2020-2021学年最新华东师大版七年级数学上册《有理数的除法》同步练习题及解析-精编试题
_2.13有理数的混合运算课后练习2020-2021学年华东师大版七年级上册数学

第二章有理数2.13有理数的混合运算课后练习2020-2021学年上学期七年级上册初中数学华师大版一、单选题(共12题 )1.生活中常用的十进制是用0~9这十个数字来表示数,满十进一,例: 12=1×10+2 , 212=2×10×10+1×10+2 ;计算机也常用十六进制来表示字符代码,它是用0~ F 来表示0~15,满十六进一,它与十进制对应的数如下表:例:十六进制 2B 对应十进制的数为 2×16+11=43 , 10C 对应十进制的数为 1×16×16+0×16+12=268 ,那么十六进制中 14E 对应十进制的数为( )A. 28B. 62C. 238D. 3342.计算: (−98)×(−43)+(−0.5)−(−214) 的值为( )A. -1B. 134C. 54D. −923.下列计算中,正确的数量是( )① 56+16=−1 ;② −2÷34×43=−2 ;③ −118−18=−1 ;④ 12÷(−13+14)=−1 . A. 0个 B. 1个 C. 2个 D. 3个4.2020年3月抗击“新冠肺炎”居家学习期间,小东计划每天背诵8个英语单词.将超过的个数记为正数,不足的个数记为负数,某一周连续5天的背诵记录如下:+3,0,-4,+6,-3,则这5天他共背诵英语单词( )A. 56个B. 46个C. 42个D. 38个5.我们常用的十进制数,如 2639=2×103+6×102+3×101+9 ,我国古代《易经》一书记载,远古时期,人们通过在绳子上打结来记录数量,如图,一位母亲在如下排列的绳子上打结,并采用七进制(如 2513=2×73+5×72+1×71+3 ),用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A. 1326天B. 510天C. 336天D. 84天6.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费( )A. 17元B. 19元C. 21元D. 23元7.如图所示是计算机程序图,若开始输入x=﹣1,则最后输入出的结果是( )A. 5B. -3C. -11D. 138.在算式3﹣|﹣4□5|中,要使计算出来的值最小,填入□的运算符号应为()A. +B. ﹣C. ×D. ÷9.下列变形正确的是( )A. 2÷8×18=2÷(8×18)B. 6÷(12+13)=6÷12+6÷13C. 23×23×23=233D. (−2)×12×(−5)=(−1)×(−5)10.马虎同学做了以下4道计算题:①0﹣(﹣1)=1;② 12÷(﹣12)=﹣1;③﹣57+ 27=﹣(57+ 27)=﹣1;④﹣7﹣2×5=﹣9×5=﹣45.请你帮他检查一下,他一共做对了()A. 1题B. 2题C. 3题D. 4题11.如果四个不同的正整数m,n,p,q满足(5−m)(5−n)(5−p)(5−q)=4,则m+n+p+q等于()A. 4B. 10C. 12D. 2012.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种键盘密码,每个字母与所在按键的数字序号对应(见下图),如字母Q与数字序号0对应,当明文中的字母对应的序号为a时,将a+7除以26后所得的余数作为密文中的字母对应的序号,例如明文“ X”对应密文“ W”按上述规定,将密文“ TKGDFY” 解密成明文后是()A. DAISHUB. TUXINGC. BAIYUND. SHUXUE二、填空题(共6题)13.计算:21×3.15+62×3.15+17×3.15=________.14.定义“*”是一种运算符号,规定a∗b=3a−2b+2042,则(−4)∗5的值为________.15.“24”点游戏,游戏规则:用一副扑克牌去掉大小王,从中任取4张,将抽出的数进行加减乘除四则运算,使其结果为24,如:1、2、3、4,可运算为(1+2+3)×4=24现抽3、-4、2、5,用上述规则写出运算等式使其结果为24,等式可以是________.16.在□内填上“ +、−、×、÷”中的________使得(−3)□6+4的值最大.17.如图是一个混合运算的程序流程图,当输入一个两位整数 x 时,输出的结果 y 是 3, 则x 可能是________.18.现有四个有理数-9,-2,6,3,运用加减乘除符号及括号连接(每个数都要用到,每个数只能用一次),使其结果为24.写出两个算式:________,________三、综合题(共4题 )19.请你判断下列十张卡片里的式子的计算结果,如果结果是正数,那在其下面的括号写上正字;如果结果是负数,那在其下面的括号写上负字。
2020-2021学年七年级数学上册尖子生同步培优题典 专题2

专题2.11有理数的混合运算姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•鼓楼区二模)计算4+(﹣8)÷(﹣4)﹣(﹣1)的结果是()A.2 B.3 C.7 D.【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【解析】原式=4+2+1=7,故选:C.2.(2019秋•德城区校级期中)|﹣3|﹣(﹣1)2的值是()A.﹣2 B.4 C.2 D.﹣4【分析】根据有理数的乘方、有理数的减法和绝对值可以解答本题.【解析】|﹣3|﹣(﹣1)2=3﹣1=2,故选:C.3.(2020•金华模拟)下列计算正确的是()A.23×22=26B.C.D.﹣32=﹣9【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【解析】∵23×22=25,故选项A错误;∵()3,故选项B错误;∵,故选项C错误;∵﹣32=﹣9,故选项D正确;故选:D.4.(2019秋•海淀区校级期中)如果a、b互为相反数a≠0),x、y互为倒数,那么代数式的值是()A.0 B.1 C.﹣1 D.2【分析】利用相反数,倒数的性质求出各自的值,代入原式计算即可求出值.【解析】根据题意得:a+b=0,xy=1,1,则原式=0﹣1+1=0,故选:A.5.(2019秋•福田区期中)下列运算错误的是()A.B.(﹣1)2+(﹣1)3=0C.﹣(﹣3)2=﹣9 D.﹣8﹣2×6=﹣20【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解析】22,故选项A错误;(﹣1)2+(﹣1)3=1+(﹣1)=0,故选项B正确;﹣(﹣3)2=﹣9,故选项C正确;﹣8﹣2×6=﹣8﹣12=﹣20,故选项D正确;故选:A.6.(2019秋•双清区期末)定义一种新运算a⊙b=(a+b)×2,计算(﹣5)⊙3的值为()A.﹣7 B.﹣1 C.1 D.﹣4【分析】原式利用题中的新定义计算即可求出值.【解析】根据题中的新定义得:原式=(﹣5+3)×2=﹣4,故选:D.7.(2019秋•武进区期中)下列说法:①最大的负整数是﹣1;②|a+2019|一定是正数;③若a,b互为相反数,则ab<0;⑥若a为任意有理数,则﹣a2﹣1总是负数.其中正确的有()A.1个B.2个C.3个D.4个【分析】利用相反数、非负数的性质,以及绝对值的代数意义判断即可.【解析】①最大的负整数是﹣1,符合题意;②|a+2019|一定非负数,不符合题意;③若a,b互为相反数,则ab≤0,不符合题意;⑥若a为任意有理数,则﹣a2﹣1总是负数,符合题意.故选:B.8.(2020•浙江自主招生)定义运算a⨂b,则(﹣2)⨂4=()A.﹣1 B.﹣3 C.5 D.3【分析】判断﹣2﹣4=﹣6<1,利用题中的新定义计算即可求出值.【解析】根据题中的新定义得:﹣2﹣4=﹣6<1,则有(﹣2)⨂4=4﹣1=3,故选:D.9.(2019秋•新乐市期末)下列算式中:①(﹣2019)2020;②﹣18;③39.1﹣|﹣21.9|+(﹣10.5)﹣3;④;⑤;⑥;计算结果是正数的有()A.2个B.3个C.4个D.5个【分析】各项计算得到结果,判断即可.【解析】①原式=20192020,符合题意;②原式=﹣1,不符合题意;③原式=39.1﹣21.9﹣10.5﹣3=3.7,符合题意;④原式=()×(),符合题意;⑤原式=﹣24+30﹣16+39=29,符合题意;⑥原式=1.5+2.25﹣12﹣2,不符合题意,故选:C.10.(2019秋•德惠市期中)计算()÷()的结果是()A.B.C.D.﹣7【分析】根据有理数的混合运算的法则进行计算即可,在有括号的算式里,要先算括号内的,在没有括号的算式里,先算乘方、然后算乘除、最后算加减..【解析】()÷()=()÷()=(),故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•九龙坡区校级期中)对于任意有理数a,b,定义新运算:a⊗b=a2﹣2b+1,则2⊗(﹣6)=17.【分析】直接利用已知运算公式计算得出答案.【解析】∵a⊗b=a2﹣2b+1,∴2⊗(﹣6)=22﹣2×(﹣6)+1=4+12+1=17.故答案为:17.12.(2020春•海淀区校级月考)计算:﹣2.【分析】先将带分数化为假分数,再算乘除法,最后进行加法运算即可.【解析】原式()(),故答案为.13.(2019秋•资阳区校级期中)若定义一种新的运算,规定ad﹣bc,则﹣11.【分析】原式利用题中的新定义计算即可求出值.【解析】根据题中的新定义得:原式=﹣3﹣8=﹣11,故答案为:﹣1114.(2019秋•南京月考)已知4个有理数,1,﹣2,﹣3,﹣4,在这4个有理数之间用“+、﹣、×、÷”连接进行四则运算,每个数只用一次,使其结果等于24,你的算法是[(﹣2)+(﹣3)﹣1]×(﹣4)=24.【分析】根据“24点”游戏规则列出算式即可.【解析】根据题意得:[(﹣2)+(﹣3)﹣1]×(﹣4)=24,故答案为:[(﹣2)+(﹣3)﹣1]×(﹣4)=2415.(2019秋•思明区校级月考)计算:10242﹣128×(﹣43)×(﹣3)=10240000.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解析】原式=1048576﹣24576=10240000,故答案为:1024000016.(2019秋•虹口区校级月考)若规定一种新运算:a*b=(a+b)÷3,则2*3=.【分析】根据a*b=(a+b)÷3,可以求得所求式子的值.【解析】∵a*b=(a+b)÷3,∴2*3=(2+3)÷3=5,故答案为:.17.(2019秋•建湖县期中)计算(1﹣2)•(3﹣4)•(5﹣6)•…•(2017﹣2018)•(2019﹣2020)的结果为1.【分析】先计算括号中的减法运算,再利用乘法法则计算即可求出值.【解析】原式=(﹣1)×(﹣1)×…×(﹣1)(1010个﹣1相乘)=1,故答案为:118.(2019秋•思明区校级期中)计算:(1)(1)×(﹣54)=59;(2)9992﹣999×715+284=284000.【分析】(1)根据乘法分配律可以解答本题;(2)根据提公因式法可以解答本题.【解析】(1)(1)×(﹣54)=9+(﹣10)+60=59,故答案为:59;(2)9992﹣999×715+284=999×(999﹣715)+284=999×284+284=284×(999+1)=284×1000=284000,故答案为:284000.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•钟楼区期中)计算:(1)10+(﹣16)﹣(﹣24);(2)5÷();(3)()×(﹣24);(4)﹣12+[20﹣(﹣2)3]+4.【分析】(1)先化简,再计算加减法;(2)将除法变为乘法,再约分计算即可求解;(3)根据乘法分配律简便计算;(4)先算乘方,再算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解析】(1)10+(﹣16)﹣(﹣24)=10﹣16+24=34﹣16=18;(2)5÷()=5×();(3)()×(﹣24)(﹣24)(﹣24)(﹣24)=﹣9﹣14+20=﹣3;(4)﹣12+[20﹣(﹣2)3]+4=﹣1+(20+8)+4=﹣1+28+4=31.20.(2019秋•崇川区校级期中)计算:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7)(2)【分析】(1)首先写成省略括号的形式,再计算有理数的加减即可;(2)先算乘方,再算乘除,后算加减即可.【解析】(1)原式=﹣20+3+5﹣7,=﹣20﹣7+3+5,=﹣27+8,=﹣19;(2)原式=﹣16()+2,=﹣162,2,.21.(2019秋•海陵区校级期中)计算:(1)﹣3+34+0.25(2)﹣4÷(﹣14)(3)()×60(4)﹣14÷(﹣5)2×()【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法可以解答本题;(3)根据乘法分配律可以解答本题;(4)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解析】(1)﹣3+34+0.25=(﹣3﹣4)+(3)=﹣7+4=﹣3;(2)﹣4÷(﹣14)=﹣4×();(3)()×60=﹣45﹣50+55=﹣40;(4)﹣14÷(﹣5)2×()=﹣1÷25×()=﹣1().22.(2020春•姜堰区期中)观察下列各式:31﹣30=2×30…………①32﹣31=2×31…………②33﹣32=2×32…………③……探索以上式子的规律:(1)写出第5个等式:35﹣34=2×34;(2)试写出第n个等式,并说明第n个等式成立;(3)计算30+31+32+ (32020)【分析】(1)根据已知等式总结规律:3的相邻自然数次幂之差(大数减小数)等于较小次幂的2倍.据此写出第5个等式便可;(2)用字母n表示上述规律,通过提取公因式法进行证明便可;(3)把原式化成,再逆用(2)中公式,把分子每一项化成3的自然数幂之差进行计算便可.【解答】(1)根据题意得,35﹣34=2×34,故答案为:35﹣34=2×34;(2)根据题意得,3n﹣3n﹣1=2×3n﹣1,证明:左边=3n﹣1(3﹣1)=2×3n﹣1=右边,∴3n﹣3n﹣1=2×3n﹣1;(3)30+31+32+…+32020.23.(2020春•通州区期末)对于一个数x,我们用(x]表示小于x的最大整数,例如:(2.6]=2,(﹣3]=﹣4,(10]=9.(1)填空:(﹣2020]=﹣2021,(﹣2.4]=﹣3,(0.7]=0;(2)如果a,b都是整数,且(a]和(b]互为相反数,求代数式a2﹣b2+4b的值;(3)如果|(x]|=3,求x的取值范围.【分析】(1)(x]表示小于x的最大整数,依此即可求解;(2)根据(x]的定义求得a+b=2,代入解析式求得即可;(3)分两种情况列出关于x的不等式,解不等式即可.【解析】(1)(﹣2020]=﹣2021,(﹣2.4]=﹣3,(0.7]=0;(2)∵a,b都是整数,且(a]和(b]互为相反数,∴a﹣1+b﹣1=0,∴a+b=2,∴a2﹣b2+4b=(a﹣b)(a+b)+4b=2(a﹣b)+4b=2(a+b)=2×2=4;(3)当x<0时,∵|(x]|=3,∴x>﹣3,∴﹣3<x≤﹣2;当x>0时,∵|(x]|=3,∴x>3,∴3<x≤4.故x的范围取值为﹣3<x≤﹣2或3<x≤4.故答案为:﹣2021,﹣3,0.24.(2020春•南岗区校级期中)有20袋大米,以每袋30千克为标准,超过或不足的千克数分别用正负数来表述,记录如下:﹣3 1 0 2.5 ﹣2 ﹣1.5与标准质量的差值(单位:千克)袋数 1 2 3 8 4 2(1)20袋大米中,最重的一袋比最轻的一袋重多少千克?(2)与标准重量比较,20袋大米总计超过多少千克或不足多少千克?(3)若大米每千克售价3.5元,出售这20袋大米可卖多少元?【分析】(1)根据表格中的数据可以求得20袋大米中,最重的一袋比最轻的一袋重多少千克;(2)根据表格中的数据可以求得与标准重量比较,20袋大米总计超过或不足多少千克;(3)根据题意和(2)中的结果可以解答本题.【解析】(1)最重的一袋比最轻的一袋重:2.5﹣(﹣3)=2.5+3=5.5(千克),答:最重的一袋比最轻的一袋重5.5千克;(2)(﹣3)×1+(﹣2)×4+(﹣1.5)×2+1×2+0×3+2×2+2.5×8=8(千克),答:20 袋大米总计超过8千克;(3)3.5×(30×20+8)=2128(元),答:出售这20 袋大米可卖2128元.11。
数学七年级上华东师大版有理数的加减混合运算同步练习

数学七年级上华东师大版有理数的加减混合运算同步练习本试卷时刻100分钟,满分100分一 相信你的选择,看清晰了再填(每小题3分,共18分)1.一天广州的温度是+18℃,而吉林的温度是-22℃,这天广州比吉林的温度高( )A .-4℃B .4℃C .40℃D .-40℃2.与(-a )-(-b )相等的式子是( )A .(+a )-(-b )B .(-a )+bC .(-a )+(-b )D .(-a )-(+b )3.关于算式-4-6,下列说法不正确的是( )A .表示-4与6的差B .表示-4与-6的和C .表示-4与-6的差D .读作-4减去64.下列各式不成立的是( )A .20+(-9)-7+(-10)=20-9-7-10B .-1+3+(-2)-11=-1+3-2-11C .-3.1+(-4.9)+(-2.6)-4=-3.1-4.9-2.6-4D .-7+(-18)+(-21)-34=-7-(18-21)-345.(2005,北京海淀)已知(1-m )2+│n+2│=0,则m+n 的值为( )A .-1B .-3C .3D .不确定6.(2006,哈尔滨)若x 的相反数是-3,│y │=5,则x+y 的值为( )A .-8B .2C .8或-2D .-8或2二.试一试你的身手,想好了再填(每小题3分,共30分)1.吉林某天的气温是-10~5℃,这天的温差是_____.2.比-19小3的数是______,比-19小-3的数是______.3.A ,B 两种海拔高度分别为100米、-20米,B 地比A 地低_______.4.一种机器零件,图纸标明是Ф0.040.0230+-,合格品的最大直径与最小直径的差是_____.5.把(-23)+(-5)-(-4)-(+9)写成省略括号和的形式_______,可读作______.6.若│a │=8,│b │=1,c 是最大的负整数,则a+b-c=________.7.三个数-10,-7,+5的和比它们的绝对值的和小________.8.从-1中减去-112与-78的和所得的差是_________. 9.某次外语竞赛,成绩85分以上为优秀,•现将某小组参加外语竞赛的同学成绩简记为10,-5,0,+8,-3,这几名同学的平均成绩是________.10.若│x-3│与│y+2│互为相反数,求x+y+3的值________.三.挑战你的技能,摸索好了再做(共计52分)1.运算:(每小题5分,共计15分)(1)-6-8-2+3.54-4.72+16.46-5.28; (2)(-323)-(-234)-(-123)-1.75.(3)(-412)-{325-[-0.13-(-0.33)]}.2.运算(-200056)+(-199923)+400034+(-112).(6分)3.依照下列条件,求a+(-b)-(-c)的值.(每小题4分,共8分)(1)a=3,b=-4,c=-5;(2)a=-6.5,b=12.7,c=-2.9.4.若m,n互为相反数,则│2+m+(-1)+n│的值是多少?(6分)5.小明的妈妈是一个蔬菜经销商,一天妈妈到市场共购进8筐蔬菜,•称重的记录如下(单位:千克):53,44,54,52,49,46,45,46.你能帮小明的妈妈运算出这些蔬菜的总重量吗?把你的做法写出来.(8分)6.小虫从某点A动身在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:(单位:厘米)+5,-3,+10,-8,-6,+12,-10.(1)小虫最后是否回到动身点A?(2)小虫离开原点最远是多少厘米?(3)在爬行过程中,假如每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?(10分)_______________________________________________________________________________答案:一.相信你的选择,看清晰了再填1 2 3 4 5 6C B BD A C二.试一试你的身手,想好了再填1.15℃ [提示:5-(-10)=15℃.]2.-22 -16 [提示:-19-3=-22,-19-(-3)=-16.]3.120米 [提示:100-(-20)=120(米).]4.0.06 [提示:最大直径是30.04,最小直径是29.98,其差是30.04-29.98=0.06.]5.-23-5+4-9 读作:负23,负5,正4,负9的和 [提示:先将减法统一成加法,再写成省略括号的和的形式,还能够读作负23减5加4减9.]6.±8 -6 10 [提示:因为│a│=8,│b│=1,c是最大的负整数,因此a=•±8,b=±1,c=-1,因此①当a=8,b=1,c=-1时,a+b-c=8+1-(-1)=10.②当a=-8时,b=1,c=•-1时,a+b-c=-8+1-(-1)=-6.③当a=8,b=-1,c=-1时,a+b-c=8+(-1)-(-1)=8.④当a=•-8,b=-1,c=-1时,a+b-c=-8+(-1)-(-1)=-8.]7.34 [提示:(│-10│+│-7│+│+5│)-(-10-7+5)=34.]8.-124[提示:-1-(-112-78)=-124.]9.87 [提示:85+(10-5+0+8-3)÷5=87.]10. 4三.挑战你的技能,摸索好了再做1.解:(1)-6-8-2+3.54-4.72+16.46-5.28=(-6-8-2-4.72-5.28)+(3.54+16.46)=-26+20=-6.(2)(-323)-(-234)-(-123)-1.75=(-323)+234+123-134=(-323+123)+(234-134)=-2+1=-1.(3)(-412)-{325-[-0.13-(-0.33)]}=(-412)-{3250.13+0.33}}=(-412)-{325-0.2}=(-4.5)-(3.4-0.2)=-4.5-3.2=-7.7.2.解:原式=[(-2000)+(-56)]+[(-1999)+(-23)]+(4000+34)+[(-1)+(-12)]=[(-2000)+(-1999)+(-1)+4000]+[(-56)+(-23)+34+(-12)]=0+(-114)=-114.3.解:(1)当a=3,b=4,c=-5时,a+(-b)-(-c)=a-b+c=3-(-4)+(-5)=3+4-5=2.(2)当a=-6.5,b=12.7,c=-2.9时,a+(-b)-(-c)=a-b+c=-6.5-12.7-2.9=-22.1.4.解:因为m,n互为相反数,因此m+n=0,因此│2+m+(-1)+n│=│2+(-1)+m+n│=•│1+m+n│=│1+0│=1.5.解:取基数50,超过50的记为正,不足50的记为负,因此得3,-6,4,2,-1,-4,-5,-4,因此总质量为:50×8+[3+(-6)+4+2+(-1)+(-4)+(-5)+(-4)]=400+(-11)=389(千克).6.解:(1)因为+5-3+10-8-6+12-10=0,因此小虫最后回到动身点A.(2)•第一次爬行距离原点是5cm,第二次爬行距离原点是5-3=2(cm)•,• 第三次爬行距离原点是2+10=12(cm),第四次爬行距离原点是12-8=4(cm),第五次爬行距离原点是│4-6│=│-2│(cm),第六次爬行距离原点是-2+12=10(cm),第七次爬行距离原点是10-•10=•0(cm),从上面能够看出小虫离开原点最远是12cm.(3)小虫爬行的总路程为:│+5│+│-3│+│+10│+│-8│+│-6│+│+12│+│-10│=54(cm),则小虫一共得到54•粒芝麻.。
2021-2023学年华东师大版七年级数学上册第2章有理数单元测试卷含答案

1第2章一、选择题(每题3分,共24分)1.-10的相反数为( )A.110 B .-110 C .10 D .-102.规定:(→2)表示向右移动2,记作+2,则(←3)表示向左移动3,记作( )A .+3B .-3C .-13D .+133.注射器中的药品含量约为0.5 mL ,则关于近似数0.5的精确度说法正确的是( )A .精确到个位B .精确到十分位C .精确到百分位D .精确到千分位 4.在0,2,-1,-2这四个数中,最小的数是( )A .0B .2C .-1D .-25.我国渤海、黄海、东海、南海海水含有不少化学元素,其中铝、锰元素总量均 约为8×106 t .用科学记数法表示铝、锰元素总量的和,接近值是( )A .8×106 tB .16×106 tC .1.6×107 tD .16×1012 t6.下列说法中,正确的有( )①零除以任何数都得零;②任何数的偶次幂都是正数;③-1乘任何数仍得这个数;④互为倒数的两个数的积为1.A .1个B .2个C .3个D .4个7.马小虎在学习有理数的运算时,做了如下5道题:①(-5)+5=0;②-5-(3)=-8;③(-3)×(-4)=12;④⎝ ⎛⎭⎪⎫-78×⎝ ⎛⎭⎪⎫-87=1;⑤⎝ ⎛⎭⎪⎫-12÷⎝ ⎛⎭⎪⎫-23=13.他做对了( )A .5道B .4道C .3道D .2道8.有理数a ,b ,c 在数轴上对应的点的位置如图所示,那么下列式子中成立的是()(第8题)A.a-b+c<0 B.c-a-b>0 C.b-a-c>0 D.a+b+c<0 二、填空题(每题3分,共18分)9.-312的倒数是________.10.在数轴上到原点的距离小于4的整数可以为________.(任意写出一个即可) 11.绝对值小于6的所有整数的和是________.12.一座楼房每上一层要走21级台阶,从1楼到6楼共需走________级台阶.13.若(a+3)2+|b-2|=0,则(a+b)2 023=________.14.按规律填数:0,-3,8,-15,24,-35,48,________.三、解答题(15~18题每题6分,19~21题每题8分,22,23题每题9分,24题12分,共78分)15.把下列各数分别填在相应的数集内:-11,5%,-2.3,16,0,-34,2 023,-9.整数集:{…};分数集:{…};负数集:{…}.16.把下列各数在如图所示的数轴上表示出来,并用“<”号连接起来.-5,|-1.5|,-52,0,312,(-2)2.(第16题)317.计算:(1)(-32)-(-27)-(-72)-68;(2)-23÷⎝ ⎛⎭⎪⎫-43-24×⎝ ⎛⎭⎪⎫23-34+112;(3)-14-(1-0.5)×13×[2-(-3)2].18.已知︱a ︱=5,︱b ︱=3,且ab <0,求a -b 的值.19.一辆出租车在一条南北方向的道路上来回运送乘客,某一天早晨该车从A 地出发,晚上到达B 地,规定向北为正方向,当天行驶记录如下(单位:km): +18,-9,+7,-14,-6,+13,-6,-8.请回答下列问题:(1)B 地在A 地的什么方向?相距多少千米?(2)该出租车这一天共行驶多少千米?(3)若该出租车每千米耗油0.5 L ,这一天共耗油多少升?20.数学老师布置了一道思考题“计算:⎝ ⎛⎭⎪⎫-112÷⎝ ⎛⎭⎪⎫13-56”.小明仔细思考了一番,用了一种不同的方法解决了这个问题:原式的倒数为⎝ ⎛⎭⎪⎫13-56÷⎝ ⎛⎭⎪⎫-112=⎝ ⎛⎭⎪⎫13-56×(-12)=-4+10=6,所以⎝ ⎛⎭⎪⎫-112÷⎝ ⎛⎭⎪⎫13-56=16. 请你利用上述方法计算:⎝ ⎛⎭⎪⎫-124÷⎝ ⎛⎭⎪⎫13-16+38.21.对于有理数a,b,n,d,若|a-n|+|b-n|=d,则称a和b关于n的“相对关系值”为d,例如|2-1|+|3-1|=3,则2和3关于1的“相对关系值”为3.(1)-3和5关于1的“相对关系值”为________;(2)若a和2关于1的“相对关系值”为4,求a的值.22.对于有理数a,b,定义运算a⊕b=a×b+|a|-b.(1)计算(-2)⊕(-2)的值;(2)填空:3⊕(-2)________(-2)⊕3(填“>”“<”或“=”);5(3)计算[(-5)⊕4]⊕(-2)的值.23.有若干个数,第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,若a1=-12,从第二个数起,每个数都等于1与它前面那个数的差的倒数.(1)试计算a2,a3,a4的值;(2)根据以上计算结果,你能猜出a2 022和a2 023的值吗?并说明理由.24.已知点M,N在数轴上,点M对应的数是-3,点N在点M的右边,且距点M 4个单位长度,点P,Q是数轴上两个动点.(1)直接写出点N所对应的数;(2)当点P到点M,N的距离之和是5个单位长度时,点P所对应的数是多少?(3)如果P,Q分别从点M,N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5 s,点Q每秒走3个单位长度,当P,Q两点相距2个单位长度时,点P,Q对应的数各是多少7答案 一、1.C 2.B 3.B 4.D 5.C 6.A7.C 8.B二、9.-27 10.3(答案不唯一)11.0 12.105 13.-1 14.-63三、15.解:整数集:{-11,0,2 023,-9,…};分数集:⎩⎨⎧⎭⎬⎫5%,-2.3,16,-34,…; 负数集:⎩⎨⎧⎭⎬⎫-11,-2.3,-34,-9,… .16.解:在数轴上表示如图.(第16题)-5<-52<0<|-1.5|<312<(-2)2.17.解:(1)原式=-32+27+72-68=(-32-68)+(27+72)=-100+99=-1.(2)原式=23×34-⎝ ⎛⎭⎪⎫24×23-24×34+24×112 =12-()16-18+2=12-0=12.(3)原式=-1-12×13×(2-9) =-1-12×13×(-7) =-1+76=16.18.解:因为|a |=5,|b |=3,所以a =±5,b =±3.因为ab <0,所以a ,b 异号.9所以当a =5时,b =-3,此时a -b =5-(-3)=8;当a =-5时,b =3,此时a -b =-5-3=-8.所以a -b 的值为8或-8.19.解:(1)(+18)+(-9)+(+7)+(-14)+(-6)+(+13)+(-6)+(-8)=-5 (km).答:B 地在A 地的正南方向,相距5 km.(2)|+18|+|-9|+|+7|+|-14|+|-6|+|+13|+|-6|+|-8|=81 (km). 答:该出租车这一天共行驶81 km.(3)81×0.5=40.5 (L).答:该出租车这一天共耗油40.5 L.20.解:因为⎝ ⎛⎭⎪⎫13-16+38÷⎝ ⎛⎭⎪⎫-124 =⎝ ⎛⎭⎪⎫13-16+38×(-24) =-8+4-9=-13,所以⎝ ⎛⎭⎪⎫-124÷⎝ ⎛⎭⎪⎫13-16+38=-113. 21.解:(1)8(2)由题意得|a -1|+|2-1|=4,所以|a -1|=3,所以a -1=3或a -1=-3,解得a =4或a =-2.22.解:(1)(-2)⊕(-2)=(-2)×(-2)+|-2|-(-2)=4+2+2=8.(2)>(3)因为(-5)⊕4=(-5)×4+|-5|-4=-20+5-4=-19,所以[(-5)⊕4]⊕(-2)=(-19)⊕(-2)=(-19)×(-2)+|-19|-(-2)=59.23.解:(1)由题意,得a 2=11-⎝ ⎛⎭⎪⎫-12=23,a 3=11-23=3,a 4=11-3=-12. (2)a 2 022=3,a 2 023=-12.理由如下:由(1)可知,这若干个数是按3个一组循环的,因为2 022÷3=674,2 023÷3=674……1,所以a 2 022=a 3=3,a 2 023=a 1=-12.24.解:(1)点N 所对应的数是1.(2)设点P 所对应的数为m ,因为MN =4<5,所以分两种情况:①当点P 在点M 左边时,PM =-3-m ,PN =1-m ,因为PM +PN =5,所以-3-m +1-m =5,解得m =-3.5,即点P 对应的数是-3.5;②当点P 在点N 右边时,PM =m -(-3)=m +3,PN =m -1,因为PM +PN =5,所以m +3+m -1=5,解得m =1.5,即点P 对应的数是1.5. 综上所述,点P 对应的数是-3.5或1.5.(3)设点Q 运动的时间为t s ,则点P 对应的数是-3-2(t +5),点Q 对应的数是1-3t ,根据题意,得|-3-2(t +5)-(1-3t )|=2.当-3-2(t +5)-(1-3t )=2时,解得t =16.此时点P 对应的数是-45,点Q 对应的数是-47;当-3-2(t +5)-(1-3t )=-2时,解得t =12.此时点P 对应的数是-37,点Q 对应的数是-35.综上所述,当P ,Q 两点相距2个单位长度时,点P 对应的数是-45、点Q对应的数是-47或点P对应的数是-37、点Q对应的数是-35.11。
华东师大版数学七年级上册课后习题答案

华东师大版数学七年级上册课后习题答案第2章有理数2.1有理数1、正数和负数练习1.略2.8844表示海平面以上8844米,-155表示海平面以下155米。
海平面的高度用0(米)表示。
3.正数:+6,54,722,0.001负数:-21,-3.14,-9994.不对,因为一个数不是正数,还可能是0,而0不是负数。
2、有理数练习1.举例略,这些数都是有理数。
2.只有一个,是0。
习题2.11.整数:1,-789,325,0,-20;分数:5%-100.110.10850.10-,,,,;正数:100.110.10325851,,,,;负数:-0.10,-789,-20,-5%。
2.本题是开放性问题,答案不唯一,例如:重叠部分填:1,2,3…(注意要添上省略号);左圈内填:0.1,0.2,0.3;右圈内填0,-1,-2。
两个圈的重叠部分表示正整数的集合。
3.按照第2题的不同填法本题有不同的答案。
4.(1)1,-1,1;第10个数,第100个数,第200个数,第201个数分别为-1,-1,-1,1。
(2)9,-10,11;第10个数,第100个数,第200个数,第201个数分别为-10,-100,-200,201。
(3)10191-81,,;第10个数,第100个数,第200个数,第201个数分别为2011-20011001101,,,。
2.2数轴1.数轴练习1(1)正确,符合数轴的定义;(2)不正确,单位长度不一致;(3)不正确,负数标注错误。
2.-3位于原点左边,距离原点3个单位长度;4.2位于原点右边,距离原点4.2个单位长度;-1位于原点左边,距离原点1个单位长度;21位于原点右边,距离原点21个单位长度。
3.点A,B,C,D 分别表示:-5,-1.5,2.5,6。
4.图略,按数轴上从左到右的顺序排列为:-3.5,-1.8,0,216310,。
2.在数轴上比较数的大小练习1.(1)正确,因为正数都大于负数;(2)不正确,因为0大于负数;(3)不正确,因为在数轴上表示-10的点在表示-9的点的左边;(4)正确,因为在数轴上表示-5.4的点在表示-4.5的点的左边。
1.10 有理数的除法(课件)七年级数学上册(华东师大版2024)

【详解】∵ + + = 0,
∴ + = −, + = −, + = −,
∴原式=
−
+
−
+
−
=
+
+
��
,
∵ + + = 0和 ≠ 0,
∴在、、中必为两正一负或两负一正,
∴当为两正一负时,原式= 1 + 1 − 1 = 1,
当为两负一正时,原式= −1 − 1 + 1 = −1,
【注意事项】
(1)倒数是指两个数的关系,0没有倒数.
(2)正数的倒数是正数,负数的倒数是负数,倒数等于本身的有±1.
典例分析
例1:请你指出下列各数的倒数
1
6
−1,4, ,− .
5
25
1
25
解:-1, ,5,− .
4
6
课堂小结
求一个数的倒数的方法:
1)一个不为0的整数的倒数,是用这个整数作分母,1作分子的分数;
(2)原式= −
1
5
×
(3)原式= 72 ×
1
10
2
3
× 25 × 10 = −5;
×
3
5
×
15
8
9
8
= 48 × = 54.
课堂测试
5.(23-24七年级上·广东惠州·期中)若 = 4, = 2,且 > 0,则 − 的值是( )
A.−2
B.−6
C.6或−6
D.2或−2
【详解】∵ = 4, = 2,∴ = ±4, = ±2;
2020-2021学年人教版七年级上学期《1.4 有理数的乘除法》测试题及答案解析

2020-2021学年人教版七年级上学期《1.4 有理数的乘除法》测试题一.解答题(共50小题)1.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下我们称使等式a﹣b=ab+1成立的一对有理数“a,b”为共生有理数对”,记为(a,b)(1)通过计算判断数对“﹣2,1”,“4,”是不是“共生有理数对”;(2)若(6,a)是“共生有理数对”,求a的值;(3)若(m,n)是“共生有理数对”,则“﹣n,﹣m”“共生有理数对”(填“是”或“不是”),并说明理由;(4)如果(m,n)是“共生有理数对”(其中n≠1),直接用含n的代数式表示m.2.阅读材料题:求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法﹣﹣更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数解:91﹣56=3556﹣35=2135﹣21=1421﹣14=714﹣7=7所以,91与56的最大公约数是7请用以上方法解决下列问题:(1)求108与45的最大公约数;(2)求三个数78、104、143的最大公约数.3.小红研究了“十位数字相加等于10,个位数字相等”的两位数乘法的口算技巧:如34×74=2516.结果中的前两位数是用3×7+4得25,后两位数是用4×4=16,经过直接组合就可以得到正确结果2516.(1)请用上述方法直接计算45×65=;56×56=;(2)请用合适的数学知识解释上述方法的合理性.4.阅读下面材料两位同学在用标有数字1,2,…,9的9张卡片做游戏.甲同学:“你先从这9张卡片中随意抽取两张(按抽取的先后顺序分别称为“卡片A”和“卡片B”),别告诉我卡片上是什么数字,然后你把卡片A上的数字乘以5,加上7,再乘以2,再加上卡片B上的数字,把最后得到的数M的值告诉我,我就能猜出你抽出的是哪两张卡片啦!”乙同学:“这么神奇?我不信”……试验一下:(1)如果乙同学抽出的卡片A上的数字为2,卡片B上的数字为5,他最后得到的数M =;(2)若乙同学最后得到的数M=57,则卡片A上的数字为,卡片B上的数字为.解密:请你说明:对任意告知的数M,甲同学是如何猜到卡片的.5.小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.6.一个能被13整除的自然数我们称为“十三数”,“十三数”的特征是:若把这个自然数的末三位与末三位以前的数字组成的数之差,如果能被13整除,那么这个自然数就一定能被13整除.例如:判断383357能不能被13整除,这个数的末三位数字是357,末三位以前的数字组成的数是383,这两个数的差是383﹣357=26,26能被13整除,因此383357是“十三数”.(1)判断3253和254514是否为“十三数”,请说明理由.(2)若一个四位自然数,千位数字和十位数字相同,百位数字与个位数字相同,则称这个四位数为“间同数”.①求证:任意一个四位“间同数”能被101整除.②若一个四位自然数既是“十三数”,又是“间同数”,求满足条件的所有四位数的最大值与最小值之差.7.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求m+cd+的值.8.(1)列举两个数,满足这两个数的和为正数,积为负数,归纳所有满足条件的两个数有什么共同特征?(2)列举三个数,满足这三个数的和为正数,积为负数,归纳所有满足条件的三个数有什么共同特征?9.如图,已知点A在数轴上,从点A出发,沿数轴向右移动3个单位长度到达点C,点B 所表示的有理数是5的相反数,按要求完成下列各小题.(1)请在数轴上标出点B和点C;(2)求点B所表示的有理数与点C所表示的有理数的乘积;(3)若将该数轴进行折叠,使得点A和点B重合,则点C和数所表示的点重合.10.现有一种计算13×12的方法,具体算法如下:第一步:用被乘数13加上乘数12的个位数字2,即13+2=15.第二步:把第一步得到的结果乘以10,即15×10=150.第三步:用被乘数13的个位数字3乘以乘数12的个位数字2,即3×2=6.第四步:把第二步和第三步所得的结果相加,即150+6=156.于是得到13×12=156.(1)请模仿上述算法计算14×17 并填空.第一步:用被乘数14加上乘数17的个位数字7,即.第二步:把第一步得到的结果乘以10,即.第三步:用被乘数14的个位数字4乘以乘数17的个位数字7,即.第四步:把第二步和第三步所得的结果相加,即.于是得到14×17=238.(2)一般地,对于两个十位上的数字都为1,个位上的数字分别为a,b(0≤a≤9,0≤b≤9,a、b为整数)的两位数相乘都可以按上述算法进行计算.请你通过计算说明上述算法的合理性.11.一个分数的分母比它的分子大5,如果这个分数的分子加上14,分母减去1,所得到的分数为原来数的倒数.求这个分数.12.若a、b、c都不等于0,且++的最大值是m,最小值是n,求m+n的值.13.读一读:式子“1×2×3×4×5×^×100”表示从1开始的100个连续自然数的积,由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1×2×3×4×5×^×100”表示为n,这里“π”是求积符号.例如:1×35×7×9×^×99,即从1开始的100以内的连续奇数的积,可表示为(2n﹣1),又如13×23×33×43×53×63×73×83×93×103可表示为n3,通过对以上材料的阅读,请解答下列问题:(1)2×4×6×8×10×…×100(即从2开始的100以内的连续偶数的积)用求积符号可表示为;(2)1×××…×用求积符号可表示为;(3)计算:(1﹣).14.若“!”是一种数学运算符号,并且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1….求的值.15.阅读下列材料:|x|=,即当x<0时,=﹣1.用这个结论可以解决下面问题:(1)已知a,b是有理数,当ab≠0时,求的值;(2)已知a,b是有理数,当abc≠0时,求的值;(3)已知a,b,c是有理数,a+b+c=0,abc<0,求的值.16.小明有5张写着不同数字的卡片,请按要求抽出卡片,完成下列问题:(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,最大值是多少?答:乘积最大值为.(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是多少?答:商的最小值为.(3)从中取出2张卡片,用学过的运算方法,使结果最大,如何抽取?写出运算式子.写出完整算式及运算过程.17.(1)将9个不同的数分别填入图中的9个空格中,使得每行、每列及对角线上各数的和都等于0;(2)将9个不同的数分别填入图中的9个空格中,使得每行、每列及对角线上各数的积都等于1.18.如图,小明有5张写着不同数的卡片,请你按照题目要求抽出卡片,完成下列问题:(1)从中取出3张卡片,使这3张卡片上数字的乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?19.在1,﹣2,3,﹣4,﹣5中任取两个数相乘,最大的积是a,最小的积是b.(1)求ab的值;(2)若|x﹣a|+|y+b|=0,求(﹣x﹣y)•y的值.20.已知a,b互为倒数,c,d互为相反数,|m|=3.根据已知条件请回答:(1)ab=,c+d=,m=,=.(2)求:+ab+﹣的值.21.在数﹣4,+1,﹣3,+4,0中任取三个数相乘,其中最大的积是a,最小的积是b.(1)求a与b的值解:a=××;b=××.(2)若|x﹣a|+|y+b|=0,求(x+y)÷y的值.22.已知:有理数m所表示的点与﹣1表示的点距离4个单位,a,b互为相反数,且都不为零,c,d互为倒数.求:2a+2b+(a+b﹣3cd)﹣m的值.23.如图,小明有4张写着不同数的卡片,请你按照题目要求抽出卡片,完成下列问题.(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?24.阅读下列材料:计算:÷(﹣+).解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷(﹣+)=÷=×6=.解法三:原式的倒数=(﹣+)÷=(﹣+)×24=×24﹣×24+×24=4.所以,原式=.(1)上述得到的结果不同,你认为解法是错误的;(2)请你选择合适的解法计算:(﹣)÷(﹣+﹣).25.若a,b都是非零的有理数,那么的值是多少?26.学习有理数乘法后,老师给同学们这样一道题目:计算:49,老师请小明到黑板上来完成计算:小明:解:原式=﹣当看完小明的解法后,小军说:如果理解一个带分数其实是由一个整数和一个分数的和,那样计算起来就更快,我有一种算法肯定比小明快,于是小军给出了他的算法;小红看完了小明和小军的解法后她对大家说:小军的解法确实比小明的解法计算起来快,但我认为这个问题如果把这个带分数用整数部分凑十法来转换会更方便,也就计算更快,同样她给出了自己的解法.(1)请根据题意给出小军和小红的解法,评价三人的解法所蕴涵的数学意义;(2)用你认为最合适的方法计算:19.27.已知|a|=8,|b|=2(1)当a,b同号时,求a+b的值;(2)当ab<0时,求a﹣b的值.28.已知:有理数a,b,c满足abc<0,当x=+时,求x的值.29.若a、b互为相反数,c、d互为倒数,p的绝对值等于2,则关于x的方程(a+b)x2+3cd •x﹣p2=0的解是多少?30.阅读下列材料:|x|=,即当x>0时,;当x<0时,.用这个结论可以解决下面问题:(1)已知a、b是有理数,当ab≠0时,求的值.(2)已知a、b是有理数,当abc≠0时,求+的值.(3)已知a、b、c是有理数,a+b+c=0,abc<0,求的值.31.阅读下列材料并解决有关问题:我们知道|x|=,所以当x>0时,==1;当x<0时,==﹣1.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当ab≠0时,+=;(2)已知a,b,c是有理数,当abc≠0时,++=.32.小明有5张写着不同的数字的卡片请按要求抽出卡片,完成下面各题:(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?33.阅读后回答问题:计算(﹣)÷(﹣15)×(﹣)解:原式=﹣÷[(﹣15)×(﹣)]①=﹣÷1 ②=﹣③(1)上述的解法是否正确?答:若有错误,在哪一步?答:(填代号)错误的原因是:(2)这个计算题的正确答案应该是:.34.(1)已知有理数|a|=3,|b|=4,且ab<0,求a﹣b的值.(2)已知有理数a,b,c满足|a﹣1|+|b﹣3|+|3c﹣1|=0,求a+b﹣c的值.35.下面是小明同学的运算过程.计算:﹣5÷2×.解:﹣5÷2×=﹣5÷(2×) (1)=﹣5÷1 (2)=﹣5 (3)请问:(1)小明从第步开始出现错误;(2)请写出正确的解答过程.36.小莉同学有7张写着不同数字的卡片,他想从中取出若干张卡片,将卡片上的数字进行有理数的运算.(1)若取出2张卡片,应该抽取哪2张使得数字之积最大,积最大是多少呢?(2)若取出3张卡片,应该抽取哪3张使得数字之积最小,积最小是多少呢?37.有这样几个数:﹣1,,|﹣3|,﹣3.14,0,﹣32,2.5,﹣2.(1)从上述数中选出合适的数填入相应的集合里:正整数集合:{…};负分数集合:{…}(2)从这些数中找出三个有理数,使其中两个有理数的积等于第三个有理数,写出这个等式.38.如图是一个“数值转换机”(箭头是指数进入转换机的路径,方框是对进入的数进行转换的转换机).(1)当小明输入4,7这两个数时,则两次输出的结果依次为,;(2)你认为当输入数等于时(写出一个即可),其输出结果为0;(3)你认为这个“数值转换机”不可能输出数;(4)有一次,小明操作的时候,输出的结果是2,聪明的你判断一下,小明输入的正整数是(用含自然数n的代数式表示).39.①如果a,b,c是有理数且abc≠0,计算代数式的值;②如果有理数a+b+c=0且abc≠0,计算代数式的值.40.如图是一个“有理数转换器”(箭头是指数进入转换器的路径,方框是对进入的数进行转换的转换器)(1)你认为当输入什么数时,其输出结果是0?(2)你认为这个“有理数转换器”不可能输出什么数?(3)当小明输入3;;﹣201这三个数时,这三次输出的结果分别是:.(4)有一次,小明在操作的时候,输出的结果是2,你判断一下,小明可能输入的是什么数?41.阅读以下材料,完成相关的填空和计算.(1)根据倒数的定义我们知道,若(a+b)÷c=﹣3,则c÷(a+b)=.(2)计算:(3)根据以上信息可知:=.42.已知|x|=3,|y+1|=2,且xy<0,求x﹣y的值.43.小明不小心把一块橡皮掉入一个带刻度的圆柱形水杯中,拿出橡皮时,小明发现水杯中的水面下降了1cm.小明量得水杯的直径是8cm,于是小明就算出橡皮的体积.你知道橡皮的体积是多少吗?(π取3)44.小华同学做了﹣道题:15÷(﹣)=15÷﹣15÷﹣15×5﹣15×3=75﹣45=30.你认为小华同学的解法正确吗?如果不正确,怎样改正?45.小明有5张写着不同数字的卡片,请按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字的和最小,如何抽取?最小值是多少?答:我抽取的2张卡片是、,和的最小值为.(2)从中取出2张卡片,使这2张卡片上数字的差最大,如何抽取?最大值是多少?答:我抽取的2张卡片是、,差的最大值为.(3)从中取出2张卡片,使这2张卡片上数字的乘积最大,如何抽取?最大值是多少?答:我抽取的2张卡片是、,乘积的最大值为.(4)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?答:我抽取的2张卡片是、,商的最小值为.46.小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题.(1)从中取出2张卡片,使这两张卡片上数字的乘积最大,乘积的最大值为.(2)从中取出2张卡片,使这两张卡片上数字相除的商最小,商的最小值为47.如图,数轴上的A、B两点所表示的数分别为a、b,a+b<0,ab<0,(1)原点O的位置在;A.点A的右边B.点B的左边C.点A与点B之间,且靠近点A D.点A 与点B之间,且靠近点B(2)若a﹣b=2,①利用数轴比较大小:a1,b﹣1;(填“>”、“<”或“=”)②化简:|a﹣1|+|b+1|.48.如图,A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,|a|=10,a+b =80,ab<0.(1)求出a,b的值;(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动.①设两只电子蚂蚁在数轴上的点C相遇,求出点C对应的数是多少?②经过多长时间两只电子蚂蚁在数轴上相距20个单位长度?49.阅读下面的解题过程:计算(﹣15)÷()×6解:原式=(﹣15)×6(第一步)=(﹣15)÷(﹣1)(第二步)=﹣15(第三步)回答:(1)上面解题过程中有两处错误,第一处是第步,错误的原因是,第二处是第步,错误的原因是.(2)把正确的解题过程写出来.50.阅读下题解答:计算:.分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:×(﹣24)=﹣16+18﹣21=﹣19.所以原式=﹣.根据阅读材料提供的方法,完成下面的计算:.2020-2021学年人教版七年级上学期《1.4 有理数的乘除法》测试题参考答案与试题解析一.解答题(共50小题)1.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下我们称使等式a﹣b=ab+1成立的一对有理数“a,b”为共生有理数对”,记为(a,b)(1)通过计算判断数对“﹣2,1”,“4,”是不是“共生有理数对”;(2)若(6,a)是“共生有理数对”,求a的值;(3)若(m,n)是“共生有理数对”,则“﹣n,﹣m”是“共生有理数对”(填“是”或“不是”),并说明理由;(4)如果(m,n)是“共生有理数对”(其中n≠1),直接用含n的代数式表示m.【解答】解:(1)﹣2﹣1=﹣3,﹣2×1+1=1,∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是共生有理数对;∵4﹣=,,∴(4,)是共生有理数对;(2)由题意得:6﹣a=6a+1,解得a=;(3)是.理由:﹣n﹣(﹣m)=﹣n+m,﹣n•(﹣m)+1=mn+1,∵(m,n)是共生有理数对,∴m﹣n=mn+1,∴﹣n+m=mn+1,∴(﹣n,﹣m)是共生有理数对;故答案为:是;(4)∵(m,n)是共生有理数对,∴m﹣n=mn+1,即mn﹣m=﹣(n+1),∴(n﹣1)m=﹣(n+1),∴.2.阅读材料题:求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法﹣﹣更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数解:91﹣56=3556﹣35=2135﹣21=1421﹣14=714﹣7=7所以,91与56的最大公约数是7请用以上方法解决下列问题:(1)求108与45的最大公约数;(2)求三个数78、104、143的最大公约数.【解答】解:(1)∵108﹣45=6363﹣45=1845﹣18=2727﹣18=918﹣9=9∴108与45的最大公约数是9.(2)∵104﹣78=26,78﹣26=52,52﹣26=26,∴104与78的最大公约数是26.∵143﹣104=39,104﹣39=65,65﹣39=26,39﹣26=13,26﹣13=13,∴143与104最大公约数是13.∴78、104、143的最大公约数是13.3.小红研究了“十位数字相加等于10,个位数字相等”的两位数乘法的口算技巧:如34×74=2516.结果中的前两位数是用3×7+4得25,后两位数是用4×4=16,经过直接组合就可以得到正确结果2516.(1)请用上述方法直接计算45×65=2925;56×56=3136;(2)请用合适的数学知识解释上述方法的合理性.【解答】解:(1)45×65=100×(4×6+5)+52=2925,56×56=100×(5×5+6)+62=3136,故答案为:2925,3136;(2)分别用a,b表示两个两位数的十位数字,用c表示个位数字,且a+b=10,则(10a+c)(10b+c)=100ab+10ac+10bc+c2=100ab+10c(a+b)+c2=100ab+100c+c2=100(ab+c)+c2,∴(10a+c)(10b+c)=100(ab+c)+c2.4.阅读下面材料两位同学在用标有数字1,2,…,9的9张卡片做游戏.甲同学:“你先从这9张卡片中随意抽取两张(按抽取的先后顺序分别称为“卡片A”和“卡片B”),别告诉我卡片上是什么数字,然后你把卡片A上的数字乘以5,加上7,再乘以2,再加上卡片B上的数字,把最后得到的数M的值告诉我,我就能猜出你抽出的是哪两张卡片啦!”乙同学:“这么神奇?我不信”……试验一下:(1)如果乙同学抽出的卡片A上的数字为2,卡片B上的数字为5,他最后得到的数M =39;(2)若乙同学最后得到的数M=57,则卡片A上的数字为4,卡片B上的数字为3.解密:请你说明:对任意告知的数M,甲同学是如何猜到卡片的.【解答】解:(1)M=(2×5+7)×2+5=39,故答案为:39;(2)设卡片A上的数字为x,卡片B上的数字为y,则(5x+7)×2+y=57,10x+14+y=57,10x+y=43,∵x、y都是1至9这9个数字,∴x=4,y=3,故答案为:4,3;解密:设卡片A上的数字为x,卡片B上的数字为y(其中x、y为1,2,…,9这9个数字),则M=2(5x+7)+y=(10x+y)+14,得:M﹣14=10x+y,其中十位数字是x,个位数字是y,所以由给出的M的值减去14,所得两位数十位上的数字为卡片A上的数字x,个位数上的数字为卡片B上的数字y.5.小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.【解答】解:(1)前后两部分互为倒数;(2)先计算后一部分比较方便.()=()×36=9+3﹣14﹣1=﹣3;(3)因为前后两部分互为倒数,所以()=﹣;(4)根据以上分析,可知原式==﹣3.6.一个能被13整除的自然数我们称为“十三数”,“十三数”的特征是:若把这个自然数的末三位与末三位以前的数字组成的数之差,如果能被13整除,那么这个自然数就一定能被13整除.例如:判断383357能不能被13整除,这个数的末三位数字是357,末三位以前的数字组成的数是383,这两个数的差是383﹣357=26,26能被13整除,因此383357是“十三数”.(1)判断3253和254514是否为“十三数”,请说明理由.(2)若一个四位自然数,千位数字和十位数字相同,百位数字与个位数字相同,则称这个四位数为“间同数”.①求证:任意一个四位“间同数”能被101整除.②若一个四位自然数既是“十三数”,又是“间同数”,求满足条件的所有四位数的最大值与最小值之差.【解答】(1)解:3253不是“十三数”,254514是“十三数”,理由如下:∵3﹣253=﹣250,不能被13整除,∴3253不是“十三数”,∵254﹣514=﹣260,﹣260÷13=﹣20∴254514是“十三数”;(2)①证明:设任意一个四位“间同数”为(1≤a≤9,0≤b≤9,a、b为整数),∵===10a+b,∵a、b为整数,∴10a+b是整数,即任意一个四位“间同数”能被101整除;②解:解法一:由①可知:这个四位“间同数”表示为101(10a+b),它是13的倍数,∵1≤a≤9,0≤b≤9,a、b为整数,∴当a=9,b=1时,最大为9191,当a=1,b=3时,最小为1313,∴9191﹣1313=7878;解法二:设任意一个四位“间同数”为(1≤a≤9,0≤b≤9,a、b为整数),∵=,∵这个四位自然数是“十三数”,∴101b+9a是13的倍数,当a=1,b=3时,101b+9a=303+9=312,312÷13=24,此时这个四位“间同数”为:1313;当a=2,b=6时,101b+9a=606+18=624,624÷13=48,此时这个四位“间同数”为:2626;当a=3,b=9时,101b+9a=909+27=736,936÷13=72,此时这个四位“间同数”为:3939;当a=5,b=2时,101b+9a=202+45=247,247÷13=19,此时这个四位“间同数”为:5252;当a=6,b=5时,101b+9a=505+54=559,559÷13=43,此时这个四位“间同数”为:6565;当a=7,b=8时,101b+9a=808+63=871,871÷13=67,此时这个四位“间同数”为:7878;当a=9,b=1时,101b+9a=101+81=182,182÷13=14,此时这个四位“间同数”为:9191;综上可知:这个四位“间同数”最大为9191,最小为1313,9191﹣1313=7878,则满足条件的所有四位数的最大值与最小值之差为7878;解法三:由①可设4位的间同数可表示为101(10a+b),因其能被13整除,而101不能被13整除,所以10a+b是13的倍数,故10a+b最小为13,最大为91∴最大值与最小值之差为:101(91﹣13)=7878.7.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求m+cd+的值.【解答】解:(1)∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+=2+1+0=3;当m=﹣2时,m+cd+=﹣2+1+0=﹣1.8.(1)列举两个数,满足这两个数的和为正数,积为负数,归纳所有满足条件的两个数有什么共同特征?(2)列举三个数,满足这三个数的和为正数,积为负数,归纳所有满足条件的三个数有什么共同特征?【解答】解:(1)举例:4与﹣2,4+(﹣2)=2,4×(﹣2)=﹣8,归纳:这两个数一个为正数,一个为负数,且正数的绝对值大于负数的绝对值;(2)举例:1,3与﹣2,1+3+(﹣2)=2,1×3×(﹣2)=﹣6,归纳:这三个数中两个是正数,一个是负数,且这两个正数的和的绝对值大于负数的绝对值.9.如图,已知点A在数轴上,从点A出发,沿数轴向右移动3个单位长度到达点C,点B 所表示的有理数是5的相反数,按要求完成下列各小题.(1)请在数轴上标出点B和点C;(2)求点B所表示的有理数与点C所表示的有理数的乘积;(3)若将该数轴进行折叠,使得点A和点B重合,则点C和数﹣8所表示的点重合.【解答】解:(1)如图所示:(2)﹣5×2=﹣10.(3)A、B中点所表示的数为﹣3,点C与数﹣8所表示的点重合.故答案为:﹣8.10.现有一种计算13×12的方法,具体算法如下:第一步:用被乘数13加上乘数12的个位数字2,即13+2=15.第二步:把第一步得到的结果乘以10,即15×10=150.第三步:用被乘数13的个位数字3乘以乘数12的个位数字2,即3×2=6.第四步:把第二步和第三步所得的结果相加,即150+6=156.于是得到13×12=156.(1)请模仿上述算法计算14×17 并填空.第一步:用被乘数14加上乘数17的个位数字7,即14+7=21.第二步:把第一步得到的结果乘以10,即21×10=210.第三步:用被乘数14的个位数字4乘以乘数17的个位数字7,即4×7=28.第四步:把第二步和第三步所得的结果相加,即210+28=238.于是得到14×17=238.(2)一般地,对于两个十位上的数字都为1,个位上的数字分别为a,b(0≤a≤9,0≤b≤9,a、b为整数)的两位数相乘都可以按上述算法进行计算.请你通过计算说明上述算法的合理性.【解答】解:(1)计算14×17,第一步:用被乘数14加上乘数17的个位数字7,即14+7=21.第二步:把第一步得到的结果乘以10,即21×10=210.第三步:用被乘数14的个位数字4乘以乘数17的个位数字7,即4×7=28.第四步:把第二步和第三步所得的结果相加,即210+28=238.于是得到14×17=238.故答案为:14+7=21,21×10=210,4×7=28,210+28=238;(2)对于(10+a)×(10+b),第一步:用被乘数10+a加上乘数10+b的个位数字b,即10+a+b.第二步:把第一步得到的结果乘以10,即10(10+a+b).第三步:用被乘数10+a的个位数字a乘以乘数10+b的个位数字b,即ab.第四步:把第二步和第三步所得的结果相加,即10(10+a+b)+ab=100+10a+10b+ab.又(10+a)×(10+b)=100+10b+10a+ab,故上述算法是合理的.11.一个分数的分母比它的分子大5,如果这个分数的分子加上14,分母减去1,所得到的分数为原来数的倒数.求这个分数.【解答】解:设这个分数的分子为x,则分母为x+5.根据题意,得=,解得x=4.经检验,x=4是所列方程的解.x+5=9.答:这个分数为.12.若a、b、c都不等于0,且++的最大值是m,最小值是n,求m+n的值.【解答】解:由题知,,依次计算++可知m=3,n=﹣3,所以m+n=3+(﹣3)=3﹣3=0.13.读一读:式子“1×2×3×4×5×^×100”表示从1开始的100个连续自然数的积,由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1×2×3×4×5×^×100”表示为n,这里“π”是求积符号.例如:1×35×7×9×^×99,即从1开始的100以内的连续奇数的积,可表示为(2n﹣1),又如13×23×33×43×53×63×73×83×93×103可表示为n3,通过对以上材料的阅读,请解答下列问题:(1)2×4×6×8×10×…×100(即从2开始的100以内的连续偶数的积)用求积符号可表示为;(2)1×××…×用求积符号可表示为;(3)计算:(1﹣).【解答】解:(1)2×4×6×8×10×…×100(即从2开始的100以内的连续偶数的积)用求积符号可表示为,故答案为:;(2)1×××…×用求积符号可表示为,故答案为:;(3)(1﹣)=××××…××=.14.若“!”是一种数学运算符号,并且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1….求的值.【解答】解:∵1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1…,∴==9900.15.阅读下列材料:|x|=,即当x<0时,=﹣1.用这个结论可以解决下面问题:(1)已知a,b是有理数,当ab≠0时,求的值;(2)已知a,b是有理数,当abc≠0时,求的值;(3)已知a,b,c是有理数,a+b+c=0,abc<0,求的值.【解答】解:(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,+=﹣1﹣1=﹣2;②a>0,b>0,+=1+1=2;③a,b异号,+=0.故+的值为±2或0.(2)已知a,b是有理数,当abc≠0时,①a<0,b<0,c<0,++=﹣1﹣1﹣1=﹣3;②a>0,b>0,c>0,++=1+1+1=3;③a,b,c两负一正,++=﹣1﹣1+1=﹣1;④a,b,c两正一负,++=﹣1+1+1=1.故++的值为±1,或±3.(3)已知a,b,c是有理数,a+b+c=0,abc<0.所以b+c=﹣a,a+c=﹣b,a+b=﹣c,a,b,c两正一负,所以++=++=﹣[++]=﹣1.16.小明有5张写着不同数字的卡片,请按要求抽出卡片,完成下列问题:(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,最大值是多少?答:乘积最大值为15.。
华东师大版七年级数学上册第2章第13节《有理数的混合运算》课后同步练习题(附答案)

2.13 有理数的混合运算第1课时 有理数混合运算的顺序1. 熟练掌握有理数混合运算的法则.2. 能熟练地进行有理数加、减、乘、除、乘方的混合运算.1. 加法和减法叫做第________级运算;乘法和除法叫做第________级运算;乘方和开方(今后将会学到)叫做第________级运算.2. 有理数混合运算的运算顺序规定如下:(1)先算________,再算________,最后算________; (2)同级运算,按照________的顺序进行;(3)如果有括号,就先算________里的,再算________里的,最后算________里的. 3. 进行分数的乘除运算,一般要把带分数化为________,把除法转化为________. 4. 计算:(-4×2.5)3的结果为( ). A. 1000 B. -1000 C. 30 D. -305. 计算:-2×52-(-2×52)的结果为( ). A. 0 B. -100 C. 100 D. -406. 计算:15×(-5)÷(-15)×5的结果为( ).A. 1B. 25C. -5D. 35 7. 计算:(1)(-21)-(-13)-|+5|+|-9|; (2)(-7)×(-6)-54÷(-6).8.计算:-24÷(-2)2的结果是( ).A. 4B. -4C. 2D. -2 9. 如果||a -1=0,2008(b+3)=1,那么ba-1的值是( ).A. -4B. -5C. -6D. 2 10. 计算:-102+(-10)2-103÷(-10)3=________. 11. 计算:(1)-2-23×⎝⎛⎭⎫123;(2)-22÷⎝⎛⎭⎫-152×||-5×(-0.1)3; (3)32-(-5)2×⎝⎛⎭⎫-252-23; (4)15-2×42+(-2×4)2.12. (1)在玩“24点”游戏时,“3、3、7、7”列式并计算为:7×(3+37)=7×3+3=24 是依据运算律 . (2)小明抽到以下4张牌:请你帮他写出运算结果为24的一个算式: . (3)如果、表示正,、表示负,请你用(2)中的4张牌表示的数写出运算结果为24的一个算式: .13. 如图,在宽为30m ,长为40m 的矩形地面上修建两条都是1m 的道路,余下部分种植花草,那么,种植花草的面积为 m 2.14. (2011•绍兴县)欢欢发烧了,妈妈带她去看医生,结果测量出体温是39.2℃,用了退烧药后,以每15分钟下降0.2℃的速度退烧,则两小时后,欢欢的体温是 ℃.A 、-1.1B 、-1.8C 、-3.2D 、-3.9第2课时 有理数的混合运算1. 进一步掌握有理数的混合运算.2. 在运算过程中,能合理使用运算律简化运算.1. 计算-23-()-23+()+32-()-32-()32的结果是( ). A. 27 B. 9C. -27D. -92. 以下四个有理数运算的式子中:①(2+3)+4=2+(3+4);②(2-3)-4=2-(3-4);③(2×3)×4=2×(3×4);④2÷3÷4=2÷(3÷4).正确的运算式子有( ) A 、1个 B 、2个 C 、3个 D 、4个3. 已知四个式子:(1)|7453|--;(2)|74||53|---;(3)|74|53---;(4))74(53---,它们的值从小到大的顺序是( )A.(4)<(3)<(2)<(1)B.(3)<(4)<(2)<(1) B.(2)<(4)<(3)<(1) D.(3)<(2)<(4)<(1)4. 计算:-32÷(-3)2+3×(-6)=_____________.5. 已知|a +1|+(b -2)2=0,则(a +b )2 008+a 57=________.6. 计算:(1)(-1.5)+414+2.75+⎝⎛⎭⎫-512; (2)4-5×⎝⎛⎭⎫-123; (3)(-10)2÷5×⎝⎛⎭⎫-25; (4)5×(-6)-(-4)2÷(-8).7. 计算:(注意使用简便方法)(1)⎣⎡⎦⎤(+49)-⎝⎛⎭⎫-136÷⎝⎛⎭⎫-172; (2)13×23+0.34×27+13×13+57×0.34;(3)⎝⎛⎭⎫-2467÷6; (4)⎝⎛⎭⎫79-56+736×36-5.45×6+1.45×6.8. 自然数中有许多奇妙而有趣的现象,很多秘密等着我们取探索!比如:对任意一个3的倍数的正整数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数上的数字再立方,求和,多次重复这种操作运算,运算结果最终会得到一个固定不变的数Q ,它会掉入一个数字“陷阱”.永远也别想逃出来,没有一个自然数能逃出它的“魔掌”.那么最终掉入“陷阱”的这个固定不变的数Q 等于 .9. 小丽家要买节能灯,于是到家电商场做调查,得到如下数据:这三种节能灯的照明效果相当.如果仅考虑费用(节能灯费用与耗电费用之和,用电度数=功率(W )×时间(h )÷1000,假设电费为0.60元/度)支出,小丽应选( ) A 、节能灯3 B 、节能灯2 C 、节能灯1 D 、任一种10.如图是一个流程图,图中“结束”处的计算结果是 .11.从集合-3,-2,-1,4,5中取出三个不同的数,可能得到的最大乘积填在□中,可-能得到的最小乘积填在〇中并将下式计算的结果写在等号右边的横线上.-(□)÷〇= .12.如图,是一个数值转换机.若输入数3,则输出数是 .13.14.某企业向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率高于 .2.13 有理数的混合运算第1课时1. 一 二 三2. (1)乘方 乘除 加减 (2)从左至右 (3)小括号 中括号 大括号3. 假分数 乘法4. B5. A6. B7. (1)-4 (2)51 (3)19 (4)-80 8. B 9. A 10. 111. (1)-3 (2)0.5 (3)-3 (4)47 12. 解:(1)分配律;(2)⎪⎭⎫ ⎝⎛-⨯7447;(3)⎪⎭⎫⎝⎛---⨯-4747. 13. 解析:由题意知:种植花草的面积为30×40-1×30-1×40+1×1=1131m 2.14. 解:由题意可得,39.2-2×60÷15×0.2=39.2-120÷15×0.2=39.2-8×0.2=39.2-1.6=37.6. 故答案为:37.6℃. 15.C第2课时1. B2. B3. D4. D5. -196. 07. (1)-18 (2)-15 (3)0 (4)-23 (5)458(6)3115 (7)-8 (8)-288.153 9. B. 解析:节能灯1的总费用为:100×1000÷1000×0.6+1.5=61.5元;节能灯2的总费用为:30×1000÷1000×0.6+14=32元;节能灯3的总费用为:20×5000÷1000×0.6+25=85元.故选B . 10. -32 11. 21-12. 65. 13.314. 解析:因为向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率是(1065.6-1000)÷1000×100%=6.56%,则年利率高于6.56%.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的除法
(30分钟50分) 一、选择题(每小题4分,共12分)
1.(2012·黔西南中考)-11
4
的倒数是( )
A.-5
4B.5
4
C.-4
5
D.4
5
2.如果a与3互为相反数,则1
a
是( )
A.3
B.-3
C.1
3D.-1
3
3.(2012·佛山中考)与2÷3÷4运算结果相同的是( )
A.2÷(3÷4)
B.2÷(3×4)
C.2÷(4÷3)
D.3÷2÷4
二、填空题(每小题4分,共12分)
4.一只手表一周七天的误差是-35秒,平均每天的误差是________秒.
5.计算:-4.2÷13
4
=________.
6.下列说法正确的是:________(只填序号).
①倒数等于本身的数是±1,0;
②0不能做除数;
③绝对值等于本身的数是0;
④相反数等于本身的是±1,0;
⑤0除以任何数都得0.
三、解答题(共26分)
7.(8分)计算:
(1)-27÷3×1
3
×9.
(2)(-5)÷(-12
7)×4
5
×(-21
4
)÷7.
8.(8分)如图是一个“有理数转换器”(箭头是指数进入转换器的路径,方框是对进入的数进行转换的转换器)
(1)当小明输入3,-4,5
9
,-2012这四个数时,这四个数的输出的结果分别是多少?
(2)你认为当输入什么数时,其输出结果是0?
(3)你认为这个“有理数转换器”不可能输出什么数?
【拓展延伸】
9.(10分)有若干个数,第1个数记为a1,第2个数记为a2,第3个数记为
a3,…,第n个数记为a n,若a1=-1
3
,从第二个数起,每个数都等于1与前面那个数的差的倒数.
(1)分别求出a2,a3,a4的值.
(2)计算a1+a2+a3+…+a36的值.
答案解析
1.【解析】选C.-11
4的倒数是-4
5
.
2.【解析】选D.因为a与3互为相反数,所以a=-3,则1
a =1
−3
=-1
3
.
3.【解析】选B.2÷3÷4=2×1
3×1
4
=2
12
=1
6
,2÷(3×4)=2
12
=1
6
,所以2÷3÷4=
2÷(3×4).
4.【解析】因为一周七天的误差是-35秒,所以平均每天的误差为:-35÷7=-5秒.
答案:-5
5.【解析】-4.2÷13
4=-4.2÷7
4
=-4.2×4
7
=-2.4.
答案:-2.4
6.【解析】倒数等于本身的数是±1,故①错误;0不能做除数是正确的,故②正确;绝对值等于本身的数是正数和0,故③错误;相反数等于本身的是0,故④错误;0除以任何非0的数都得0,故⑤错误.
答案:②
7.【解析】(1)原式=-27×1
3×1
3
×9=-27.
(2)原式=-5×7
9×4
5
×9
4
×1
7
=-1.
8.【解析】(1)当输入3时,因为3>2,所以3-5=-2<2,所以-2的相反数是
2>0,2的倒数是1
2,所以当输入3时,输出1
2
;
当输入-4时,因为-4<2,所以-4的相反数是4>0,4的倒数是1
4
,所以当输
入-4时,输出1
4
;
当输入5
9时,因为5
9
<2,所以其相反数是-5
9
,其绝对值是5
9
,所以当输入5
9
时,输
出5
9
;
当输入-2012时,因为-2012<2,所以其相反数是2012>0,其倒数是1
2012
,
所以当输入-2012时,输出1
2012
.
(2)因为输出数为0,0的绝对值均为0,0的相反数也为0,所以应输入0.
(3)由转换器可知输出的各数均为非负数,不可能输出负数.
9.【解析】(1)a2=1
1−(−1
3)
=1
4
3
=3
4
,
a3=1
1−3
4=1
1
4
=4,a4=1
1−4
=-1
3
.
(2)由(1)可知题中给出的是按-1
3,3
4
,4,-1
3
,3
4
,4,…排成的一组数,3个数为一
组,从a1到a36共有12组这样的数,故a1+a2+a3+…+a36=(-1
3+3
4
+4)×12=53.。