九年级上课外辅导第十九课时讲义(二次函数复习)
初三二次函数辅导讲义

一、基础知识讲解+中考考点、例题分析考点1:二次函数的图象和性质 一、考点讲解:1.二次函数的定义:形如c bx ax y ++=2(a ≠0,a ,b ,c 为常数)的函数为二次函数.2.二次函数的图象及性质: ⑴ 二次函数y=ax 2 (a ≠0);当a >0时,抛物线开口向上,顶点是最低点;当a <0时,抛物线开口向下,顶点是最高点;a 越小,抛物线开口越大.y=a(x -h)2+k 的对称轴是x=h ,顶点坐标是(h ,k )。
⑵ 二次函数c bx ax y ++=2,顶点为(-2b a ,244ac b a -),对称轴x=-2b a;当a >0时,抛物线开口向上,图象有最低点,且x >-2b a ,y 随x 的增大而增大,x <-2ba,y 随x 的增大而减小;当a <0时,抛物线开口向下,图象有最高点,且x >-2b a ,y 随x 的增大而减小,x <-2ba,y 随x 的增大而增大.解题小诀窍:二次函数上两点坐标为(y x ,1),(y x ,2),即两点纵坐标相等,则其对称轴为直线221x x x +=。
3.图象的平移:二次函数y=ax 2 与y =-ax 2 的图像关于x 轴对称。
平移的简记口诀是“上加下减,左加右减”。
一、经典考题剖析:【考题1】在平面直角坐标系内,如果将抛物线22x y =向右平移2个单位,向下平移3个单位,平移后二次函数的关系式是()A.3)2(22+-=x y B.3)2(22++=x y C.3)2(22-+=x y D.3)2(22--=x y2.二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( ) A . 4=x B. 3=x C. 5-=x D. 1-=x4.已知二次函数c bx ax y ++=21(a ≠0)与一次函数y 2=kx+m(k ≠0)的图象相交于点A (-2,4),B(8,2),如图1-2-7所示,能使y 1>y 2成立的x 取值范围是_______5.已知直线y=x 与二次函数y=ax 2 -2x -1的图象的一个交点 M 的横标为1,则a 的值为( ) A 、2 B 、1 C 、3 D 、 4 6.已知反比例函数y= kx 的图象在每个象限内y 随x 的增大而增大,则二次函数y=2kx 2 -x+k 2的图象大致为图1-2-3中的( )7、读材料:当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线22221y x mx m m =-++-①,有y=2()21x m m -+-②,所以抛物线的顶点坐标为(m ,2m -1),即⎩⎨⎧-==12,m y m x ③④。
九年级数学上册二次函数讲义

初三数学 二次函数讲义一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的在联系:二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少2-32y=-2x 2y=3(x+4)22y=3x 2y=-2(x-3)二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
人教版九年级数学上册二次函数复习讲义

二次函数复习讲义知识点1:二次函数的定义一般地,如果是常数,,那么叫做的 .细节剖析如果y=ax2+bx+c(a,b,c 是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为,也可以同时都为.a 的绝对值,抛物线的开口 .知识点2:二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴) (0,0)(轴) (0,)(,0)(,)()2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的:当时,开口;当时,开口;相等,抛物线的相同.(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线20()y ax bx c a =++≠中,,,a b c 的作用: (1)决定 ,这与中的完全一样.(2)和共同决定抛物线 .由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即 、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点 :①,抛物线经过原点; ②,与轴交于 ;③,与轴交于 .以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式: (1)一般式:(a ≠0).已知图象上三点或三对、的值,通常选择(2)顶点式:(a ≠0).已知图象的顶点或对称轴,通常选择(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用(a ≠0).(由此得根与系数的关系:).细节剖析求抛物线2y ax bx c =++(a ≠0)的对称轴和顶点坐标通常用三种方法: ,这三种方法都有各自的优缺点,应根据实际灵活选择和运用. 知识点3:二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的 ,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个 ;(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有;(3)当二次函数的图象与x轴没有交点,这时,则方程 .通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解细节剖析二次函数图象与x轴的交点的个数由的值来确定.(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个;(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有;(3)当二次函数的图象与x轴没有交点,这时,则方程 .知识点4:利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的;(2)把实际问题中的一些数据与点的联系起来;(3)用待定系数法求出;(4)利用二次函数的图象及其性质去细节剖析常见的问题:求最大(小)值(如求、最大、最小等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的考点1:二次函数的图象【例题1】(2020•青岛模拟)如图,0a <,0b >,0c <,那么二次函数2y ax bx c =++的图象可能是()A .B .C .D .【变式1-1】(2019•海曙区一模)在坐标平面内,以x 轴上的1个单位长为底边按一定规律向上画矩形条.现已知其中几个矩形条的位置如图,其相应信息如表 单位底位置 ⋯3~2-- 2~1-- 1~0- 0~1 1~2 2~3 3~4⋯矩形条高⋯1⋯ ⋯3.5⋯ ⋯15⋯若所有矩形条的左上顶点都在我们已学的某类函数图象上.(1)根据所给信息,直接写出这个函数图象上的三个点的坐标 . (2)求这个函数解析式;(3)若在坐标平面内画出所有这样依次排列的矩形条,求这些矩形条中面积最小矩形条的面积.考点2:二次函数的性质【例题2】(2020秋•福清市期中)抛物线2(4)3y x =--的顶点坐标是( ) A .(4,3)-B .(4,3)--C .(4,3)D .(4,3)-【变式2-1】(2019秋•鄄城县期末)已知:二次函数为2y x x m =-+, (1)写出它的图象的开口方向,对称轴及顶点坐标; (2)m 为何值时,顶点在x 轴上方;(3)若抛物线与y 轴交于A ,过A 作//AB x 轴交抛物线于另一点B ,当4AOB S ∆=时,求此二次函数的解析式.考点3:二次函数图象与系数的关系【例题3】(2020•田家庵区校级自主招生)二次函数2y ax bx c =++的图象如图所示,下列结论:(1)2b a <;(2)0a c b +->;(3)b c a >>;(4)223b ac ab +<.其中正确结论的个数是( )A .1B .2C .3D .4【变式3-1】(2017秋•西城区校级期中)在平面直角坐标系xOy 中, 抛物线2444(0)y ax ax a a =++-≠的顶点为A . (1) 求顶点A 的坐标;(2) 过点(0,5)且平行于x 轴的直线l ,与抛物线2444(0)y ax ax a =++-≠交于B 、C 两点 . ①当1a =时, 求线段BC 的长;②当线段BC 的长不小于 8 时, 直接写出a 的取值范围 .考点4:二次函数图象上点的坐标特征【例题4】(2020•河北)如图,现要在抛物线(4)y x x =-上找点(,)P a b ,针对b 的不同取值,所找点P 的个数,三人的说法如下,甲:若5b =,则点P 的个数为0; 乙:若4b =,则点P 的个数为1; 丙:若3b =,则点P 的个数为1. 下列判断正确的是( )A .乙错,丙对B .甲和乙都错C .乙对,丙错D .甲错,丙对【变式4-1】(2020•周村区一模)如图,过函数2(0)y ax a =>图象上的点B ,分别向两条坐标轴引垂线,垂足分别为A ,C .线段AC 与抛物线的交点为D ,则ADAC的值为 .【变式4-2】(2020•温州)已知抛物线21y ax bx =++经过点(1,2)-,(2,13)-. (1)求a ,b 的值.(2)若1(5,)y ,2(,)m y 是抛物线上不同的两点,且2112y y =-,求m 的值.考点5:二次函数图象与几何变换【例题5】(2020•陕西)在平面直角坐标系中,将抛物线2(1)(1)y x m x m m =--+>沿y 轴向下平移3个单位.则平移后得到的抛物线的顶点一定在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【变式5-1】(2020秋•广陵区校级期中)把二次函数2y ax =的图象向左平移1个单位后经过点(0,2),所得到的抛物线解析式是 .考点6:二次函数的最值【例题6】(2020•泉州模拟)二次函数2y x px q =++,当01x 时,此函数最大值与最小值的差( ) A .与p 、q 的值都有关 B .与p 无关,但与q 有关C .与p 、q 的值都无关D .与p 有关,但与q 无关【变式6-1】(2020•碑林区校级模拟)如图,已知正方形ABCD 的边长为8,点E 、F 分别在边AD 、BC 上,3AE CF ==,点G 、H 在正方形ABCD 的内部或边上,若四边形EGFH 是菱形,则菱形EGFH 的最大面积为 .考点7:待定系数法求二次函数解析式【例题7】(2020•昌图县校级一模)如图,是一条抛物线的图象,则其解析式为( )A .223y x x =-+B .223y x x =--C .223y x x =++D .223y x x =+-【变式7-1】(2020•浙江自主招生)如图,平面直角坐标系中,点A 在y 轴的负半轴上,点B ,C 在x 轴上,8OA =,10AB AC ==,点D 在AB 上,CD 与y 轴交于点E ,且满足COE ADE S S ∆∆=,则过点B ,C ,E 的抛物线的函数解析式为 .考点8:二次函数的三种形式【例题8】(2020秋•西林县期中)将二次函数2231y x x =+-化为2()y x h k =++的形式为( ) A .23112()22y x =+-B .23132()44y x =+-C .23172()48y x =+-D .23112()48y x =+-考点9:抛物线与x 轴的交点【例题9】(2020秋•丰南区期中)如图,一段抛物线:(3)(03)y x x x =--,记为1C ,它与x 轴交于点O ,1A ;将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180︒得3C ,交x 轴于点3A ;⋯,如此进行下去,直至得13C .若(32,)P m 在第11段抛物线11C 上,则m 值为( )A .2B .1.5C .2-D . 2.25-【变式9-1】(2020秋•思明区校级期中)老师给出了二次函数2(0)y ax bx c a =++≠的部分对应值如表:x⋯ 3- 2-0 1 3 5 ⋯ y⋯78-9-5-7⋯下列结论,①抛物线的开口向上;②抛物线的对称轴为直线2x =;③当24x -<<时,0y <;④3x =是方程250ax bx c +++=的一个根;⑤若1(A x ,5),2(B x ,6)是抛物线上两点,则12x x <.其中正确的是 (只填写序号).【变式9-2】(2020•温州二模)如图,抛物线234(0)y ax ax a =-+<与x 轴交于A 、B 两点,与y 轴交于点C ,直线y m =,交抛物线于D 、E 两点.(1)当25a =-时,求A ,B 两点的坐标;(2)当2m =,4DE =时,求抛物线的解析式;(3)当1a =-时,方程234ax ax m -+=在64x -<的范围内有实数解,请直接写出m 的取值范围: .考点10:图象法求一元二次方程的近似根【例题10】(2018秋•平度市期末)如表给出了二次函数2210y x x =+-中x ,y 的一些对应值,则可以估计一元二次方程22100x x +-=的一个近似解为( )x⋯ 2.1 2.2 2.3 2.4 2.5 ⋯ y⋯1.39-0.76-0.11-0.561.25⋯A .2.2B .2.3C .2.4D .2.5【变式10-1】(2019秋•灌云县期末)已知二次函数2y ax bx c =++中,函数y 与自变量x 的部分对应值如表,则方程20ax bx c ++=的一个解的范围是 .x6.17 6.18 6.19 6.20 y0.03-0.01-0.020.04【变式10-2】(2017秋•郯城县月考)已知二次函数222y x x =--+. (1)填写表,并在给出的平面直角坐标系中画出这个二次函数的图象;x⋯ 4-3- 2-1-0 1 2 ⋯ y⋯⋯(2)结合函数图象,直接写出方程2220x x --+=的近似解(指出在哪两个连续整数之间即可).考点11:二次函数与不等式(组)【例题11】(2020秋•东城区校级期中)如图,直线12y x =和抛物线224y x x =-+,当12y y >时,x 的取值范围是( )A .02x <<B .0x <或2x >C .0x <或4x >D .04x <<【变式11-1】(2020秋•庆阳期中)已知二次函数21(0)y ax bx c a =++≠与一次函数2(0)y mx n m =+≠的图象相交于点(1,6)A -和(7,3)B ,如图所示,则使不等式2ax bx c mx n ++<+成立的x 的取值范围是 .【变式11-2】(2020•拱墅区模拟)已知抛物线213(0)y ax bx a =+-≠经过点(2,3)--. (1)若点(1,)A m ,(3,)B n 为抛物线上的两点,比较m ,n 的大小. (2)当2x -时,12y -,求抛物线的解析式.(3)无论a 取何值,若一次函数22y a x m =+总经过1y 的顶点,求证:134m -.考点12:二次函数的应用【例题12】(2020秋•硚口区期中)如图,有一抛物线形拱桥,当拱顶离水面2m时,水面宽4m,当水面宽增加(264)m-时,则水面应下降的高度是()A.2m B.1m C.6m D.(62)m-【变式12-1】(2020秋•莱州市期中)一座抛物线形的拱桥如图所示,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点B为坐标原点时的抛物线解析式是.。
九年级二次函数知识点讲解

九年级二次函数知识点讲解二次函数是初中数学中的重要内容之一,也是数学学习的基础。
本文将对九年级二次函数的知识点进行详细讲解,希望对同学们的学习有所助益。
一、二次函数的定义和性质二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b、c都是实数且a≠0。
其中a决定了二次函数的开口方向(a>0时开口向上,a<0时开口向下),b决定了二次函数的对称轴位置,c则是二次函数的纵坐标偏移量。
二次函数的图像为一条平滑的曲线,被称为抛物线。
抛物线的顶点对应了二次函数的最值点,也是二次函数的最高点或最低点。
二、二次函数的图像二次函数的图像是由抛物线组成的。
对于二次函数f(x) = ax^2+ bx + c,我们可以通过以下步骤绘制出其图像:1.计算出抛物线的对称轴位置,即取-b/2a得到x = -b/2a;2.计算出抛物线的顶点,即在对称轴上取x = -b/2a进行代入得到y坐标值;3.根据对称性,将顶点的横坐标左右对称,得到抛物线的两侧;4.根据函数的性质,计算出抛物线与x轴的交点,即当f(x) =ax^2 + bx + c = 0时求解x的值;5.将顶点、交点等关键点连接起来,即完成了二次函数的图像。
通过这一过程,我们可以描绘出二次函数的几何形状,进一步理解二次函数的性质和特点。
三、二次函数的最值对于二次函数f(x) = ax^2 + bx + c来说,它的最值点即为其顶点。
顶点的横坐标为-x轴系数除以2倍的a值,即x = -b/2a;纵坐标则可通过将横坐标代入函数中得到。
根据最值点的位置,我们可以判断二次函数的开口方向和最值点的位置。
当a>0时,二次函数开口向上,最值点为最低点,也是函数的最小值;当a<0时,二次函数开口向下,最值点为最高点,也是函数的最大值。
四、二次函数的平移和伸缩二次函数的平移指的是抛物线在坐标系中的位置变化,可以通过改变函数的常数项c来实现。
当c>0时,抛物线上移;当c<0时,抛物线下移。
九年级数学上册二次函数讲义

初三数学 二次函数讲义一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c=+的性质: 上加下减。
()2x h -4. ()2y a x h k =-+的性质:1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;0a >二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y 1 10 x o-1 x 0 x 0 -1 x A B C D考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
最新九年级数学上册二次函数讲义

初三数学 二次函数讲义一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用2-32y=-2x 2y=3(x+4)22y=3x 2y=-2(x-3)2二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1.2. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是3.4. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )A B C D5. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
九年级上册二次函数专题讲义

九年级上册二次函数专题讲义一、二次函数概念二次函数是指形如y=ax²+bx+c(a,b,c是常数,且a≠0)的函数。
需要注意的是,和一元二次方程类似,二次项系数a≠0,而b,c可以为零。
例如,下列函数中哪些是二次函数:①y=3x²;②y=x²-x(1+x);③y=x²(x²+x)-4;④y=1+x;⑤2xy=x(1-x)。
其中,例1需要判断每个函数的a,b,c值,而例2则是给定函数,需要判断m取何值时,该函数是关于x 的二次函数。
练1和练2则是练判断给定函数是否是关于x的二次函数,需要注意二次项系数a是否为零。
练3是已知点A在函数y=x-1的图像上,需要求出点A的坐标。
二、二次函数的基本形式二次函数的基本形式是y=ax²,它的图象是一条抛物线,有一条对称轴,对称轴和图象有一点交点,这个点叫做抛物线的顶点。
画出函数y=x的图象的步骤如下:首先列出函数对应值表,然后在直角坐标系中描点,最后用光滑的曲线连接各点得到函数的图象。
需要注意的是,抛物线与它的对称轴的交点就是抛物线的顶点。
通过观察比较函数y=x和y=-x的图象,可以得出它们关于y轴对称的结论;通过观察比较函数y=2x和y=-2x的图象,可以得出它们关于x轴对称的结论。
同时,可以发现这四个函数的图象都是抛物线,都有一条对称轴和一个顶点。
因此,结论是函数y=ax²的图象是一条抛物线,它关于y轴对称,它的顶点坐标是(0,0)。
当$a>0$时,抛物线$y=ax^2$开口向上,对称轴左侧,$y$随$x$的增大而增大;对称轴右侧,$y$随$x$的增大而减小;顶点是抛物线上位置最低的点。
当$x=-\frac{b}{2a}$时,函数值$y=ax^2$取得最小值,最小值是$-\frac{b^2}{4a}$。
当$a<0$时,抛物线$y=ax^2$开口向下,对称轴左侧,$y$随$x$的增大而减小;对称轴右侧,$y$随$x$的增大而增大;顶点是抛物线上位置最高的点。
九年级二次函数知识点讲义

九年级二次函数知识点讲义二次函数是初中数学中非常重要的一个概念,也是进入高中数学学习的基础。
本文将为大家简要介绍九年级二次函数的相关知识点,希望能对大家的学习有所帮助。
一、二次函数的定义和特点二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b、c是常数,且a≠0。
二次函数的图像一般呈现抛物线的形状,开口的方向取决于a的正负值。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
二次函数的特点有以下几个方面:1. 对称性:二次函数的抛物线是关于直线x = -b/(2a)的对称图形,对于任意一点(x, y)在抛物线上,与它关于对称轴的另外一个点(x', y'),有x + x' = -b/a。
2. 零点:二次函数的零点也叫作方程ax^2 + bx + c = 0的根,是使得二次函数取值为0的x值。
一般情况下,二次函数有两个零点。
3. 最值:二次函数的最值是指在定义域内的最大值或最小值,这个最值出现在抛物线的顶点处。
当a>0时,抛物线的顶点是最小值;当a<0时,抛物线的顶点是最大值。
二、二次函数的图像与参数1. 平移变换:二次函数的图像可以通过平移变换得到。
对于一般形式的二次函数f(x) = ax^2 + bx + c,平移变换可以通过f(x - h) + k来实现。
其中,h表示横向平移的大小,k表示纵向平移的大小。
当h和k为正值时,二次函数图像向右上方平移;当h和k为负值时,二次函数图像向左下方平移。
2. 缩放变换:通过改变二次函数的参数a的值,可以实现对图像的缩放操作。
当a的绝对值越大,抛物线越瘦长;当a的绝对值越小,抛物线越扁平。
三、二次函数的性质和应用1. 图像的方向:通过二次函数的a的正负值可以判断图像的方向,即抛物线的开口方向。
这对于解决实际问题时,确定问题中所涉及的抛物线的开口方向非常有帮助。
2. 最值的求解:通过对二次函数进行求导,可以求得抛物线的最值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上课外辅导第十七课时讲义(二次函数复习)
姓名 ________ 班级 ________
一、选择题:
1.由二次函数1)3(22+-=x y ,可知( )
A .其图象的开口向下
B .其图象的对称轴为直线3-=x
C .其最小值为1
D .当3<x 时,y 随x 的增大而增大
2.已知函数12)3(2++-=x x k y 的图象与x 轴有交点,则k 的取值范围是( ) A.4<k
B.4≤k
C.4<k 且3≠k
D.4≤k 且3≠k
3.给出下列四个函数:①x y -=;②x y =;③x
y 1
=;④2x y =.0<x 时,y 随x 的增大而减小的函数有( ) A .1个 B .2个
C .3个
D .4个
4.如图1,已知抛物线c bx x y ++=2的对称轴为2=x ,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为( ) A .(2,3) B .(3,2) C .(3,3) D .(4,3)
5.已知二次函数2y ax bx c =++中,其函数y 与自变量x 之间的部分对应值如下表所示:
x …… 0 1 2 3 4 …… y …… 4 1 0 1 4 ……
点A (1x ,1y )、B (2x ,2y )在函数的图象上,则当112,x <<234x <<时,1y 与2y 的大小关系正确的是( )
A .12y y >
B . 12y y <
C . 12y y ≥
D . 12y y ≤
6.烟花厂为扬州三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度(m)h 与飞行时间
(s)t 的关系式是25
2012
h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需
要的时间为( )
(A)3s (B)4s
(C)5s
(D)6s
第7题
7.二次函数y=ax 2+bx+c(a ≠0)的图像如图所示,下列结论正确的是( )
A.ac <0
B.当x=1时,y >0
C.方程ax 2+bx+c=0(a ≠0)有两个大于1的实数根
D.当x <1时,y 随x 的增大而减小; 当x >1时,y 随x 的增大而增大.
二、填空题:
8、已知二次函数232
)1(+--=m m x m y 的图象开口向上,则m=_______;
9、将抛物线y=x 2
-2x 向上平移3个单位,再向右平移4个单位等到的抛物线是 。
10、函数y =3x 2
与直线y =kx +3的交点为(2,b),则k =______,b =______。
11、抛物线62--=x x y 与x 轴的交点坐标是___________,与y 轴的交点坐标是________;
12、函数2)3(2+--=x y ,当x=______时,函数有最____值为_______,当x_______时,y 随x 的增大而增大;
13、抛物线y=-5x 2 +5x+m 的顶点在x 轴上,则m=_________.
14、如图是二次函数y 1=ax 2+bx +c 和一次函数y 2=mx +n 的图象,观察图象写出y 2≥y 1时,x 的取值范围______________.
15、如图,已知⊙P 的半径为2,圆心P 在抛物线2
112
y x =-上运动,当⊙P 与x 轴相切 时,圆心P 的坐标为 . 三、解答题:
16.已知二次函数c bx x y ++-=2的图象如图所示,它与x 轴的一个交点坐标为(-1,0), 与y 轴的交点坐标为(0,3).
(1)求出b ,c 的值,并写出此二次函数的解析式;
(2)根据图象,写出函数值y 为正数时,自变量x 的取值范围.
17.张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米. (1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围). (2)当x 为何值时,S 有最大值?并求出最大值.
18.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;
75x =时,45y =.
(1)求一次函数y kx b =+的表达式;
(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.
19、如图,在直角坐标系中,矩形ABCD 的边AD 在x 轴上,点A 在原点,AB =3,AD =5.若矩形以每秒2个单位长度沿x 轴正方向作匀速运动.同时点P 从A 点出发以每秒1个单位长度沿A -B -C -D 的路线作匀速运动.当P 点运动到D 点时停止运动,矩形ABCD 也随之停止运动. (1)求P 点从A 点运动到D 点所需的时间; (2)设P 点运动时间为t (秒).①当t =5时,求出点P 的坐标;②若⊿OAP 的面积为s ,试求出s 与t 之间的函数关系式(并写出相应的自变量t 的取值范围).
20、如图,在一块三角形区域ABC 中,∠C=90°,边AC=8,BC=6,现要在△ABC 内建造一个矩形水池DEFG ,如图的设计方案是使DE 在AB 上。
⑴求△ABC 中AB 边上的高h;
⑵设DG=x,当x 取何值时,水池DEFG 的面积最大?
A
B
C
D
E
F
G
21、有一座抛物线型拱桥,桥下面在正常水位AB 时宽20m .水位上升3m ,就达到警戒线CD ,这时,
水面宽度为10m .
(1)在如图所示的坐标系中求抛物线的表达式;
(2)若洪水到来时,水位以每小时0.2m 的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?
22.随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高。
某园林专业户计 划投资种植花卉及树木,根据市场调查与预测,种植树木的利润1y 与投资量x 成正比例关 系,如图12-①所示;种植花卉的利润2y 与投资量x 成二次函数关系,如图12-②所示(注: 利润与投资量的单位:万元)
(1)分别求出利润1y 与2y 关于投资量x 的函数关系式;(5分)
(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润
是多少?(5分)
22、某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资
金1500万元进行批量生产,已知生产每件产品的成本为40元.在销售过程中发现,年销售单价定为100元时,年销售量为20万件;•销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利(年获利=年销售额-生产成本-投资)为z(万元).
(1)试写出y与x之间的函数关系式;
(2)试写出z与x之间的函数关系式;
(3)计算销售单价为160元时的年获利,并说明同样的年获利,销售单价还可以定为多少元?相应的年销售量分别为多少万件?
(4)公司计划:在第一年按年获利最大确定的销售单价,进行销售;第二年年获利不低于1130万元.请你借助函数的大致图象说明,第二年的销售单价x(元)•应确定在什么范围内?。