近世代数 第23讲
近世代数知识点教学文稿

近世代数知识点近世代数知识点第一章基本概念1.1集合●A的全体子集所组成的集合称为A的幂集,记作2A.1.2映射●证明映射:●单射:元不同,像不同;或者像相同,元相同。
●满射:像集合中每个元素都有原像。
Remark:映射满足结合律!1.3卡氏积与代数运算●{(a,b)∣a∈A,b∈B }此集合称为卡氏积,其中(a,b)为有序元素对,所以一般A*B不等于B*A.●集合到自身的代数运算称为此集合上的代数运算。
1.4等价关系与集合的分类★等价关系:1 自反性:∀a∈A,a a;2 对称性:∀a,b∈R, a b=>b a∈R;3 传递性:∀a,b,c∈R,a b,b c =>a c∈R.Remark:对称+传递≠自反★一个等价关系决定一个分类,反之,一个分类决定一个等价关系★不同的等价类互不相交,一般等价类用[a]表示。
第二章群2.1 半群1.半群=代数运算+结合律,记作(S,)Remark: i.证明代数运算:任意选取集合中的两个元素,让两元素间做此运算,观察运算后的结果是否还在定义的集合中。
ii.若半群中的元素可交换,即a b=b a,则称为交换半群。
2.单位元i.半群中左右单位元不一定都存在,即使存在也可能不唯一,甚至可能都不存在;若都存在,则左单位元=右单位元=单位元。
ii.单位元具有唯一性,且在交换半群中:左单位元=右单位元=单位元。
iii.在有单位元的半群中,规定a0=e.3.逆元i.在有单位元e的半群中,存在b,使得ab=ba=e,则a为可逆元。
ii.逆元具有唯一性,记作a-1且在交换半群中,左逆元=右逆元=可逆元。
iii.若一个元素a既有左逆元a1,又有右逆元a2,则a1=a2,且为a的逆元。
4.子半群i.设S是半群,≠T S,若T对S的运算做成半群,则T为S的一个子半群ii.T是S的子半群a,b T,有ab T2.2 群1.群=半群+单位元+逆元=代数运算+结合律+单位元+逆元Remark:i. 若代数运算满足交换律,则称为交换群或Abel群.ii. 加群=代数运算为加法+交换群iii.单位根群Um={m=1},数域P上全体n阶可逆(满秩)矩阵集合GL(n,P),数域P上全体n阶的行列式为1的矩阵集合SL(n,p).2. 群=代数运算+结合律+左(右)单位元+左(右)逆元=代数运算+结合律+单位元+逆元=代数运算+结合律+∀a,b G,ax=b,ya=b有解3. 群的性质i. 群满足左右消去律ii.设G是群,则∀a,b G,ax=b,ya=b在G中有唯一解iii.e是G单位元⇔ e2=eiv.若G是有限半群,满足左右消去律,则G是一个群4. 群的阶群G的阶,即群G中的元素个数,用表示。
近世代数

子群的指数和拉格朗日定理 当 G 是有限群时, 则子群的阶数与指数也都是有限的, 它们有 以下关系: 定理 2(拉格朗日(Lagrange)) 设G是有限群, H ≤ G, 则 |G| = |H| [G : H]. 由拉格朗日定理立即可得如下推论: (1) 设 G 是有限群, H ≤ G, 则 |H| | |G|. (2) 当 |G|<∞时, 对任何 a∈G 有 o(a) | |G|. (3) 若 |G|= p (素数), 则 G是p 阶循环群, 即素数阶群必为循环群.
子群的指数和拉格朗日定理 关于群中两个有限子群的乘积的元素个数有以下定理. 定理 3 设 G 是群, A, B 是 G 的两个有限子群,则有
| AB |= | A || B | . | A∩ B |
子群的指数和拉格朗日定理 我们可利用拉格朗日定理来确定一个群内可能存在的子群、 元素的阶等, 从而搞清一个群的结构. 以前我们在确定一个群 内的子群时,主要利用元素的生 成子群. 有了拉格朗日定 理, 则首先可由 |G| 的因子来确定可能存在的子群的阶数或元 素的阶数,然后根据子群的阶数来寻找子群. 例 4 确定 S3 中的所有子群. 解 因 |S3|=6, 除平凡子群外, S3中只可能有 2 阶或3 阶子群, 又 因 2 与 3 都是素数, 因而它们都是循环子群, 由 2 阶元和 3 阶 元生成. 故 S3 中全部子群为: H1=1, H2=〈(12)〉, H3=〈(13)〉, H4=〈(23)〉, H5=〈(123)〉, H6=S3.
子群的陪集
陪集有以下性质: (1) aH=H ⇔ a∈H. (2) b∈aH ⇔ aH=bH. 这说明陪集中任何一个元素都可作为代表元. . (3) 两个陪集相等的条件: aH=bH ⇔ a −1b∈H, (Ha=Hb ⇔ ba −1∈H). (4) 对任何 a,b∈G 有 aH=bH 或 aH ∩ bH= ∅. 因而 H 的所有左陪集的集合 {aH | a∈G} 构成 G 的一个划分. 这是因为如果 aH∩bH ≠ ∅, 则存在 x∈aH∩bH, 于是 x=ah1=bh2, 得a −1b=h1h2−1∈H, 由性质(3) 得 aH=bH, 又
大学数学《近世代数》课件

3.推移律:
a bb a
a a,不管a是A的哪一个元。
a b, b c a c
定义:若把一个集合A分成若干个叫做类的子集,使得A的每一个元属于而 且只属于一个类,那么这些类的全体叫做集合A的一个分类。
定理1:集合A的一个分类决定A的元间的一个等价关系。
定理2:集合A 的元间的一个等价关系决定A的一个分类。
III.
,方程 和
在G中都有解。
例1 G={g},乘法规定gg=g, 则G是一个群。
例2 G={全体整数};G中运算为普通加法,则G是一个群。
例3 G={所有非整数},G对于普通乘法不作成一个群。
定义1 同态:S , 与 T , 为两个代数系
统, :S T 为同态映射,若对 a ,b S
有:a b=ab
S , 定义2 同态满射: 与 为两个代数系统 ,
该映射为同态满射, ,
:S T
T , 为同态映射,且为满射,则 同态
S , T ,
定理1 假定,对于代数运算 和 来说, S与T 同态则:
二元代数运算“
”适合结合律和交换律
则 ai S,i 1,2,n, n个元素
a , a ,, a 1 2
n 的乘积仅与这n个元素
有关而与它们的次序无关。
例 仅满足结合律而不满足交换律:
1)矩阵乘法 2)映射的复合运算 3)字符串的复合运算 同时满足结合律与交换律:
1)普通乘法 2)集合的并、交 3)逻辑与、逻辑或 两者均不满足:
[本章主要内容]
1)群、子群及相关性质; 2)置换群、循环群; 3)子群的陪集、正规子群; 4)群的同态;
2.1半群与群的概念
定义1 设“
”时非空集合S上的一个二元
近世代数知识点

近世代数知识点近世代数,又称抽象代数,是数学的一个重要分支,它为许多其他数学领域提供了基础和工具。
下面让我们一起来了解一些近世代数的关键知识点。
首先是群的概念。
群是近世代数中最基本的结构之一。
简单来说,一个群就是一个集合 G 以及定义在这个集合上的一种运算“”,满足一些特定的条件。
比如,对于集合中的任意两个元素 a 和 b,运算的结果ab 仍然属于这个集合;存在一个单位元 e,使得对于任意元素 a,都有ae = ea = a;对于每个元素 a,都存在一个逆元 a^(-1),使得 aa^(-1) = a^(-1)a = e。
群的例子在生活中也有不少,比如整数集合在加法运算下构成一个群。
环也是近世代数中的重要概念。
一个环 R 是一个集合,上面定义了两种运算:加法“+”和乘法“·”。
加法满足交换律、结合律,有零元,每个元素都有相反数;乘法满足结合律;乘法对加法满足分配律。
常见的环有整数环、多项式环等。
接下来是域。
域是一种特殊的环,它要求非零元素对于乘法运算构成一个群。
比如有理数域、实数域和复数域。
同态和同构是近世代数中用来比较不同代数结构的重要工具。
同态是指两个代数结构之间存在一种保持运算的映射。
如果这个映射还是一一对应的,那就是同构。
同构的两个代数结构在本质上可以看作是相同的。
在近世代数中,子群、子环和理想也具有重要地位。
子群是群的一个子集,在原来的运算下也构成群;子环是环的一个子集,在原来的两种运算下也构成环;理想则是环中的一个特殊子集,对于环中的乘法和加法有特定的性质。
再来说说商群和商环。
以商群为例,给定一个群 G 和它的一个正规子群N,就可以构造出商群G/N。
商群中的元素是由N 的陪集构成的。
近世代数中的重要定理也不少。
比如拉格朗日定理,它对于理解群的结构和性质非常有帮助。
该定理指出,子群的阶整除群的阶。
最后,我们谈谈近世代数的应用。
在密码学中,群和环的理论被广泛用于加密和解密算法的设计。
近世代数(抽象代数)课件

· eabc e eabc aaecb bb c e a c cba e
11
CHENLI
§1 代数运算
定义 1.2 设“ ”是非空集合 A 上的一个代数 运算.
意一个二元运算,并将其称为乘法.当 ab c
时, c 称为 a 与 b 的乘积;甚至还将等式 ab c
简写成 ab c .
6
CHENLI
§1 代数运算
例 1 设 R 是实数集.于是,平常的加法“”,减 法“-”和乘法“”都是 R 上的二元运算;除法“”是 R , R \{0}到 R 的代数运算,不是 R 上的二元运算.
明:在不改变元素顺序的前提下,无论怎样在其中添
加括号其中添加括号,这 n 个元素的乘积总等于
n
ai ,
i 1
从而与加括号的方式无关.
23
CHENLI
§1 代数运算
事实上,当 n 1或 n 2 时,无需加括号,我们的结论
自然成立.当 n 3时,由于“ ”适合结合律,我们的结论成
17
CHENLI
§1 代数运算
但是,当“ ”适合结合律时,我们可以定义 A 中任意有限 n ( n 3 )个元素 a1, a2 , , an 的乘积 a1a2 an .这是因为,容易证明,对于 A 中任意 n 个元素 a1, a2 , , an ,只要不改变它们的次序,运 算结果与加括号的方式无关(见习题 2).这样一 来,我们便可定义 a1, a2 , , an 的乘积 a1a2 an 就 是按任意一种方式添加括号后的算出的结果.
2
CHENLI
近世代数引论PPT课件

详细描述
域是一个非空集合,其中定义了两种运算:加法和乘法 ,满足一定的性质。在域中,加法和乘法都是可逆的, 即每个元素都有唯一的加法逆元和乘法逆元。此外,域 中的乘法满足结合律,且每个元素都有乘法单位元。
子域与扩域
环论在几何学中的应用
环论也是近世代数的一个重要分支,它在几何学中也有着广泛的应用。例如,在代数几 何中,环论被用于描述多项式环的结构;在解析几何中,环论也被用于描述函数的性质。
数论中的应用
域论在数论中的应用
域论是近世代数中一个重要的分支,它在数论中有着广泛的应用。例如,在代数数论中,域论被用于描述代数数 的性质;在数论中,域论也被用于研究整数的性质和结构。
分式域与函数域
总结词
分式域和函数域是两种特殊的域,它们在数学和物理 中有广泛的应用。分式域是由其整环的分式组成的域 ,而函数域则是基于函数的定义域和值域形成的域。
详细描述
分式域是由一个整环的分式组成的域。整环是一个只含 有限除数的环,也就是说,如果一个元素在整环中不能 被其他元素整除,则该元素被称为不可约元素。分式环 是由整环中所有分式组成的集合,它构成一个域。函数 域是基于函数的定义域和值域形成的域。具体来说,给 定一个函数f和一个集合D,函数域是由集合D中所有可 能的函数值组成的集合,它也构成一个域。
交叉学科的研究
近世代数与其他学科的交叉研究也是未来的一个重要方向,如 代数几何、代数数论、计算机科学等学科的交叉研究,可以促
进近世代数的发展和应用。
THANKS
感谢观看
环论
环的定义和性质
要点一
总结词
环是具有加法和乘法两种运算的代数系统,满足一定的性 质。
近世代数课堂讲义整理1

近 世 代 数 课 堂 讲 义 整 理 V 1.2
但是 A ∪ B 不一定。 【定义】由包含 A 的所有子半群的交集 Q 称作由 A 生成的子半群,记作 ( A) 。
∩ (A) =
P 即 ( A) 为所有包含 A 的子半群的交。
P⊇A P为S的子半群
理想:
设 (S, ) 为半群, A ⊆ S, A ≠ ∅ ,若 SA ⊆ A ,则 A 为 S 的左理想;若 AS ⊆ A ,则 A 为 S
4.循环群的子群 ①循环群的子群是循环群; ②子群的个数及生成元:
子群的阶能整除群的阶,所以子群的个数为 n 的因子数。 设 G 是循环群,| G |= n ,它的子群为 H ,| H |= (am ) ,则 m | n 。
③若 n 有因子 q ,则 G 必有 q 阶子群;(这个结论对有限交换群(有限阿贝尔群)成立,对
同态(映射)。
【定理】 设 (S, ) 为半群, (T ,∗) 为代数系,若存在满射 ϕ : S → T ,且 ∀x, y ∈ S ,有 ϕ(x y) = ϕ(x) ∗ϕ( y) ,则 (T ,∗) 为半群。 若 (S, ) 为幺半群,条件同上,可以推出 (T ,∗) 为幺半群。
第 3 页共 12 页
3.生成元
第 5 页共 12 页近源自世 代 数 课 堂 讲 义 整 理 V 1.2
⑤ G = (a) ,| G |=| a |= n ,G = (am ) ⇒ m 、n 互质,这个群的生成元有φ(n) 个,其中φ(n) 为欧拉函数,为小于或等于 n 且与 n 互素的正整数个数; ⑥ G = (a) ,| G |=| a |= ∞ ,生成元只有 a 、 a−1 。
ϕ =ϕ γ
其中 γ 为 M 到 M Eϕ 的自然同态; ④ 如果ϕ 是满同态,则 M Eϕ 与 M ' 同构。
近世代数知识点

近世代数知识点第一章基本概念1.1 集合A 的全体子集所组成的集合称为A 的幂集,记作2 A.1.2 映射证明映射:单射:元不同,像不同;或者像相同,元相同。
满射:像集合中每个元素都有原像。
Remark :映射满足结合律!1.3 卡氏积与代数运算{ (a,b ) la € A,b € B }此集合称为卡氏积,其中(a,b )为有序元素对,所以一般A*B不等于B*A.集合到自身的代数运算称为此集合上的代数运算。
1.4 等价关系与集合的分类★等价关系: 1 自反性:? a€ A,a~a;2 对称性:? a,b€ R, a~b=>b ~a€R;3 传递性:? a,b,c€ R,a~b,b ~c =>a ~c€ R.Remark :对称+传递工自反★一个等价关系决定一个分类,反之,一个分类决定一个等价关系★不同的等价类互不相交,一般等价类用[a] 表示。
第二章群2.1 半群1. 半群=代数运算+结合律,记作(S,°)Remark: i. 证明代数运算:任意选取集合中的两个元素,让两元素间做此运算,观察运算后的结果是否还在定义的集合中。
ii. 若半群中的元素可交换,即a°b=b °a, 则称为交换半群。
2. 单位元i. 半群中左右单位元不一定都存在,即使存在也可能不唯一,甚至可能都不存在;若都存在,则左单位元=右单位元=单位元。
ii. 单位元具有唯一性,且在交换半群中:左单位元= 右单位元= 单位元。
iii. 在有单位元的半群中,规定a0=e.3. 逆元i. 在有单位元e 的半群中,存在b, 使得ab=ba=e, 则a 为可逆元。
ii. 逆元具有唯一性,记作a-1且在交换半群中,左逆元=右逆元= 可逆元。
iii. 若一个元素a既有左逆元al,又有右逆元a2,则a1=a2,且为a的逆元。
4. 子半群i. 设S是半群,? T?S若T对S的运算做成半群,贝U T为S的一个子半群ii. T是S的子半群??a,b ET,有ab ET2.2 群1.群=半群+单位元+逆元=代数运算+结合律+单位元+逆元Remark :i. 若代数运算满足交换律,则称为交换群或Abel 群.ii. 加群=代数运算为加法+ 交换群iii. 单位根群Um={ ??€??|?叨=1},数域P上全体n阶可逆(满秩)矩阵集合GL(n,P),数域P上全体n阶的行列式为1的矩阵集合SL(n,p).2. 群=代数运算+结合律+左(右)单位元+左(右)逆元=代数运算+结合律+ 单位元+逆元=代数运算+结合律+ ? a,b €G,ax=b,ya=b 有解3. 群的性质i. 群满足左右消去律ii. 设G是群,则? a,b €G,ax=b,ya=b 在G中有唯一解iii. e 是G 单位元? e2=eiv. 若G是有限半群,满足左右消去律,则G是一个群4. 群的阶群G的阶,即群G中的元素个数,用|??表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 23 讲
§8 剩余类环、同态与理想
(Residue class ring 、homomorphism and ideal)
一. 剩余类环
在前一讲中已知,当I 是环R 的理想时,仅加法而言知R I ,得到加法商群}|]{[R a I R ∈=,(在前一讲中,用记号I a a +=△][)其中群I R 中运算为][][][b a b a +=+其中每个元素a 都叫做I 的一个剩余类环且I b a b a ∈-⇔=][][. 今将说明商加群I R 中可以合理地引入一个乘法并使},,{⋅+I R 做成一环.这个乘法定义为
][][][ab b a =⋅ (或I ab I b I a +=++))(()
定义的合理性:设
][]['a a =且I a a b b ∈-⇔=''].[][且I b b ∈-',I b a a b a ab ∈-=-∴)('',且I b b a b a b a ∈-=-)(''''',()R I ][][''''b a ab I b a ab =⇒∈-⇒∴定义是合理的. 很容易验证},{⋅I R 是一个半群. 同时可以验证},{⋅I R 乘法对加法的左右分配律.故此, },{⋅I R 是一个环.
定义1.设R 为任意一个环.而 I R ,那么},{⋅I R 称作R 关于理想I 的剩余类环(也叫商环或差环),其中I R 中每个元素叫作模I 的剩余类.
例 1.设Z R =为整数环,而使}|6{6Z n n Z I ∈∀==那么]}5[],4[],3[],2[],1[],0{[6==Z I
R ,就是我们已经熟悉的“模6剩余类环”—这是整数的剩余类环.
二.环同态及同态基本定理
定义2.设21:R R →ϕ是一个环同态,那么2R 中零元的完全原象
}0)(|{)0(11=∈=-a R a ϕϕ叫作ϕ的模,通常记ϕϕKer =-)0(1.
定理1.设R R −→−
ϕ是一个环同态满射,令ϕKer I =那么 (ⅰ) I R (ⅱ)R I
R ≅ 证明:(ⅰ)对加法而言,ϕ显然是一个加群满同态,由第二章知 I R . (即I 是R 的不变子群).下面只需证明吸收律也成立即可.
.,R r I k ∈∀∈∀那么.00)()()()(I rk r k r rk ∈⇒===ϕϕϕϕ同理I kr ∈.∴ I R
(ⅱ)由第二章知,存在R I R ≅Φ:.作为群同构,其中.][I
R a ∈∀ ),(])([a a ϕ=Φ下面只需证明:I R b a ∈∀][],[,])([])([])][([b a b a ΦΦ=Φ但
][][)()()(][])][([b a b a ab ab b a ΦΦ===Φ=Φϕϕϕ.
∴ R I R →Φ:是环同构.即R I R ≅Φ
. 定理2.设R 是一个环而 I R ,那么必有环同态I R R →:ϕ.使得ϕ是满同态且模I Ker =ϕ.称这样的ϕ为环的自然同态.
证明:令I R R →:ϕ,其中][)(a a =ϕ,
显然ϕ是个满射.而且R b a ∈∀,.
)()(][][][)(b a b a b a b a ϕϕϕ+=+=+=+
)()(]][[][)(b a b a ab ab ϕϕϕ=== ∴I R R ~.至于I Ker =ϕ是显然的.
注意:上述定理1和定理2通称为环和同态基本定理.同时表明:环R 的任何商环I R 都是R 的同态象.而环R 的任何同态象实质上只能是R 的一个商环.
与群同态类似,我们可以和到一些与第二章中平行的结果. 定理3.设R R →:ϕ是环同态映射,那么
(ⅰ)若S 是R 的子环)(S ϕ⇒是R 的子环
(ⅱ)若I 是R 的理想且ϕ为满射)(I ϕ⇒是R 的理想
(ⅲ)若S 是R 的子环)(1S -⇒ϕ是R 的子环
(ⅳ)若S 是R 的理想)(1S -⇒ϕ是R 的理想
证明: (ⅰ)S b a S b a ∈∃⇒∈∀,)(,ϕ使).(),(b b a a ϕϕ==所以S b a ∈-,于是R S S b a b a b a ≤⇒∈-=-=-)()()()()(ϕϕϕϕϕ.(子群)
另外 ) ( S ab S ab b a b a ∈∈== )()()()(ϕϕϕϕ
∴)(S ϕ是R 的子环.
(ⅱ) I R ,∴I 是R 的子环)()
(I i ϕ⇒是R 的子环.须证明吸收律成立. ϕ是满射
⇒⎪⎪⎭⎪⎪⎬⎫∈∈⇒=∈∃⇒∈∀=∈⇒∈∀I ai I ia IR a a R a R a i i I i I i ,)(,)
()( ϕϕϕ使使 R I I ai i a i a I ia a i a i ????)()()()()()()()()(ϕϕϕϕϕϕϕϕϕ⇒⎪⎭
⎪⎬⎫∈==∈== (ⅲ))(,1s b a -∈∀ϕ ∴S b a ∈)(),(ϕϕ, 而知
S b a b a ∈-)()(),()(ϕϕϕϕ ∴⇒⎪⎭
⎪
⎬⎫∈⇒∈=∈-⇒∈-=---)()()()()()()()(11s ab S b a ab s b a S b a b a ϕϕϕϕϕϕϕϕ )(1s -ϕ是R 的一个子环.
(ⅳ)R r R r S a s a ∈∴∈∀∈⇒∈∀-)(.,)().(1ϕϕϕ R S ,∴S a r S r a ∈∈)()(,)()(ϕϕϕϕ. 于是)()()()()()()()()(111s s ra S a r ra s ar S r a ar ---⇒⎪⎭
⎪⎬⎫∈⇒∈=∈⇒∈=ϕϕϕϕϕϕϕϕϕ 满足吸收律.
又由(ⅲ))(1s -⇒ϕ是R 的子环.于是R s )(1-ϕ. 注意2.从定理3的证明中可知:除了(ⅱ)需要ϕ是满环同态外,其余情况都不需要ϕ是满射这个条件.。