等差数列的前n项和性质及应用

合集下载

等差数列的前n项和的最值及应用

等差数列的前n项和的最值及应用
索引
法二 同法一,求出公差d=-2. 所以an=25+(n-1)×(-2)=-2n+27. 因为a1=25>0, 又由因aann为=+1n=-∈-2Nn2*+(,2n7+≥10),+27≤0得nn≤ ≥11321212, . 所以当n=13时,Sn有最大值,为S13=169.
索引
法三 因为S8=S18,所以a9+a10+…+a18=0. 由等差数列的性质得a13+a14=0. 因为a1>0,所以d<0. 所以a13>0,a14<0.所以当n=13时,Sn有最大值. 由a13+a14=0,得a1+12d+a1+13d=0,又a1=25, 解得d=-2, 所以 S13=13×25+13×2 12×(-2)=169, 所以 Sn 的最大值为 169.
TUO ZHAN YAN SHEN FEN CENG JING LIAN HE XING SU YANG DA CHENG
一、基础达标
1.已知数列{an}满足an=26-2n,则使其前n项和Sn取最大值的n的值为( D )
A.11或12
B.12
C.13
D.12或13
解析 ∵an=26-2n,∴an-an-1=-2, ∴数列{an}为等差数列. 又 a1=24,d=-2, ∴Sn=24n+n(n2-1)×(-2)=-n2+25n=-n-2252+6425. ∵n∈N*,∴当 n=12 或 13 时,Sn 最大.
索引
3.做一做 《张邱建算经》卷上第22题为:今有女善织,日益功疾,且从第2天 起,每天比前一天多织相同量的布,若第1天织5尺布,现在一月(按30天 16
计)共织390尺布,则每天比前一天多织___2_9____尺布(不作近似计算). 解析 由题意知,该女每天的织布尺数构成等差数列{an},其中 a1=5,S30=390, 设其公差为 d,则 S30=30×5+30×2 29d=390,解得 d=1269.故该女子织布每天增 加1269尺.

等差数列前n项和的性质及应用

等差数列前n项和的性质及应用

密码学:等差数列 前n项和公式可用于 设计密码算法和加 密方案
计算机图形学:等差数 列前n项和公式可用于 生成等差数列曲线,用 于计算机图形学中的渲 染和动画制作
定义:等差数 列中,任意两 项的差为常数
公式: Sn=n/2*(a1+a
n)
推导:利用等 差数列的定义, 将前n项和展开,
得到 Sn=na1+n(n-
算法优化:通过减少重复计算和利用已知值来加速计算过程,从而提高了算法的效率。
应用场景:等差数列前n项和的优化算法在数学、物理、工程等领域有广泛的应用, 尤其在处理大规模数据时具有显著优势。
计算等差数列前n项和的最小 值
求解等差数列中项的近似值
判断等差数列是否存在特定性 质
优化等差数列前n项和的计算 过程
,a click to unlimited possibilities
汇报人:
01
02
03
04
05
06
等差数列前n项和 是数列中前n个数 的和,记作Sn。
等差数列前n项和的 公式为:Sn = n/2 * (a1 + an),其中a1为 首项,an为第n项。
等差数列前n项和 的性质包括对称性、 奇偶性、线性关系 等。
等差数列前n项和的定义:一个数列, 从第二项起,每一项与它的前一项的 差都等于同一个常数,这个数列就叫 做等差数列。
等差数列前n项和的性质1:若 m+n=p+q,则S_m+S_n=S_p+S_q。
添加标题
添加标题
添加标题
添加标题
等差数列前n项和的公式: S_n=n/2*(2a_1+(n-1)d),其中a_1 是首项,d是公差。

等差数列的性质及应用

等差数列的性质及应用

等差数列的性质及应用等差数列是指数列中相邻项之间的差值保持不变的数列。

它是数学中常见且重要的数列类型之一,在数学及其他领域都有着广泛的应用。

本文将探讨等差数列的性质及其在实际问题中的应用。

一、等差数列的定义与性质1. 定义:等差数列可以定义为一个数列,其中每一项与它的前一项之差等于一个常数d,称为等差数列的公差。

2. 通项公式:假设等差数列的首项为a₁,公差为d,则第n项可以表示为an = a₁ + (n-1)d。

3. 求和公式:假设等差数列的首项为a₁,末项为an,项数为n,则等差数列的和可以表示为Sn = (a₁ + an) * n / 2。

二、等差数列的应用1. 数学问题中的应用:等差数列在数学问题中经常出现。

例如,找出等差数列中的特定项、求等差数列的和等都可以通过等差数列的性质与公式进行解决。

2. 自然科学中的应用:等差数列在自然科学中也有着广泛的应用。

例如,物理学中的匀速直线运动、化学中的反应速率等都可以建立在等差数列的基础上,通过分析数值变化的规律来求解实际问题。

3. 经济学与金融学中的应用:等差数列在经济学与金融学中也有着重要的应用。

例如,研究某种商品价格的变化、计算贷款利息等都可以运用等差数列的概念。

三、实际问题中的等差数列应用举例1. 降雨量分析:假设某地区每年的降雨量以等差数列的形式增长,首年降雨量为100毫米,公差为10毫米。

求第5年的降雨量。

解答:根据等差数列的通项公式,第5年的降雨量可以表示为a₅ = a₁ + (5-1)d = 100 + 4*10 = 140毫米。

2. 平均成绩计算:某学生连续4次数学考试的成绩构成等差数列,首次考试得了80分,公差为4分。

求这4次考试的平均分。

解答:根据等差数列的求和公式,这4次考试的总分为S₄ = (80 +a₄) * 4 / 2,其中a₄为最后一次考试的成绩。

平均分可以表示为S₄ / 4,即(80 + a₄) * 2。

由此可得,平均分为(80 + a₄) * 2 / 4。

等差数列前n项和Sn的性质应用

等差数列前n项和Sn的性质应用


nn 1
2
d,
Sn n

d 2
n


a1

d 2
.


Sn n
为等差数列.

又Q12,20成,2等8 差数列,

S12 12
,
S20 20
,
S28 28
成等差数列,
2 S20 S12 S28 , 20 12 28
即2 460 84 S28 ,
(2)前20项中,奇数项和
S奇
=
1 3

75=25,
偶数项和
S偶=
2 3
75=50,
又S偶 S奇=10d,
d 50 25 2.5 10
小结
等差数列前n项和Sn的性质应用
等差数列an 中
性质1.
sm,s2m sm,s3仍m 为 s等2m差,K数列,
公差为 m2d.
性质2.
例3 项数为奇数的等差数列,奇数项之和为44,偶数
项之和为33,求这个数列的中间项及项数.
设数列共有2n 项1 ,则 S奇 a1 a3 a5 L a2n1, S偶 a2 a4 a6 L a2n ,
S奇 S偶
a1 a3 a2 a5 a4 L a2n1 a2n
a21 a22 a23 a24 a25
S5 5 1 S10 S5Байду номын сангаас S5
15 4 20 15 15
25
例2
等差数列an前 项n和为
求 s28.
,若sn
S12 84,S20 =460,

等差数列前n项和公式的几个性质和与应用 (3)

等差数列前n项和公式的几个性质和与应用 (3)

等差数列前n项和公式的几个性质和与应用性质1:设等差数列{}n a的前n项和公式和为n S,公差为d,*m∈n.N则①()dm n m S n S m N -=-21②()mnd S S S S nm n m S n m n m n m ++=--+=+性质2:设等差数列{}n a 的前n 项和公式和为n S ,*..N k n m ∈,若k n m ..成等差数列,则k S n S m S knm,,成等差数列性质3:设等差数列{}n a 的前n 项和公式和为n S ,*....N n m q p ∈,若n m q p +=+,则qp S S n m S S qp n m --=--性质4:设等差数列{}na 的前n 项和公式和为k S①当()*2N k k n ∈=时,()12++=k k k a a k S ②当()*12N k k n ∈-=时,()121212---=k k a k S例1:如果等差数列{}n a 的前4项和是2,前9项和是-6,求其前n 项和公式。

解1:由性质1得:()()⎪⎪⎩⎪⎪⎨⎧-=--=-d n S nS d S S n 4214492149449 ()()21将9,294-==S S 代入()()2,1得:nn S n 30433072+-=解2:求1a ,d.例2:设n S 是等差数列{}n a 的前n项和,已知331S 和441S 的等比中项为551S ,331S 和441S 的等差中项为1,求等差数列{}na 的通项公式n a 。

解1:由性质1和题意知,()()⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=+=-=-d d S S S S d d S S 2145214523421342134453434)3()2()1( 解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=-=d S dS d S 431541144113543又3453425S S S ⋅=⎪⎭⎫⎝⎛,即⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+d d d 4114114312,∴5120-==d d 或当d=0时,33=S ,∴*,1N n a n ∈= 当512-=d 时,52435124113=⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=S又da S 223313⨯+=,即524512331=⎪⎭⎫ ⎝⎛-+a ,∴41=a故()*,512153251214N n n n a n ∈-=⎪⎭⎫ ⎝⎛--+=例3:一等差数列前4项和是24,前5项和的差是27,求这个等差数列的通项公式。

等差数列的前n项和的性质及应用 课件高二数学人教A版(2019)选择性必修第二册

等差数列的前n项和的性质及应用 课件高二数学人教A版(2019)选择性必修第二册

;

.
偶 -

(3)设 Sn,S′n 分别为等差数列{an},{bn}的前 n 项和,则 =
-

-
.

(4)数列{an}是等差数列⇔Sn=an +bn(a,b 为常数)⇔数列{ }为等差数列.
2

( + ) ( +-+ )
(5)Sn=

=

取何值时Sn有最大值?并求出最大值.
解:因为 S9=S18,a1=26,
所以 9×26+
×(-)
×(-)


d=18×26+d, Nhomakorabea解得 d=-2.
所以 Sn=26n+

2
(-)


=-(n- ) +

2
×(-2)=-n +27n

*
,所以当 n= 时,Sn 有最大值,又 n∈N ,

(3)已知{an},{bn}均为等差数列,其前 n 项和分别为 Sn,Tn,且 = + ,则 =

.
解析:(3)由等差数列的性质,知


=
+

+

+
×

+
×

=

答案:(3)

×+
= =

+
= .

方法总结
公差为d的等差数列{an}的前n项和Sn的常用性质小结
所以(a5+a6)-(a3+a4)=(a3+a4)-(a1+a2)=4d,

等差数列的前n项和公式的性质及应用 课件

等差数列的前n项和公式的性质及应用    课件

因为 S2k=2ka1+12×2k(2k-1)d=8a1+42,
所以 8a1+42=54,故 a1=32,
所以此数列的首项是32,公差是32,项数为 8.
法二:设此数列的首项为 a1,公差为 d,项数为 2k(k∈N*),
S奇=24, 根据题意,得S偶=30,
a2k-a1=221,
12ka1+a2k-1=24, 即12ka2+a2k=30,
和 30,最后一项与第一项之差为221,求此数列的首项、公差以及项数. [解析] 法一:设此数列的首项为 a1,公差为 d,项数为 2k(k∈N*),
S奇=24, 由已知得S偶=30,
a2k-a1=221,
S偶-S奇=6, 所以a2k-a1=221,
kd=6,
k=4,
即2k-1d=221, 解得d=32.
②若项数为 2n-1,则 S2n-1=(2n-1)an(an 为中间项)且 S 奇-S 偶= an , n-1
SS偶 奇=___n____.
(3)若 Sn 为数列{an}的前 n 项和,则{an}为等差数列等价于Snn是等差 数列. (4)若{an}、{bn}都为等差数列,Sn、Sn′为它们的前 n 项和,则abmm= SS′2m2- m1-1. (5)项数(下标)的“等和”性质: Sn=na12+an=nam+2an-m+1.
()
A.130
B.65
C.70
D.以上都不对
解析:S13=a1+2 a13×13=a5+2 a9×13=130.
答案:A
3.已知某等差数列共 20 项,其所有项和为 75,偶数项和为 25,则
公差为( )
A.5
B.-5
C.-2.5
D.2.5

等差数列前n项和的性质与应用

等差数列前n项和的性质与应用

等差数列前n 项和的性质与应用一、等差数列前n 项和性质的应用1.等差数列{a n }的前n 项和为S n ,若S 2=2,S 4=10,则S 6等于( )A .12B .18C .24D .42答案:C解析:S 2,S 4-S 2,S 6-S 4成等差数列,即2,8,S 6-10成等差数列,S 6=24.2.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( ) A .5 B .4 C .3 D .2答案:C解析:由题意得S 偶-S 奇=5d=15,∴d=3.或由解方程组{5a 1+20d =15,5a 1+25d =30求得d=3,故选C .3.等差数列{a n }的前n 项和为S n ,a 1=-2 015,S 2 0152 015−S 2 0132 013=2,则S 2 015=( )A.2 015B.-2 015C.0D.1答案:B解析:由等差数列前n 项和性质可知,数列{S n n}是等差数列,设公差为d ,则S 2 0152 015−S 2 0132 013=2d=2,所以d=1.所以S 2 0152 015=S 11+2 014d=-2 015+2 014=-1,所以S 2 015=-2 015.二、等差数列前n 项和中的最值问题4.设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题中错误的是( )A.若d<0,则数列{S n }有最大项B.若数列{S n }有最大项,则d<0C.若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0D.若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列 答案:C解析:由等差数列的前n 项和公式S n =na 1+12n (n-1)d=d2n 2+(a 1-d2)n 知,S n 对应的二次函数有最大值时d<0.故若d<0,则S n 有最大值,A,B 正确.又若对任意n ∈N *,S n >0,则a 1>0,d>0,{S n }必为递增数列,D 正确. 而对于C 项,令S n =n 2-2n ,则数列{S n }递增,但S 1=-1<0.C 不正确. 5.(课时训练河南南阳高二期中,10)已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使得S n >0的n 的最大值为( ) A.21 B.20 C.19 D.18答案:C 解析:由a 11a 10<-1,可得a 11+a 10a 10<0,由它们的前n 项和S n 有最大值可得数列的公差d<0,∴a 10>0,a 11+a 10<0,a 11<0,∴a 1+a 19=2a 10>0,a 1+a 20=a 11+a 10<0.∴使得S n>0的n的最大值n=19.故选C.6.设数列{a n}为等差数列,其前n项和为S n,已知a1+a4+a7=99,a2+a5+a8=93,若对任意n∈N*,都有S n≤S k成立,则k的值为()A.22B.21C.20D.19答案:C解析:对任意n∈N*,都有S n≤S k成立,即S k为S n的最大值.因为a1+a4+a7=99,a2+a5+a8=93,所以a4=33,a5=31,故公差d=-2,a n=a4+(n-4)d=41-2n,则n=1时,a1=39,所以S n=d2n2+(a1-d2)n=-n2+40n=-(n-20)2+400,即当n=20时S n取得最大值,从而满足对任意n∈N*,都有S n≤S k成立的k的值为20.7.设等差数列{a n}的前n项和为S n,且S2 014>0,S2 015<0,则当n=时,S n最大.答案:1 007解析:由等差数列的性质知,S2 015=2 015a1 008<0,所以a1 008<0.又S2 014=2014(a1+a2014)2=1 007(a1 007+a1 008)>0,所以a1 007+a1 008>0,而a1 008<0,故a1 007>0.因此当n=1 007时,S n最大.8.已知数列{a n},a n∈N*,前n项和S n=1(a n+2)2.8(1)求证:{a n}是等差数列;(2)设b n=1a n-30,求数列{b n}的前n项和的最小值.2(1)证明:由已知得8S n=(a n+2)2,则8S n-1=(a n-1+2)2(n≥2),两式相减,得8a n=(a n+2)2-(a n-1+2)2,即(a n+a n-1)(a n-a n-1-4)=0.因为a n∈N*,所以a n+a n-1>0,所以a n-a n-1=4(n≥2),故数列{a n}是以4为公差的等差数列.(a1+2)2,解得a1=2.(2)解:令n=1,得S1=a1=18由(1)知a n=2+(n-1)×4=4n-2,a n-30=2n-31.所以b n=12,由b n=2n-31<0,得n<312即数列{b n}的前15项为负值,n≥16时b n>0.设数列{b n}的前n项和为T n,×2=-225.则T15最小,其值为T15=15×(-29)+15×142三、与数列{|a n|}前n项和有关的问题9.已知数列{a n }的通项公式a n =5-n ,则当|a 1|+|a 2|+…+|a n |=16时,n= . 答案:8解析:由a n =5-n ,可得n<5时,a n >0;n=5时,a 5=0; n>5时,a n <0, 而a 1+a 2+…+a 5=10,∴|a 1|+|a 2|+…+|a n |=(a 1+a 2+…+a 5)-(a 6+a 7+…+a n )=16. ∴20+n 2-9n 2=16,解得n=8.10.在公差为d 的等差数列{a n }中,已知a 1=10,且5a 3·a 1=(2a 2+2)2. (1)求d ,a n ;(2)若d<0,求|a 1|+|a 2|+|a 3|+…+|a n |.解:(1)因为5a 3·a 1=(2a 2+2)2,所以d 2-3d-4=0,解得d=-1或d=4.故a n =-n+11或a n =4n+6.(2)设数列{a n }的前n 项和为S n . 因为d<0,所以由(1)得d=-1,a n =-n+11.则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n ;当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n+110.综上所述,|a1|+|a2|+|a3|+…+|a n|={-12n2+212n,n≤11,12n2-212n+110,n≥12.(建议用时:30分钟)1.若等差数列{a n}的前3项和S3=9,则a2等于()A.3B.4C.5D.6答案:A解析:S3=3(a1+a3)2=9,∴a1+a3=2a2=6.∴a2=3.故选A.2.设{a n}是公差为-2的等差数列,如果a1+a4+…+a97=50,那么a3+a6+a9+…+a99等于()A.-182B.-78C.-148D.-82答案:D解析:由a1+a4+a7+…+a97=50, ①令a3+a6+a9+…+a99=x, ②②-①得2d×33=x-50,而d=-2,∴x=-132+50=-82.故选D.3.等差数列{a n}的前n项和记为S n,若a2+a4+a15的值为确定的常数,则下列各数中也是常数的是()A.S7B.S8C.S13D.S15答案:C解析:a2+a4+a15=a1+d+a1+3d+a1+14d =3(a1+6d)=3a7=3×a1+a132=313×13(a1+a13)2=313S13.于是可知S13是常数.4.设{a n}为等差数列,a1>0,a6+a7>0,a6·a7<0,则使其前n项和S n>0成立的最大自然数n是()A.11B.12C.13D.14答案:B解析:∵a6+a7=a1+a12,∴S12=12(a1+a12)2=6(a6+a7)>0.由已知得a6>0,a7<0,又S13=13a7<0,∴使S n>0成立的最大自然数n为12,故选B.5.已知等差数列{a n}的前n项和为S n,若S n=1,S3n-S n=5,则S4n=()A.4B.6C.10D.15答案:C解析:由S n,S2n-S n,S3n-S2n,S4n-S3n成等差数列,设公差为d,则S2n-S n=S n+d,S3n-S2n=S n+2d.∴S3n-S n=2S n+3d=5.又∵S n=1,∴d=1.∴S4n=S n+(S2n-S n)+(S3n-S2n)+(S4n-S3n)=1+2+3+4=10.6.等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k= . 答案:10解析:S 9=S 4,∴a 5+a 6+a 7+a 8+a 9=0,∴a 7=0,从而a 4+a 10=2a 7=0,∴k=10.7.等差数列前12项和为354,在前12项中的偶数项的和与奇数项的和之比为32∶27,则公差d= . 答案:5解析:由已知{S 奇+S 偶=354,S 偶S 奇=3227,解得{S 偶=192,S 奇=162.又∵此等差数列共12项,∴S 偶-S 奇=6d=30.∴d=5.8.等差数列{a n }与{b n },它们的前n 项和分别为A n ,B n ,若A nB n=2n -2n+3,则a 5b 5= .答案:43解析:a 5b 5=9a 59b 5=A 9B 9=2×9-29+3=43.9.在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 有最大值,并求出它的最大值.解:设等差数列{a n }的公差为d ,∵a 1=20,S 10=S 15,∴10a 1+10×92d=15a 1+15×142d.解得d=-53.解法一:由以上得a n =20-53(n-1)=-53n+653.由a n ≥0得-53n+653≥0,∴n ≤13.所以数列前12项或前13项的和最大,其最大值为S 12=S 13=12a 1+12×112d=130.解法二:由以上得S n =20n+n (n -1)2×(-53)=-56n 2+56n+20n=-56n 2+1256n=-56(n 2-25n )=-56(n -252)2+3 12524.∴当n=12或13时,S n 最大,最大值为S 12=S 13=130.10.等差数列{a n }中,a 1=-60,a 17=-12,求数列{|a n |}的前n 项和. 解:等差数列{a n }的公差d=a 17-a 117-1=-12-(-60)16=3,∴a n =a 1+(n-1)d=-60+(n-1)×3=3n-63.由a n <0,得3n-63<0,即n<21.∴数列{a n }的前20项是负数,第20项以后的项都为非负数.设S n ,S n '分别表示数列{a n },{|a n |}的前n 项和, 当n ≤20时,S n '=-S n =-[-60n +n (n -1)2×3]=-32n 2+1232n ;当n>20时,S n '=-S 20+(S n -S 20)=S n -2S 20 =-60n+n (n -1)2×3-2×(-60×20+20×192×3)=32n 2-1232n+1 260. ∴数列{|a n |}的前n 项和为S n '={-32n 2+1232n (n ≤20),32n 2-1232n +1 260(n >20).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列的前n项的最值问题
例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值.
解法3 由S3=S11得 d=-2
∴ an=13+(n-1) ×(-2)=-2n+15

aann1
0
0

n n
15 2 13 2
∴当n=7时,Sn取最大值49.
等差数列的前n项的最值问题
求等差数列前n项的最大(小)的方法
方法1:由Sn
d 2
n2
(a1
d 2
)n利用二次函
数的对称轴求得最值及取得最值时的n的值.
方法2:利用an的符号①当a1>0,d<0时,数列 前面有若干项为正,此时所有正项的和为
Sn的最大值,其n的值由an≥0且an+1≤0求得. ②当a1<0,d>0时,数列前面有若干项为负, 此时所有负项的和为Sn的最小值,其n的值
等差数列的前n项的最值问题
例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值.
解法1 由S3=S11得
313 1 3 2 d 1113 1 1110 d
2
2
∴ d=-2
1 Sn 13n 2 n(n 1) (2)
n2 14n (n 7)2 49
由an ≤0且an+1 ≥ 0求得.
练习:已知数列{an}的通项为an=26-2n, 要使此数列的前n项和最大,则n的值为
( C)
A.12 B.13 C.12或13 D.14
2.等差数列{an}前n项和的性质
在等差数列{an}中,其前n项的和为Sn,则有
性质1:Sn,S2n-Sn,S3n-S2n, …也在等差数列, 公差为 n2d
1.根据等差数列前n项和,求通项公式.
an
a1
Sn
Sn1
n1 n2
2、结合二次函数图象和性质求
S3=9,S6=36,则a7+a8+a9=( B)
A.63 B.45 C.36 D.27
例2.在等差数列{an}中,已知公差d=1/2,且
a1+a3+a5+…+a99=60,a2+a4+a6+…+a100=A( )
A.85 B.145 C.110 D.90
等差数列{an}前n项和的性质的应用
例3.一个等差数列的前10项的和为100, 前100项的和为10,则它的前110项的和 为 -110 .

1
n(12 2d ) n(n 1)d
2
d n2 (12 5d )n
2
2 5 12
∴Sn图象的对称轴为 n
由(1)知 24 7
d
3
2d
∴Sn有最大值.
由上得 6 5 12 13 即 6 n 13
2d 2
2
由于n为正整数,所以当n=6时Sn有最大值.
练习1
已知等差数列25,21,19, …的前n项和 为Sn,求使得Sn最大的序号n的值.
练习2:
求集合 M {mm 2n 1,n N,m 60}
的元素个数,并求这些元素的和.
练习3:已知在等差数列{an}中,a10=23, a25=-22 ,Sn为其前n项和.
(1)问该数列从第几项开始为负?
(2)求S10 (3)求使 Sn<0的最小的正整数n.
(4) 求|a1|+|a2|+|a3|+…+|a20|的值
∴当n=7时,Sn取最大值49.
等差数列的前n项的最值问题
例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值.
解法2 由S3=S11得 d=-2<0
则Sn的图象如图所示
Sn
又S3=S11
所以图象的对称轴为
3 11
n
n
7
2
3 7 11
∴当n=7时,Sn取最大值49.
S2n-1=(2n- 1)an (an为中间项),
性此质时5:有{ S:Sn偶} -为S等奇差= a数n 列, .SS奇 偶
n
n1
n
两等差数列前n项和与通项的关系
性质6:若数列{an}与{bn}都是等差数列,且
前n项的和分别为Sn和Tn,则
an bn
S2n1 T2 n 1
3.等差数列{an}前n项和的性质的应用 例1.设等差数列{an}的前n项和为Sn,若
例4.两等差数列{an} 、{bn}的前n项和分
别是Sn和Tn,且 Sn 7n 1
求 a5 和 an
b5
bn
.
Tn 4n 27
a5 64 an 14n 6 b5 63 bn 8n 23
等差数列{an}前n项和的性质的应用
例5.一个等差数列的前12项的和为354, 其中项数为偶数的项的和与项数为奇数
性质2:若Sm=p,Sp=m(m≠p),则Sm+p= - (m+p)
性质3:若Sm=Sp (m≠p),则 Sp+m= 0
性质4:(1)若项数为偶数2n,则
S2n=n(a1+a2n)=n(an+an+1) (an,an+1为中
间两项), 此时有:S偶-S奇= nd
,
S奇 S偶
an an1
性质4:(1)若项数为奇数2n-1,则
复习回顾
等差数列的前n项和公式:
形式1:
Sn
n(a1 2
an )
形式2:
Sn
na1
n(n 2
1)
d
1.将等差数列前n项和公式
n(n 1)d 看作是一Sn个关n于a1n的 函数2,这个函数
有什么特点?
Sn
d 2
n2
(a1
d 2
)n

A
d 2
,
B
a1
d 2

Sn=An2+Bn
当d≠0时,Sn是常数项为零的二次函数
的项的和之比为32:27,则公差为 5 .
例6.(09宁夏)等差数列{an}的前n项的和 为Sn,已知am-1+am+1-am2=0,S2m-1=38,则
m= 10 .
例7.设数列{an}的通项公式为an=2n-7,
则|a1|+|a2|+|a3|+……+|a15|= 153 .
等差数列{an}前n项和的性质
例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值.
解法4 由S3=S11得
a4+a5+a6+……+a11=0 而 a4+a11=a5+a10=a6+a9=a7+a8
∴a7+a8=0 又d=-2<0,a1=13>0
∴a7>0,a8<0
∴当n=7时,Sn取最大值49.
例8.设等差数列的前n项和为Sn,已知
a3=12,S12>0,S13<0. (1)求公差d的取值范围;
(2)指出数列{Sn}中数值最大的项,并说明
理由.
a1+2d=12
解:(1)由已知得 12a1+6×11d>0
13a1+13×6d<0
24 d 3 7
(2)

Sn
na1
1 2
n(n 1)d
相关文档
最新文档