 1 C .αsin - D .αcos 1- 答案:B解析: 3331log log sin log sin sin 31log sin 0,333sin ααααα-<===4.已知1A ,2A ,…n A 为凸多边形的内角,且0sin lg .....sin lg sin lg 21=+++n A A A ,则这个多边形是( )A .正六边形B .梯形C .矩形D .含锐角菱形 答案:.C解析: 012sin sin ...sin 1,0sin 1sin 1,90n i i i A A A A A A =<≤⇒==而5.函数2cos 3cos 2++=x x y 的最小值为( )A .2B .0C .1D .6 答案:B解析: 令cos ,[1,1]x t t =∈-,则232y t t =++,对称轴32t =-, [1,1]-是函数y 的递增区间,当1t =-时min 0y =;6.曲线sin (0,0)y A x a A ωω=+>>在区间2[0,]πω上截直线2y =及1y =-所得的弦长相等且不为0,则下列对,A a 的描述正确的是( ) A.13,22a A => B.13,22a A =≤ C.1,1a A =≥ D.1,1a A =≤ 答案:A解析: 图象的上下部分的分界线为2(1)113,,23,2222y a A A +-===>>得且二、填空题1.已知角α的终边与函数)0(,0125≤=+x y x 决定的函数图象重合,αααsin 1tan 1cos -+的值为_____________. 答案:7713-解析: 在角α的终边上取点1255(12,5),13,cos ,tan ,sin 131213P r ααα-==-=-= 2.若α是第三象限的角,β是第二象限的角,则2βα-是第 象限的角.答案:一、或三解析:111222322,(),222,(),22k k k Z k k k Z ππππαππαππ+<<+∈+<<+∈ 1212()()422k k k k παβπππ--+<<-+3.函数cos 1()()3xf x =在[],ππ-上的单调减区间为_________。
第二十八章锐角三角函数(A卷知识通关练)(原卷版)

班级姓名学号分数第二十八章锐角三角函数(A卷·知识通关练)核心知识1 锐角三角函数1.已知在Rt△ABC中,∠C=90°,AC=4,BC=6,那么下列各式中正确的是()A.tan A=B.cot A=C.sin A=D.cos A=2.在Rt△ABC中,∠C=90°,BC=3,AB=4,那么下列各式中正确的是()A.sin A=B.cos A=C.tan A=D.cot A=3.已知Rt△ABC中,∠C=90°,tan A=,AC=6,则AB等于()A.6B.C.10D.84.已知α为锐角,且,那么α的正切值为()A.B.C.D.5.在Rt△ABC中,∠C=90°,若sin A=,则cos B=()A.B.C.D.6.在Rt△ABC中,∠C=90°,AC=2,AB=3,那么tan A=.7.Rt△ABC中,∠C=90°,tan A=2,则cos A的值为.8.如图,在Rt△ABC中,∠C=90°,AC=24,sin A=,则BC=.9.已知在△ABC中,∠C=90°,AB=8,AC=6,那么cos A的值是.核心知识2.解直角三角形10.如图所示,△ABC的顶点是正方形网格的格点,则tan B的值为()A.B.C.D.111.如图,在Rt△ABC中,∠C=90°,sin A=,BC=,则AC的长为()A.B.3C.D.212.在Rt△ABC中,∠C=90°,BC=2,,则AC的长是()A.B.3C.D.13.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,下列结论正确的是()A.sin C=B.sin C=C.sin C=D.sin C=14.在△ABC中,已知AC=3,BC=4,AB=5,那么下列结论正确的是()A.sin A=B.cos A=C.tan A=D.以上均不正确15.如图,△ABC的顶点是正方形网格的格点,则sin∠ABC的值为()A.B.C.D.16.已知AD是△ABC的中线,BC=6,且∠ADC=45°,∠B=30°,则AC=()A.B.C.D.617.如图,在4×4正方形网格中,点A,B,C为网格交点,AD⊥BC,垂足为D,则sin∠BAD的值为()A.B.C.D.核心知识3.解直角三角形的应用18.如图,沿AB方向架桥BD,以桥两端B、D出发,修公路BC和DC,测得∠ABC=150°,BC=1800m,∠BCD=105°,则公路DC的长为()A.900m B.900m C.900m D.1800m19.图1是一款平板电脑支架,由托板、支撑板和底座构成.工作时,可将平板电脑吸附在托板上,底座放置在桌面上.图2是其侧面结构示意图,已知托板AB长200mm,支撑板CB长80mm,当∠ABC=130°,∠BCD=70°时,则托板顶点A到底座CD所在平面的距离为()(结果精确到1mm).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41,≈1.73)A.246 mm B.247mm C.248mm D.249mm20.如图,架在消防车上的云梯AB长为15m,BD∥CE,∠ABD=α,云梯底部离地面的距离BC为2m.则云梯的顶端离地面的距离AE的长为()A.(2+15sinα)m B.(2+15tanα)mC.17tanαm D.17sinαm21.如图,小明为了测量遵义市湘江河的对岸边上B,C两点间的距离,在河的岸边与BC平行的直线EF 上点A处测得∠EAB=37°,∠F AC=60°,已知河宽30米,则B,C两点间的距离为()(参考数据:sin37°≈,cos37°≈,tan37°≈)A.(18+25)米B.(40+10)米C.(24+10)米D.(40+30)米22.如图,已知A、C两点的距离为5米,∠A=α,则树高BC为()A.5sinα米B.5cosα米C.5tanα米D.米23.如图,一条河的两岸互相平行,为了测量河的宽度PT(PT与河岸PQ垂直),测量得P,Q两点间距离为m米,∠PQT=α,则河宽PT的长为()A.m sinαB.m cosαC.m tanαD.24.如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44cm,则高AD约为()(参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.9.90cm B.11.22cm C.19.58cm D.22.44cm25.一配电房示意图如图所示,它是一个轴对称图形.已知BC=6m,∠ABC=α,则房顶A离地面EF的高度为()A.(4+3sinα)m B.(4+3tanα)m C.(4+)m D.(4+)m26.某学校安装红外线体温检测仪(如图1),其红外线探测点O可以在垂直于地面的支杆OP上自由调节(如图2).已知最大探测角∠OBC=67°,最小探测角∠OAC=37°.测温区域AB的长度为2米,则该设备的安装高度OC应调整为()米.(精确到0.1米.参考数据:sin67°≈,cos67°≈,tan67°≈,sin37°≈,cos37°≈,tan37°≈)A.2.4B.2.2C.3.0D.2.727.如图1是一种可折叠手机平板支架,由托板、支撑板和底座组成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=17cm,支撑板长CD=12cm,底座长DE=13cm,托板AB固定在支撑板的端点C处,托板AB可绕点C转动,支撑板CD可绕点D转动,当∠ACD=2∠D=60°时,点A到点D的距离恰好是点C到直线DE的距离的2倍,则BC=cm.为了观看舒适,把AB绕点C旋转,再将CD绕点D旋转,使点B与点E重合,则此时点A到直线DE的距离为cm.。
三角函数测试题及答案

三角函数测试题及答案# 三角函数测试题及答案## 一、选择题1. 题目:在直角三角形中,若角A的正弦值等于1/2,那么角A的余弦值是多少?- A. √3/2- B. 1/√2- C. -1/2- D. 1/2答案: A2. 题目:已知sin(θ) = 0.6,求cos(θ)的值(假设θ在第一象限)。
- A. 0.8- B. 0.5- C. 0.4- D. 0.2答案: A3. 题目:以下哪个表达式是正确的?- A. tan(θ) = sin(θ) / cos(θ)- B. sin(θ) = cos(θ)- C. cos(θ) = 1 / tan(θ)- D. sin^2(θ) + cos^2(θ) = 1答案: D## 二、填空题4. 已知一个角的正弦值为0.8,其对应的余弦值是____。
答案:±0.65. 一个角的正切值为2,那么其正弦值与余弦值的比值为____。
答案: 26. 根据三角函数的周期性,sin(360° + θ) = ____。
答案:sin(θ)## 三、简答题7. 解释正弦函数的周期性,并给出一个例子。
答案:正弦函数是周期函数,其周期为360°或2π弧度。
这意味着每隔360°,正弦函数的值会重复。
例如,sin(0°) = 0,sin(360°) = 0,sin(720°) = 0,以此类推。
8. 已知sin(α) = 3/5,cos(α) = 4/5,求tan(α)的值。
答案:tan(α) = sin(α) / cos(α) = (3/5) / (4/5) = 3/4## 四、计算题9. 在直角三角形ABC中,∠C为直角,已知AB = 10,AC = 6,求BC的长度。
答案:根据勾股定理,BC = √(AB^2 - AC^2) = √(10^2 - 6^2) =√(100 - 36) = √64 = 8。
10. 已知sin(θ) = √3 / 2,求θ的度数(假设θ在第一象限)。
第五章三角函数单元测试卷及参考答案

第五章 三角函数单元测试卷一、单选题(每题只有一个选项为正确答案,每题5分,共40分) 1.已知角α的终边经过点(,3)P x -,且3tan 4α=-,则cos α=( ) A .35±B .45±C .45-D .452.已知3cos 4x =,则cos2x =( ) A .14-B .14C .18-D .183.如果函数y =3cos (2x +φ)的图象关于点(43π,0)中心对称,那么|φ|的最小值为( ) A .6πB .4π C .3π D .2π4.已知函数()sin 3f x x x =,则在下列区间使函数()f x 单调递减的是( )A .3,24ππ⎛⎫⎪⎝⎭B .0,4π⎛⎫⎪⎝⎭C .5,4ππ⎛⎫ ⎪⎝⎭D .,24ππ⎛⎫-- ⎪⎝⎭5.若,αβ为锐角,45sin ,cos()513ααβ=+=,则sin β等于( ) A .1665B .5665C .865D .47656.函数()sin()(0,0)f x A x A ωϕω=+>>的部分图象如图所示,则下列说法中错误的是( )A .()f x 的最小正周期是2πB .()f x 在1931,1212ππ⎡⎤⎢⎥⎣⎦上单调递增 C .()f x 在175,1212ππ⎡⎤--⎢⎥⎣⎦上单调递增D .直线1712x π=-是曲线()y f x =的一条对称轴7.已知7sin 6πα⎛⎫+=⎪⎝⎭2cos 23πα⎛⎫- ⎪⎝⎭=( ) A .23-B .13-C .23D .138.将函数()2sin 2cos 2cos sin sin 22f x x x ππθθθθ⎛⎫=+--<< ⎪⎝⎭的图象向右平移()0ϕϕ>个单位长度后得到函数()g x 的图象,若()f x ,()g x 的图象都经过点P ⎛ ⎝⎭,则ϕ的值可以是( ) A .53πB .56π C .2π D .6π 二、多选题(每题有多个选项为正确答案,每题5分,共20分) 9.设函数()sin 23f x x π⎛⎫=+⎪⎝⎭,给出下列命题,不正确的是( ). A .()f x 的图象关于直线3x π=对称B .()f x 的图象关于点,012π⎛⎫⎪⎝⎭对称 C .把()f x 的图象向左平移12π个单位长度,得到一个偶函数的图象D .()f x 的最小正周期为π,且在06,π⎡⎤⎢⎥⎣⎦上为增函数10.设函数()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()f x ( ) A .是偶函数 B .在区间0,2π⎛⎫⎪⎝⎭上单调递增 C .最大值为2 D .其图象关于点,04π⎛⎫⎪⎝⎭对称 11.如图是函数sin()()y A x x R ωϕ=+∈在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图象.为了得到这个函数的图象,只要将sin ()y x x R =∈的图象上所有的点( ).A .向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变 B .向左平移6π个单位长度,再把所得各点的横坐标仲长到原来的12,纵坐标不变C .把所得各点的横坐标缩短到原来的12,纵坐标不变,再向左平移6π个单位长度D .向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变12.函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示,将函数()f x 的图像向左平移3π个单位长度后得到()y g x =的图像,则下列说法正确的是( )A .函数()g x 为奇函数B .函数()g x 的最小正周期为πC .函数()g x 的图像的对称轴为直线()6x k k ππ=+∈ZD .函数()g x 的单调递增区间为5,()1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z三、填空题(每题5分,共20分)13.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限. 14.函数()f x =sin 6x π⎛⎫-⎪⎝⎭cos x 的最小值为_________.15.已知1sin 34πα⎛⎫+=⎪⎝⎭,则cos 6πα⎛⎫-= ⎪⎝⎭______.16.已知函数()tan(),(0,0)2f x x πωϕωϕ=+><<的相邻两个对称中心距离为32π,且()f π=,将其上所有点的再向右平移3π个单位,纵坐标不变,横坐标变为原来的13,得()g x 的图像,则()g x 的表达式为_______四、解答题(17题10分,其余每题12分,共70分) 17.已知1tan 42πα⎛⎫+=⎪⎝⎭. (Ⅰ)求tan α的值;(Ⅱ)求()()22sin 22sin 21cos 2sin παπαπαα⎛⎫+-- ⎪⎝⎭--+的值.18.已知函数()24f x x π⎛⎫- ⎝=⎪⎭.(1)求函数()f x 的最小值和最大值及相应自变量x 的集合; (2)求函数()f x 的单调递增区间;(3)画出函数()y f x =区间[]0,π内的图象.19.已知()2sin cos cos 44f x x x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ (1)求函数()f x 的单调递减区间;(2)若关于x 的函数()()()22sin 2g x f x k x =-+在区间,122ππ⎡⎤⎢⎥⎣⎦上有唯一零点,求实数k 的取值范围.20.一半径为2米的水轮如图所示,水轮圆心O 距离水面1米;已知水轮按逆时针做匀速转动,每3秒转一圈,如果当水轮上点P 从水中浮现时(图中点0P )开始计算时间. (1)以水轮所在平面与水面的交线为x 轴,以过点O 且与水面垂直的直线为y 轴,建立如图所示的直角坐标系,试将点P 距离水面的高度h (单位:米)表示为时间t (单位:秒)的函数;(2)在水轮转动的任意一圈内,有多长时间点P 距水面的高度超过2米?21.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象在y 轴右侧的第一个最高点和第一个最低点的坐标分别为()02x ,和()0,2x +π-.若将函数()f x 的图象向左平移3π个单位长度后得到的图象关于原点对称. (1)求函数()f x 的解析式;(2)若函数()()10y f kx k =+>的周期为23π,当0,3x π⎡⎤∈⎢⎥⎣⎦时,方程()1f kx m +=恰有两个不同的解,求实数m 的取值范围.22.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>≤⎪⎝⎭的图象如图所示.(1)求函数()f x 的单调递增区间; (2)将函数()y f x =的图象向右平移6π个单位长度得到曲线C ,把C 上各点的横坐标伸长到原来的2倍,纵坐标不变,得到的曲线对应的函数记作()y g x =. (i )求函数()()2x h x f g x ⎛⎫=⎪⎝⎭的最大值; (ii )若函数()2()()2F x g x mg x m R π⎛⎫=-+∈ ⎪⎝⎭在()()0,n n N π+∈内恰有2015个零点,求m 、n 的值.参考答案: 一、单选题 1.【答案】D【解析】角α的终边经过点(),3P x -,由3tan 4α=-,可得334x -=-,所以4x =. 所以4cos 5α==.故选D.2.【答案】D【解析】由3cos 4x =得2231cos 22cos 12148x x ⎛⎫=-=⨯-= ⎪⎝⎭,故选D .. 3.【答案】A【解析】∵函数y =3cos (2x +φ)的图象关于点4,03π⎛⎫⎪⎝⎭中心对称. ∴4232k ππϕπ⋅+=+∴13()6πϕπ=-∈k k Z 当2k =时,有min ||6πϕ=.故选:A. 4.【答案】C【解析】依题意,函数()2sin(3)3f x x π=-,令3232,232k x k k Z πππππ+≤-≤+∈, 解得52211,183318k k x k Z ππππ+≤≤+∈, 所以函数 在3,24ππ⎛⎫⎪⎝⎭ 上先增后减,在0,4π⎛⎫ ⎪⎝⎭ 上单调递增,在5,4ππ⎛⎫⎪⎝⎭上单调递减, 在,24ππ⎛⎫-- ⎪⎝⎭ 上先增后减.故选C . 5.【答案】A【解析】由角的关系可知根据同角三角函数关系式,可得()312cos ,sin 513ααβ=+= ()sin sin βαβα=+-⎡⎤⎣⎦ ()()sin cos cos sin αβααβα=+-+ 12354135135=⨯-⨯ 1665=所以选A 6.【答案】C【解析】由图可知,2A =,该三角函数的最小正周期7233T πππ=-=,故A 项正确; 所以21Tπω==,则()2sin()f x x ϕ=+. 因为563f f ππ⎛⎫⎛⎫= ⎪⎝ ⎝⎭⎭⎪,所以该函数的一条对称轴为5736212x πππ+==, 将7,212π⎛⎫⎪⎝⎭代入2sin()y x ϕ=+,则72()122k k ππϕπ+=+∈Z ,解得2()12k k πϕπ=-+∈Z ,故()2sin 22sin 1212f x x k x πππ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭.令22()2122k x k k πππππ--+∈Z ,得5722()1212k x k k ππππ-≤≤+∈Z , 令1k =,则1931,1212x ππ⎡⎤∈⎢⎥⎣⎦故函数()f x 在1931,1212ππ⎡⎤⎢⎥⎣⎦上单调递增.故B 项正确; 令322()2122k x k k πππππ+≤-≤+∈Z , 得71922()1212k x k k ππππ+≤≤+∈Z , 令1k =-,175,1212x ππ⎡⎤∈--⎢⎥⎣⎦ 故函数()f x 在175,1212ππ⎡⎤--⎢⎥⎣⎦上单调递减.故C 项错误; 令()122x k k πππ-=+∈Z ,得7()12x k k ππ=+∈Z ,令2k =-,1712x π=-故直线1712x π=-是()f x 的一条对称轴.故D 项正确.故选C. 7.【答案】B【解析】由题意7sin sin sin 666πππαπαα⎛⎫⎛⎫⎛⎫+=++=-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以sin 63πα⎛⎫+=⎪⎝⎭, 所以2cos 2cos 2cos 2cos 23336ππππαπααα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=-+⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 2212sin 121633πα⎛⎛⎫=+-=⨯--=- ⎪ ⎝⎭⎝⎭. 故选B . 8.【答案】B 【解析】易得()()2sin 2cos 2cos sin sin sin 2cos cos2sin sin 2f x x x x x x θθθθθθ=+-=+=+.因为函数()f x 的图象过点P ⎛ ⎝⎭,22ππθ-<<,所以代入函数解析式得3πθ=. 所以()sin 23f x x π⎛⎫=+⎪⎝⎭.根据题意,得()()sin 23g x x πϕ⎡⎤=-+⎢⎥⎣⎦,又因为()g x 的图象也经过点P ⎛ ⎝⎭,所以代入得sin 23πϕ⎛⎫-=⎪⎝⎭将53πϕ=、56π、2π或6π代入sin 23πϕ⎛⎫-=⎪⎝⎭只有56π成立. 故选B. 二、多选题 9.【答案】ABD【解析】因为sin 03f ππ⎛⎫== ⎪⎝⎭,所以A 不正确; 因为sin 1122f ππ⎛⎫==⎪⎝⎭,所以B 不正确;因为函数()f x 的最小正周期为π,但sin 112226f f πππ⎛⎫⎛⎫==>=⎪ ⎪⎝⎭⎝⎭,所以D 不正确;把函数()f x 的图象向左平移12π个单位长度,得到函数sin 2sin 2cos21232y x x x πππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,函数cos 2y x =为偶函数,所以C 正确. 故选:ABD. 10.【答案】AD【解析】()sin 2cos 2224444f x x x x x ππππ⎛⎫⎛⎫⎛⎫=+++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .选项A :()2))()f x x x f x -=-== ,它是偶函数,正确;选项B :0,2x π⎛⎫∈ ⎪⎝⎭,所以()20,x π∈,因此()f x 是单调递减,错误;选项C :()2f x x =,错误;选项D :函数的对称中心为(,0)24k ππ+ ,k Z ∈,当0k =,图象关于点,04π⎛⎫⎪⎝⎭对称, 错误. 故选:AD 11.【答案】AC【解析】由图象知,A=1,T=π,所以ω=2,y=sin (2x+ϕ),将(6π-,0)代入得:sin(ϕ3π-)=0,所以ϕ3π-=kπ,k z ∈,取ϕ=3π,得y=sin (2x+3π),sin y x =向左平移3π,得sin 3y x π⎛⎫=+ ⎪⎝⎭.然后各点的横坐标缩短到原来的12,得sin 23y x π⎛⎫=+ ⎪⎝⎭.故A 正确.sin y x =各点的横坐标缩短到原来的12,得sin 2y x =.然后向左平移6π个单位,得sin 26y x π⎛⎫=+ ⎪⎝⎭sin 23x π⎛⎫=+ ⎪⎝⎭.故C 正确.故选:AC 12.【答案】BD 【解析】由图象可知3A =,33253441234ππππω⎛⎫=⋅=--= ⎪⎝⎭T , ∴2ω=,则()3sin(2)f x x ϕ=+.将点5,312π⎛⎫ ⎪⎝⎭的坐标代入()3sin(2)f x x ϕ=+中,整理得5sin 2112πϕ⎛⎫⨯+= ⎪⎝⎭, ∴522,Z 122k k ππϕπ⨯+=+∈,即2,Z 3k k πϕπ=-∈.||2ϕπ<,∴3πϕ=-,∴()3sin 23f x x π⎛⎫=-⎪⎝⎭. ∵将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象, ∴()3sin 23sin 2,333πππ⎡⎤⎛⎫⎛⎫=+-=+∈ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦g x x x x R . ∴()g x 既不是奇函数也不是偶函数,故A 错误; ∴()g x 的最小正周期22T ππ==,故B 正确. 令2,32x k k πππ+=+∈Z ,解得,122k x k ππ=+∈Z .则函数()g x 图像的对称轴为直线,122k x k ππ=+∈Z .故C 错误; 由222,232k x k k πππππ-++∈Z ,可得5,1212k x k k ππππ-+∈Z ,∴函数()g x 的单调递增区间为5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.故D 正确. 故选:BD.三、填空题 13.【答案】二【解析】因为点P (tanα,cosα)在第三象限,所以tanα<0,cosα<0, 则角α的终边在第二象限,故答案为二. 14.【答案】34-【解析】由函数()211sin()cos (sin cos )cos cos cos 62222f x x x x x x x x x π=-=-=-1112(1cos 2)sin(2)44264x x x π=-+=--, 当sin(2)16x π-=-时,即,6x k k Z ππ=-+∈时,函数取得最小值34-. 15.【答案】14【解析】因为1sin()34πα+=,则1cos()sin(())sin()62634ππππααα-=--=+=. 16.【答案】2()tan()9g x x π=+. 【解析】由题意,函数()tan()f x x ωϕ=+的相邻两个对称中心距离为1322w ππ⋅=,解得13w =,且()f π=,即tan()3πϕ+=,因为02πϕ<<,解得3πϕ=,所以1()tan()33f x x π=+,将()f x 图象上的点向右平移3π个单位,可得112()tan[()]tan()33339f x x x πππ=-+=+, 再把所得图象的纵坐标不变,横坐标变为原来的13,可得2()tan()9f x x π=+的图象, 即函数()g x 的解析式为2()tan()9f x x π=+. 故答案为:2()tan()9f x x π=+. 四、解答题17.【答案】(Ⅰ)1tan =-3α;(Ⅱ)15-19.【解析】解:(Ⅰ)tantan 1tan 14tan()41tan 21tantan 4παπααπαα+++===--,解得;(Ⅱ)22sin(22)sin ()21cos(2)sin παπαπαα+----+=22sin 2cos 1cos 2sin αααα-++ 2222sin cos cos 2cos sin ααααα-=+22tan 1152tan 19αα-==-+. 18.【答案】(1,取得最大值时相应x 的集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭; 最小值为,取得最小值时相应x 的集合为,8x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭; (2)3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈;(3)图象见解析. 【解析】(1)()f x ,当2242x k πππ-=+,即38x k ππ=+时,等号成立, ∴()f x 取得最大值时相应x 的集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭()f x 的最小值为,当2242x k πππ-=-+,即8x k ππ=-+时,等号成立,∴()f x 取得最大值时相应x 的集合为,8x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭(2)由222242k x k πππππ-+≤-≤+求得388k x k ππππ-+≤≤+, ∴()f x 的单调递增区间是3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈(3)列表:()f x 图像如图所示:19.【答案】(1)()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)14k k ⎧⎪<≤⎨⎪⎩或12k ⎫=-⎬⎭. 【解析】(1)()2sin cos cos 44f x x x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭sin 222sin 23x x x π⎛⎫=+=+ ⎪⎝⎭令3222232k x k πππππ+++,k Z ∈,解得71212k xk ππππ++,k Z ∈, ∴()f x 的单调递减区间()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)由(1)知,函数()2sin 23f x x π⎛⎫=+⎪⎝⎭()g x 在,122ππ⎡⎤⎢⎥⎣⎦有零点等价于()()2sin 2f x k x =+在,122ππ⎡⎤⎢⎥⎣⎦有唯一根,∴可得2sin 2sin 23k x x π⎛⎫=+- ⎪⎝⎭1sin 22cos 226x x x π⎛⎫=-+=+ ⎪⎝⎭设()cos 26h x x π⎛⎫=+⎪⎝⎭,,122x ππ⎡⎤∈⎢⎥⎣⎦则72,636x πππ⎡⎤+∈⎢⎥⎣⎦ 根据函数()h x 在,122x ππ⎡⎤∈⎢⎥⎣⎦上的图象, ∵2y k =与()y h x =有唯一交点,∴实数k 应满足1222k -<≤或21k =- ∴144k -<≤或12k =-.故实数k 的取值范围1{|4k k<或1}2k =-.20.【答案】(1)()22sin 1036t h t ππ⎛⎫=-+≥⎪⎝⎭;(2)有1s 时间点P 距水面的高度超过2米. 【解析】(1)设水轮上圆心O 正右侧点为A ,y 轴与水面交点为B ,如图所示:设()sin h a t b ωϕ=++,由1OB =,2OP =,可得03BOP π∠=,所以06AOP π∠=.2a ∴=,1b =,6πϕ=-,由题意可知,函数2sin 16h t πω⎛⎫=-+ ⎪⎝⎭的最小正周期为3T =,223T ππω∴==, 所以点P 距离水面的高度h 关于时间t 的函数为()22sin 1036t h t ππ⎛⎫=-+≥⎪⎝⎭;(2)由22sin 1236t h ππ⎛⎫=-+>⎪⎝⎭,得21sin 362t ππ⎛⎫->⎪⎝⎭, 令[]0,3t ∈,则211,3666t ππππ⎡⎤-∈-⎢⎥⎣⎦, 由256366t ππππ<-<,解得1322<<t ,又31122-=, 所以在水轮转动的任意一圈内,有1s 时间点P 距水面的高度超过2米. 21.【答案】(1)()2sin 3f x x π⎛⎫=-⎪⎝⎭;(2))1,3 【解析】(1)由题意可知函数()f x 的周期2T π=,且2A =,所以21Tπω==,故()()2sin f x x ϕ=+.将函数()f x 的图象向左平移3π个单位长度后得到的图象对应的函数解析式为2sin 3y x ϕπ⎛⎫=++ ⎪⎝⎭,因为函数2sin 3y x ϕπ⎛⎫=++ ⎪⎝⎭的图象关于原点对称,所以()3k k ϕπ+=π∈Z ,即()3k k ϕπ=π-∈Z . 又2πϕ<,所以3πϕ=-,故()2sin 3f x x π⎛⎫=- ⎪⎝⎭.(2)由(1)得函数()12sin 13y f kx kx π⎛⎫=+=-+ ⎪⎝⎭,其周期为23π, 又0k >,所以2323k π==π.令33t x π=-,因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以2,33t ππ⎡⎤∈-⎢⎥⎣⎦, 若sin t s =在2,33ππ⎡⎤⎢⎥⎣⎦-上有两个不同的解,则s ⎫∈⎪⎪⎣⎭,所以当)1,3m ∈时,方程()1f kx m +=在0,3x π⎡⎤∈⎢⎥⎣⎦上恰有两个不同的解,即实数m的取值范围是)1,3.22.【答案】(1)5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈;(2)(i )34;(ii )1m =-,1343n =. 【解析】(1)由图象可得1A =,最小正周期721212T πππ⎛⎫=⨯-=⎪⎝⎭,则22T πω==,由77sin 211212f ππϕ⎛⎫⎛⎫=⨯+=-⎪ ⎪⎝⎭⎝⎭,所以523k πϕπ=-+,k Z ∈,又2πϕ≤,则易求得3πϕ=,所以()sin 23f x x π⎛⎫=+ ⎪⎝⎭,由222232k x k πππππ-+≤+≤+,k Z ∈,得51212k x k ππππ-+≤≤+,k Z ∈, 所以单调递增区间为5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈.(2)(i )由题意得()sin g x x =,()()sin sin 23x h x f g x x x π⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭112cos 2444x x =-+ 11sin 2264x π⎛⎫=-+ ⎪⎝⎭, 所以()()2x h x f g x ⎛⎫=⎪⎝⎭的最大值为34; (ii )令()0F x =,可得22sin sin 10x m x --=,令[]sin 1,1t x =∈-, 得2210t mt --=,易知>0∆,方程必有两个不同的实数根1t 、2t , 由1212t t =-,则1t 、2t 异号, ①当11t >且210t -<<或者101t <<且21t <-时,则方程1sin x t =和2sin x t =在区间()0,n π均有偶数个根,不合题意,舍去;②当101t <<且0201t <<时,则方程1sin x t =和2sin x t =在区间()0,n π均有偶数个根,不合题意,舍去; ③当11t =且212t =-,当()0,2x π∈时,1sin x t =,只有一根,2sin x t =有两根, 所以,关于x 的方程22sin sin 1x m x --在()0,2x π∈上有三个根,由于201536712=⨯+,则方程22sin sin 10x m x --=在()0,1342π上有2013个根,由于方程1sin x t =在区间()1342,1343ππ上只有一个根,方程2sin x t =在区间()1343,1344ππ上两个根,因此,不合题意,舍去;④当11t =-时,则212t =,当()0,2x π∈时,1sin x t =只有一根,2sin x t =有两根, 所以,关于x 的方程22sin sin 10x m x --=在()0,2x π∈上有三个根,由于201536712=⨯+,则方程22sin sin 10x m x --=在()0,1342π上有2013个根,由于方程2sin x t =在区间()1342,1343ππ上有两个根,方程1sin x t =在区间()1343,1344ππ上有一个根,此时,满足题意;因此,1343n =,21121022m ⎛⎫⎛⎫⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭, 得1m =-,综上,1m =-,1343n =.。
三角函数测试题及答案

三角函数测试题及答案一、选择题1. 已知角A的正弦值为\( \sin A = \frac{1}{2} \),则角A的余弦值\( \cos A \)是:A. \( \frac{1}{2} \)B. \( \frac{\sqrt{3}}{2} \)C. \( -\frac{1}{2} \)D. \( -\frac{\sqrt{3}}{2} \)2. 函数\( y = \sin x + \cos x \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \pi/2 \)D. \( 4\pi \)3. 已知\( \cos x = \frac{1}{3} \),且\( x \)在第一象限,求\( \sin x \)的值:A. \( \frac{2\sqrt{2}}{3} \)B. \( \frac{2\sqrt{5}}{3} \)C. \( \frac{4\sqrt{2}}{9} \)D. \( \frac{4\sqrt{5}}{9} \)二、填空题4. 根据正弦定理,如果三角形ABC的边a和角A相对,且\( a = 5 \),\( \sin A = \frac{3}{5} \),则边b的长度为______(假设\( \sin B = \frac{4}{5} \))。
5. 已知\( \tan x = -1 \),求\( \sin 2x \)的值。
三、解答题6. 求以下列三角方程的解:\( \sin^2 x + \cos^2 x = 1 \)7. 证明:\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \)。
四、应用题8. 在直角三角形ABC中,角C为直角,已知AB = 10,AC = 6,求BC 的长度。
答案:一、选择题1. C2. B3. B二、填空题4. 45. 1 或 -1三、解答题6. 该方程对所有\( x \)都成立,因为它是三角恒等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数章节测试题
一、选择题
1. 已知sinθ=53
,sin2θ<0,则tanθ等于 ( )
A .-43
B .43
C .-43或43
D .54
2. 若20π
<<x ,则2x 与3sinx 的大小关系是 ( )
A .x x sin 32>
B .x x sin 32<
C .x x sin 32=
D .与x 的取值有关
3. 已知α、β均为锐角,若P :sinα<sin(α+β),q :α+β<2π
,则P 是q 的(
)
A .充分而不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
4. 函数y =sinx·|cotx |(0<x<π)的大致图象是 ( )
C D
5. 若f(sinx)=3-cos2x ,则f(cosx)= ( )
A .3-cos2x
B .3-sin2x
C .3+cos2x
D .3+sin2x
6. 设a>0,对于函数)0(sin sin )(π<<+=x x a
x x f ,下列结论正确的是 ( ) x x
x x
A .有最大值而无最小值
B .有最小值而无最大值
C .有最大值且有最小值
D .既无最大值又无最小值
7. 函数f(x)=
x x cos 2cos 1- ( ) A .在[0,
2π]、⎥⎦⎤ ⎝⎛ππ,2上递增,在⎪⎭⎫⎢⎣⎡23,ππ、⎥⎦⎤ ⎝⎛ππ2,23上递减 B .⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤ ⎝⎛23ππ,上递增,在⎥⎦⎤ ⎝⎛ππ,2、⎥⎦
⎤ ⎝⎛ππ223,上递减 C .在⎪⎭⎫⎢⎣⎡ππ,2、⎥⎦⎤ ⎝⎛ππ223,上递增,在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤ ⎝⎛23ππ, 上递减 D .在⎪⎭⎫⎢⎣⎡
23,ππ、⎥⎦⎤ ⎝⎛ππ2,23上递增,在⎪⎭
⎫⎢⎣⎡20π,、⎥⎦⎤ ⎝⎛ππ,2上递减 8. y =sin(x -12π)·cos(x -12
π),正确的是 ( ) A .T =2π,对称中心为(
12π,0) B .T =π,对称中心为(12
π,0) C .T =2π,对称中心为(
6π,0) D .T =π,对称中心为(6
π,0) 9. 把曲线y cosx +2y -1=0先沿x 轴向右平移
2π,再沿y 轴向下平移1个单位,得到的曲线方程为 ( )
A .(1-y)sinx +2y -3=0
B .(y -1)sinx +2y -3=0
C .(y +1)sinx +2y +1=0
D .-(y +1)sinx +2y +1=0
10.已知,函数y =2sin(ωx +θ)为偶函数(0<θ<π) 其图象与直线y =2的交点的横坐标为x 1,x 2,若| x 1-x 2|的最小值为π,则 ( )
A .ω=2,θ=
2π B .ω=2
1
,θ=2π C .ω=21
,θ=4π
D .ω=2,θ=4
π 二、填空题
11.f (x)=A sin(ωx +ϕ)(A>0, ω>0)的部分如图,则f (1) +f (2)+…+f (11)=
.
12.已sin(4
π-x)=53,则sin2x 的值为 。
13.]2,0[,sin 2sin )(π∈+=x x x x f 的图象与直线y =k 有且仅有两个不同交点,则k 的取值范围是 .
14.已知θ
θsin 1cot 22++=1,则(1+sinθ)(2+cosθ)= 。
15.平移f (x)=sin(ωx +ϕ)(ω>0,-
2π<ϕ<2π),给出下列4个论断: ⑴ 图象关于x =
12π对称 ⑵图象关于点(
3
π,0)对称 ⑶ 周期是π
⑷ 在[-6π,0]上是增函数 以其中两个论断作为条件,余下论断为结论,写出你认为正确的两个命题:
(1) .(2) .
三、解答题
16.已知2
1)4tan(=+απ,(1)求αtan 的值;(2)求ααα222cos 1cos sin +-的值.
17.设函数)()(c b a x f +⋅=,其中a =(sinx,-cosx),=(sinx,-3cosx),=(-cosx,sinx),
x ∈R ;(1) 求函数f(x)的最大值和最小正周期;
(2) 将函数y =f(x)的图象按向量平移,使平移后的图象关于坐标原点成中心对称,求||最小的.
18.在△ABC 中,sinA(sinB +cosB)-sinC =0,sinB +cos2C =0,求角A 、B 、C 的大小.
19.设f (x)=cos2x +23sinxcosx 的最大值为M ,最小正周期为T . ⑴ 求M 、T .
⑵ 若有10个互不相等的函数x i 满足f (x i )=M ,且0<x i <10π,求x 1+x 2+…+x 10的值.
20.已知f (x)=2sin(x +2θ
)cos(x +2θ
)+23cos 2(x +2θ
)-3。
⑴ 化简f (x)的解析式。
⑵ 若0≤θ≤π,求θ使函数f (x)为偶函数。
⑶ 在⑵成立的条件下,求满足f (x)=1,x ∈[-π,π]的x 的集合。
21.已知函数)(x f =2cos 2x +23sinx cosx +1.
(1) 若x ∈[0,π]时,)(x f =a 有两异根,求两根之和;
(2) 函数y =)(x f ,x ∈[
6π,6
7π]的图象与直线y =4围成图形的面积是多少?
三角函数章节测试题参考答案
1. A
2. D
3. B
4. B
5. C
6. B
7. A
8. B
9.C 10.A 11. 2+22 12.257 13. 1<k <3 14. 4 15. (1) ②③⇒①④ (2) ①③⇒②④
16.解:(1) tan(
4π+α)=ααtan 1tan 1-+=21 解得tan α=-3
1 (2)1cos 21cos cos sin 22cos 1cos 2sin 222-+-=+-ααααααα =6
521tan cos 2cos sin 2-=-=-αααα 17. 解:(1)由题意得f(x)=)(+⋅
=(sinx ,-cosx)·(sinx -cosx ,sinx -3cosx)
=sin 2x -2sinxcosx +3cos 2x
=2+cos2x -sin2x
=2+2sin(2x +4
3π) 故f(x)的最大值2+2,最小正周期为
ππ=22 (2) 由sin(2x +
43π)=0得2x +43π=k π 即x =2πk -8
3π,k ∈z 于是=(83π-2
πk ,-2) ||=4832
2+⎪⎭⎫ ⎝⎛-ππk (k ∈z) 因为k 为整数,要使| d |最小,则只有k =1,此时=(-
8π,-2)为所示. 18.∵ sinA(sinB +cosB)-sinC =0
∴ sinA sinB +sinA cosB =sinA cosB +cosA sinB
∵ sinB > 0 sinA =cosA ,即tanA =1
又0 < A<π ∴ A =4π,从而C =4
3π-B 由sinB +cos2C =0,得sinB +cos2(
43π-B)=0 即sinB(1-2cosB)=0
∴cosB =21
B =3π
C =12
5π 19.)(x f =2sin(2x +
6π)
(1) M =2 T =π
(2) ∵)(i x f =2 ∴ sin(2x i +
6π)=1 2x i +6π=2k π+2
π x i =2k π+6π (k ∈z) 又0 < x i <10π ∴ k =0, 1, 2, (9)
∴ x 1+x 2+…+x 10=(1+2+…+9)π+10×6
π =3140π 20.解:(1) f (x)=sin(2x +θ)+3cos(2x +θ) =2sin(2x +θ+3
π) (2) 要使f (x)为偶函数,则必有f (-x)=f (x) ∴ 2sin(-2x +θ+3π)=2sin(2x +θ+3π) ∴ 2sin2x cos(θ+3
π)=0对x ∈R 恒成立 ∴ cos(θ+3π)=0又0≤θ≤π θ=6
π (3) 当θ=6π时f (x)=2sin(2x +2
π)=2cos2x =1 ∴cos2x =21 ∵x ∈[-π,π] ∴x =-3π或3π 21.)(x f =2sin(2x +6
π)+2 由五点法作出y =)(x f 的图象(略)
(1) 由图表知:0<a <4,且a≠3
当0<a <3时,x 1+x 2=
34π 当3<a <4时,x 1+x 2=3
π (2) 由对称性知,面积为21(
67π-6π)×4=2π.。