cubicBspline
cubic bezier 计算公式

cubic bezier 计算公式Cubic Bezier计算公式Cubic Bezier曲线是一种常用的插值曲线,在计算机图形学和动画中被广泛应用。
它由四个点定义,包括两个端点和两个控制点。
根据这四个点的位置关系,可以计算出Cubic Bezier曲线上的任意点坐标。
下面我们将介绍Cubic Bezier计算公式的原理和应用。
Cubic Bezier曲线的计算公式如下:B(t) = (1-t)^3 * P0 + 3(1-t)^2 * t * P1 + 3(1-t) * t^2 * P2 + t^3 * P3其中,B(t)表示曲线上的点坐标,t表示参数值,范围为[0,1],P0、P1、P2和P3分别表示四个控制点的坐标。
通过调整这四个控制点的位置,可以得到不同形状的曲线。
Cubic Bezier曲线的计算公式是基于三次多项式的计算方法,通过对t的不同取值进行插值计算,得到曲线上的点坐标。
当t=0时,曲线上的点为P0;当t=1时,曲线上的点为P3。
通过调整t的取值范围,可以确定曲线的起点和终点。
Cubic Bezier曲线的计算公式可以通过矩阵运算的方式进行优化。
可以将四个控制点的坐标表示为一个矩阵,将参数t表示为一个列向量,通过矩阵乘法运算得到曲线上的点坐标。
这样可以提高计算效率,并简化代码实现。
Cubic Bezier曲线的计算公式有很多应用,其中最常见的应用是在图形设计和动画制作中。
通过调整四个控制点的位置,可以创建出各种形状的曲线,如圆弧、抛物线、S曲线等。
这些曲线可以用于绘制图形、实现动画效果、控制物体运动轨迹等。
在计算机图形学中,Cubic Bezier曲线还被广泛应用于图像处理和模型设计。
通过将曲线上的点连接起来,可以生成平滑的曲线轮廓。
这对于绘制曲线图形、生成字体轮廓、建模曲面等都非常有用。
除了基本的Cubic Bezier曲线计算公式,还有一些衍生的公式和算法,如二次Bezier曲线、B样条曲线等。
平滑算法:三次样条插值(CubicSplineInterpolation)

平滑算法:三次样条插值(CubicSplineInterpolation)感谢强⼤的google翻译。
我从中认识到了航位推算dead reckoning,⽴⽅体样条Cubic Splines 算法。
我单独查找了 Cubic Splines ,⾥⾯的原理简单说明:Cubic Splines 认为在 x 在[a, b]区间中,y对应是⼀条平滑的曲线,所以 y = f(x); 的⼀阶导函数和⼆阶导函数是平滑连续可导的。
拟定⽤三次⽅程,所以得出了⼀般的三次⽅程和⼀阶导数⽅程和⼆阶导数⽅程。
然后求各个分部的解。
这是三次样条的基本原理。
但⽂中最开始的链接中所得出的x = At3 + Bt2 + Ct + Dy = Et3 + Ft3 + Gt + Ht是percent(0~1)区间值,如果还有三维向量,我理解是同样的展开。
然后通过四个位置点来求出 A B C D … 各分部参数的值A = x3 – 3x2 +3x1 – x0B = 3x2 – 6x1 + 3x0C = 3x1 – 3x0D = x0E = y3 – 3y2 +3y1 – y0F = 3y2 – 6y1 + 3y0G = 3y1 – 3y0H = y0…相同分量展开。
(如果有Z 分量的话)学艺不精,⽆法从现有姿势推出这个分量求解过程。
实时运动游戏是通过预测其他玩家的位置来表现的,当服务器有新的输⼊的时候,本地玩家会发现其他玩家位置或状态发⽣⼀次跳变(瞬移)。
有两种思路,⼀、预测未来1. 通过当前位置和速度,通过预测未来精度(1s或者0.5s)推测出未来位置.2. 得出公式参数,通过dt来平滑当前运动轨迹。
⼆、延迟渲染1. 通过延迟渲染参数(延迟1s,0.5s来)来获得其他玩家的过去状态位置。
2. 得出公式参数,通过dt来平滑运动轨迹。
上述两种⽅案1. 如果参数⼀致,速度不改,则运动轨迹跟预测⼀致,如果玩家输⼊多变,则永远不会是真实的位置。
2. 看到的玩家的过去位置,移动轨迹跟⽬标玩家运动轨迹基本保持⼀致。
B-Spline插值与回归包的中文名字:B-Spline插值与回归包2.2说明书

Package‘bspline’May26,2023Type PackageTitle B-Spline Interpolation and RegressionVersion2.2Author Serguei Sokol<**********************>Maintainer Serguei Sokol<**********************>Description Build and use B-splines for interpolation and regression.In case of regression,equality constraints as well as monotonicityand/or positivity of B-spline weights can be imposed.Moreover,knot positions(not only spline weights)can be part ofoptimized parameters too.For this end,'bspline'is able to calculateJacobian of basis vectors as function of knot er is provided withfunctions calculating spline values at arbitrary points.Thesefunctions can be differentiated and integrated to obtain B-splines calculatingderivatives/integrals at any point.B-splines of this package cansimultaneously operate on a series of curves sharing the same set ofknots.'bspline'is written with concern about computingperformance that's why the basis and Jacobian calculation is implemented in C++.The rest is implemented in R but without notable impact on computing speed. URL https:///MathsCell/bsplineBugReports https:///MathsCell/bspline/issuesLicense GPL-2Encoding UTF-8Imports Rcpp(>=1.0.7),nlsic(>=1.0.2),arrApplyLinkingTo Rcpp,RcppArmadilloRoxygenNote7.2.3Suggests RUnitCopyright INRAE/INSA/CNRSNeedsCompilation yesRepository CRANDate/Publication2023-05-2615:00:02UTC12bcurve R topics documented:bcurve (2)bsc (3)bsp (4)bspline (5)bsppar (6)dbsp (6)diffn (7)dmat (7)ibsp (8)iknots (9)ipk (9)jacw (10)par2bsp (10)parr (11)smbsp (11)Index15 bcurve nD B-curve governed by(x,y,...)control points.DescriptionnD B-curve governed by(x,y,...)control points.Usagebcurve(xy,n=3)Argumentsxy Real matrix of(x,y,...)coordinates,one control point per row.n Integer scalar,polynomial order of B-spline(3by default)DetailsThe curve will pass by thefirst and the last points in’xy’.The tangents at thefirst and last points will coincide with thefirst and last segments of control points.Example of signature is inspired from this blog.ValueFunction of one argument calculating B-curve.The argument is supposed to be in[0,1]interval.bsc3 Examples#simulate doctor s signature;)set.seed(71);xy=matrix(rnorm(16),ncol=2)tp=seq(0,1,len=301)doc_signtr=bcurve(xy)plot(doc_signtr(tp),t="l",xaxt= n ,yaxt= n ,ann=FALSE,frame.plot=FALSE, xlim=range(xy[,1]),ylim=range(xy[,2]))#see where control points aretext(xy,labels=seq(nrow(xy)),col=rgb(0,0,0,0.25))#join them by segmentslines(bcurve(xy,n=1)(tp),col=rgb(0,0,1,0.25))#randomly curved wire in3D space##Not run:if(requireNamespace("rgl",quite=TRUE)){xyz=matrix(rnorm(24),ncol=3)tp=seq(0,1,len=201)curv3d=bcurve(xyz)rgl::plot3d(curv3d(tp),t="l",decorate=FALSE)}##End(Not run)bsc Basis matrix and knot Jacobian for B-spline of order0(step function)and higherDescriptionThis function is analogous but not equivalent to splines:bs()and splines2::bSpline().It is also several times faster.Usagebsc(x,xk,n=3L,cjac=FALSE)Argumentsx Numeric vector,abscissa pointsxk Numeric vector,knotsn Integer scalar,polynomial order(3by default)cjac Logical scalar,if TRUE makes to calculate Jacobian of basis vectors as function of knot positions(FALSE by default)4bsp DetailsFor n==0,step function is defined as constant on each interval[xk[i];xk[i+1][,i.e.closed on theleft and open on the right except for the last interval which is closed on the right too.The Jacobianfor step function is considered0in every x point even if in points where x=xk,the derivative is notdefined.For n==1,Jacobian is discontinuous in such points so for these points we take the derivative fromthe right.ValueNumeric matrix(for cjac=FALSE),each column correspond to a B-spline calculated on x;or List(for cjac=TRUE)with componentsmat basis matrix of dimension nx x nw,where nx is the length of x and nw=nk-n-1is the number of basis vectorsjac array of dimension nx x(n+2)x nw where n+2is the number of support knots for each basis vectorSee Alsosplines::bs(),splines2::bSpline()Examplesx=seq(0,5,length.out=101)#cubic basis matrixn=3m=bsc(x,xk=c(rep(0,n+1),1:4,rep(5,n+1)),n=n)matplot(x,m,t="l")stopifnot(all.equal.numeric(c(m),c(splines::bs(x,knots=1:4,degree=n,intercept=TRUE)))) bsp Calculate B-spline values from their coefficients qw and knots xkDescriptionCalculate B-spline values from their coefficients qw and knots xkUsagebsp(x,xk,qw,n=3L)bspline5Argumentsx Numeric vector,abscissa points at which B-splines should be calculated.They are supposed to be non decreasing.xk Numeric vector,knots of the B-splines.They are supposed to be non decreasing.qw Numeric vector or matrix,coefficients of B-splines.NROW(qw)must be equal to length(xk)-n-1where n is the next parametern Integer scalar,polynomial order of B-splines,by default cubic splines are calcu-lated.DetailsThis function does nothing else than calculate a dot-product between a B-spline basis matrix cal-culated by bsc()and coefficients qw.If qw is a matrix,each column corresponds to a separate set of coefficients.For x values falling outside of xk range,the B-splines values are set to0.To get a function calculating spline values at arbitrary points from xk and qw,cf.par2bsp().ValueNumeric matrix(column number depends on qw dimensions),B-spline values on x.See Alsobsc,par2bspbspline bspline:build and use B-splines for interpolation and regression.DescriptionBuild and use B-splines for interpolation and regression.In case of regression,equality constraints as well as monotonicity requirement can be imposed.Moreover,knot positions(not only spline coefficients)can be part of optimized parameters er is provided with functions calculating spline values at arbitrary points.This functions can be differentiated to obtain B-splines calculating derivatives at any point.B-splines of this package can simultaneously operate on a series of curves sharing the same set of knots.’bspline’is written with concern about computing performance that’s why the basis calculation is implemented in C++.The rest is implemented in R but without notable impact on computing speed.bspline functions•bsc:basis matrix(implemented in C++)•bsp:values of B-spline from its coefficients•dbsp:derivative of B-spline•par2bsp:build B-spline function from parameters•bsppar:retrieve B-spline parameters from its function6dbsp•smbsp:build smoothing B-spline•fitsmbsp:build smoothing B-spline with optimized knot positions•diffn:finite differencesbsppar Retrieve parameters of B-splinesDescriptionRetrieve parameters of B-splinesUsagebsppar(f)Argumentsf Function,B-splines such that returned by par3bsp(),smbsp(),...ValueList having components:n-polynomial order,qw-coefficients,xk-knotsdbsp Derivative of B-splineDescriptionDerivative of B-splineUsagedbsp(f,nderiv=1L,same_xk=FALSE)Argumentsf Function,B-spline such as returned by smbsp()or par2bsp()nderiv Integer scalar>=0,order of derivative to calculate(1by default)same_xk Logical scalar,if TRUE,indicates to calculate derivative on the same knot grid as original function.In this case,coefficient number will be incremented by2.Otherwise,extreme knots are removed on each side of the grid and coefficientnumber is maintained(FALSE by default).ValueFunction calculating requested derivativediffn7Examplesx=seq(0.,1.,length.out=11L)y=sin(2*pi*x)f=smbsp(x,y,nki=2L)d_f=dbsp(f)xf=seq(0.,1.,length.out=101)#fine grid for plottingplot(xf,d_f(xf))#derivative estimated by B-splineslines(xf,2.*pi*cos(2*pi*xf),col="blue")#true derivativexk=bsppar(d_f)$xkpoints(xk,d_f(xk),pch="x",col="red")#knot positionsdiffn Finite differencesDescriptionCalculate dy/dx where x,y arefirst and the rest of columns in the entry matrix’m’Usagediffn(m,ndiff=1L)Argumentsm2-or more-column numeric matrixndiff Integer scalar,order offinite difference(1by default)ValueNumeric matrix,first column is midpoints of x,the second and following are dy/dxdmat Differentiation matrixDescriptionCalculate matrix for obtaining coefficients offirst-derivative B-spline.They can be calculated as dqw=Md%*%qw.Here,dqw are coefficients of thefirst derivative,Md is the matrix returned by this function,and qw are the coefficients of differentiated B-spline.Usagedmat(nqw=NULL,xk=NULL,n=NULL,f=NULL,same_xk=FALSE)8ibspArgumentsnqw Integer scalar,row number of qw matrix(i.e.degree of freedom of a B-spline) xk Numeric vector,knot positionsn Integer scalar,B-spline polynomial orderf Function from which previous parameters can be retrieved.If both f and anyof previous parameters are given then explicitly set parameters take precedenceover those retrieved from f.same_xk Logical scalar,the same meaning as in dbspValueNumeric matrix of size nqw-1x nqwibsp Indefinite integral of B-splineDescriptionIndefinite integral of B-splineUsageibsp(f,const=0,nint=1L)Argumentsf Function,B-spline such as returned by smbsp()or par2bsp()const Numeric scalar or vector of length ncol(qw)where qw is weight matrix of f.Defines starting value of weights for indefinite integral(0by default).nint Integer scalar>=0,defines how many times to take integral(1by default) DetailsIf f is B-spline,then following identity is held:Dbsp(ibsp(f))is identical to f.Generally,it does not work in the other sens:ibsp(Dbsp(f))is not f but not very far.If we can get an appropriate constant C=f(min(x))then we can assert that ibsp(Dbsp(f),const=C)is the same as f.ValueFunction calculating requested integraliknots9 iknots Estimate internal knot positions equalizing jumps in n-th derivativeDescriptionNormalized total variation of n-thfinite differences is calculated for each column in y then averaged.These averaged values arefitted by a linear spline tofind knot positions that equalize the jumps of n-th derivative.NB.This function is used internally in(fit)smbsp()and a priori has no interest to be called directly by user.Usageiknots(x,y,nki=1L,n=3L)Argumentsx Numeric vectory Numeric vector or matrixnki Integer scalar,number of internal knots to estimate(1by default)n Integer scalar,polynomial order of B-spline(3by default)ValueNumeric vector,estimated knot positionsipk Intervals of points in knot intervalsDescriptionFindfirst and last+1indexes iip s.t.x[iip]belongs to interval starting at xk[iik]Usageipk(x,xk)Argumentsx Numeric vector,abscissa points(must be non decreasing)xk Numeric vector,knots(must be non decreasing)ValueInteger matrix of size(2x length(xk)-1).Indexes are0-based10par2bsp jacw Knot Jacobian of B-spline with weightsDescriptionKnot Jacobian of B-spline with weightsUsagejacw(jac,qws)Argumentsjac Numeric array,such as returned by bsc(...,cjac=TRUE)qws Numeric matrix,each column is a set of weights forming a B-spline.If qws is a vector,it is coerced to1-column matrix.ValueNumeric array of size nx x ncol(qw)x nk,where nx=dim(jac)[1]and nk is the number of knots dim(jac)[3]+n+1(n being polynomial order).par2bsp Convert parameters to B-spline functionDescriptionConvert parameters to B-spline functionUsagepar2bsp(n,qw,xk,covqw=NULL,sdy=NULL,sdqw=NULL)Argumentsn Integer scalar,polynomial order of B-splinesqw Numeric vector or matrix,coefficients of B-splines,one set per column in case of matrixxk Numeric vector,knotscovqw Numeric Matrix,covariance matrix of qw(can be estimated in smbsp).sdy Numeric vector,SD of each y column(can be estimated in smbsp).sdqw Numeric Matrix,SD of qw thus having the same dimension as qw(can be esti-mated in smbsp).parr11 ValueFunction,calculating B-splines at arbitrary points and having interface f(x,select)where x is a vector of abscissa points.Parameter select is passed to qw[,select,drop=FALSE]and can be missing.This function will return a matrix of size length(x)x ncol(qw)if select is missing.Elsewhere,a number of column will depend on select parameter.Column names in the result matrix will be inherited from qw.parr Polynomial formulation of B-splineDescriptionPolynomial formulation of B-splineUsageparr(xk,n=3L)Argumentsxk Numeric vector,knotsn Integer scalar,polynomial order(3by default)ValueNumeric3D array,thefirst index runs through n+1polynomial coefficients;the second–through n+1supporting intervals;and the last one through nk-n-1B-splines(here nk=length(xk)).Knot interval of length0will have corresponding coefficients set to0.smbsp Smoothing B-spline of order n>=0DescriptionOptimize smoothing B-spline coefficients(smbsp)and knot positions(fitsmbsp)such that residual squared sum is minimized for all y columns.Usagesmbsp(x,y,n=3L,xki=NULL,nki=1L,lieq=NULL,monotone=0,positive=0,mat=NULL,estSD=FALSE,tol=1e-10)fitsmbsp(x,y,n=3L,xki=NULL,nki=1L,lieq=NULL,monotone=0,positive=0,control=list(),estSD=FALSE,tol=1e-10)Argumentsx Numeric vector,abscissa pointsy Numeric vector or matrix or data.frame,ordinate values to be smoothed(one set per column in case of matrix or data.frame)n Integer scalar,polynomial order of B-splines(3by default)xki Numeric vector,strictly internal B-spline knots,i.e.lying strictly inside of x bounds.If NULL(by default),they are estimated with the help of iknots().This vector is used as initial approximation during optimization process.Mustbe non decreasing if not NULL.nki Integer scalar,internal knot number(1by default).When nki==0,it corresponds to polynomial regression.If xki is not NULL,this parameter is ignored.lieq List,equality constraints to respect by the smoothing spline,one list item per y column.By default(NULL),no constraint is imposed.Constraints are given asa2-column matrix(xe,ye)where for each xe,an ye value is imposed.If a listitem is NULL,no constraint is imposed on corresponding y column.monotone Numeric scalar or vector,if monotone>0,resulting B-spline weights must be increasing;if monotone<0,B-spline weights must be decreasing;if monotone==0(default),no constraint on monotonicity is imposed.If’monotone’is avector it must be of length ncol(y),in which case each component indicatesthe constraint for corresponding column of y.positive Numeric scalar,if positive>0,resulting B-spline weights must be>=0;if positive<0,B-spline weights must be decreasing;if positive==0(default),no constraint on positivity is imposed.If’positive’is a vector it must be oflength ncol(y),in which case each component indicates the constraint for cor-responding column of y.mat Numeric matrix of basis vectors,if NULL it is recalculated by bsc().If pro-vided,it is the responsibility of the user to ensure that this matrix be adequate toxki vector.estSD Logical scalar,if TRUE,indicates to calculate:SD of each y column,covariance matrix and SD of spline coefficients.All these values can be retrieved withbsppar()call(FALSE by default).These estimations are made under assumptionthat all y points have uncorrelated noise.Optional constraints are not taken intoaccount of SD.tol Numerical scalar,relative tolerance for small singular values that should be con-sidered as0if s[i]<=tol*s[1].This parameter is ignored if estSD=FALSE(1.e-10by default).control List,passed through to nlsic()callDetailsIf constraints are set,we use nlsic::lsie_ln()to solve a least squares problem with equality constraints in least norm sens for each y column.Otherwise,nlsic::ls_ln_svd()is used for the whole y matrix.The solution of least squares problem is a vector of B-splines coefficients qw,one vector per y column.These vectors are used to define B-spline function which is returned as the result.NB.When nki>=length(x)-n-1(be it from direct setting or calculated from length(xki)),it corresponds to spline interpolation,i.e.the resulting spline will pass exactly by(x,y)points(well, up to numerical precision).Border and external knots arefixed,only strictly internal knots can move during optimization.The optimization process is constrained to respect a minimal distance between knots as well as to bound them to x range.This is done to avoid knots getting unsorted during iterations and/or going outside of a meaningful range.ValueFunction,smoothing B-splines respecting optional constraints(generated by par2bsp()).See Alsobsppar for retrieving parameters of B-spline functions;par2bsp for generating B-spline function;iknots for estimation of knot positionsExamplesx=seq(0,1,length.out=11)y=sin(pi*x)+rnorm(x,sd=0.1)#constraint B-spline to be0at the interval endsfsm=smbsp(x,y,nki=1,lieq=list(rbind(c(0,0),c(1,0))))#check parameters of found B-splinesbsppar(fsm)plot(x,y)#original"measurements"#fine grained xxfine=seq(0,1,length.out=101)lines(xfine,fsm(xfine))#fitted B-splineslines(xfine,sin(pi*xfine),col="blue")#original function #visualize knot positionsxk=bsppar(fsm)$xkpoints(xk,fsm(xk),pch="x",col="red")#fit broken line with linear B-splinesx1=seq(0,1,length.out=11)x2=seq(1,3,length.out=21)x3=seq(3,4,length.out=11)y1=x1+rnorm(x1,sd=0.1)y2=-2+3*x2+rnorm(x2,sd=0.1)y3=4+x3+rnorm(x3,sd=0.1)x=c(x1,x2,x3)y=c(y1,y2,y3)plot(x,y)f=fitsmbsp(x,y,n=1,nki=2)lines(x,f(x))Indexbcurve,2bsc,3bsp,4bspline,5bsppar,6dbsp,6,8diffn,7dmat,7fitsmbsp(smbsp),11ibsp,8iknots,9ipk,9jacw,10par2bsp,10parr,11smbsp,10,1115。
关于三次B样条曲线重构中射影变换及控制点反求的一点思考

关于三次B样条曲线重构中射影变换及控制点反求的一点思考王娟【摘要】It is proved that the cubic B-spline curve is still cubic B-spline curve after projective trans-formation.It is proposed that cubic B-spline curves in the image plane are the projective of cubic B-spline curves in space.The projective relations between the control points of the cubic B-spline curves in the image plane and the cubic B-spline curves in space are given.A method of solving B-spline curve control points is proposed.%证明了三次B样条曲线经过射影变换后仍然是三次B样条曲线;提出了像平面中三次B样条曲线是空间中三次B样条曲线的射影;给出了像平面中三次B样条曲线控制点与空间中三次B样条曲线控制点的射影关系;提出了B样条曲线控制点的反求方法。
【期刊名称】《昆明冶金高等专科学校学报》【年(卷),期】2016(032)005【总页数】4页(P73-75,84)【关键词】射影变换;控制点;反求;三维重构【作者】王娟【作者单位】云南锡业职业技术学院学生处,云南个旧661000【正文语种】中文【中图分类】TP391.9样条曲线是指由给定的控制点得到曲线,曲线的大致形状由这些点予以控制[1]。
常见的样条曲线有:Hermite样条、Cardinal样条、Kochanek-Bartels样条、Bezier样条、B样条、非均匀有理B样条曲线(NURBS)。
B-spline

B-splineFrom Wikipedia, the free encyclopediaIn the mathematical subfield of numerical analysis, a B-spline is a spline function that has minimal support with respect to a given degree, smoothness, and domain partition. B-splines were investigated as early as the nineteenth century by Nikolai Lobachevsky from Kazan State University, Russia. A fundamental theorem states that every spline function of a given degree, smoothness, and domain partition, can be represented as a linear combination of B-splines of that same degree and smoothness, and over that same partition.[1] The term B-spline was coined by Isaac Jacob Schoenberg and is short for basis spline.[2] B-splines can be evaluated in a numerically stable way by the de Boor algorithm. Simplified, potentially faster variants of the de Boor algorithm have been created but they suffer from comparatively lower stability.[3][4]In the computer science subfields of computer-aided design and computer graphics, the term B-spline frequently refers to a spline curve parametrized by spline functions that are expressed as linear combinations of B-splines (in the mathematical sense above). A B-spline is simply a generalisation of a Bézier curve, and it can avoid the Runge phenomenon without increasing the degree of the B-spline.Contents1 Definition1.1 Uniform B-spline1.2 Cardinal B-spline2 Notes3 Examples3.1 Constant B-spline3.2 Linear B-spline3.3 Uniform quadratic B-spline3.4 Cubic B-Spline3.5 Uniform cubic B-splines4 See also5 References6 External linksDefinitionGiven m real values t i, called knots, witha B-spline of degree n is a parametric curvecomposed of a linear combination of basis B-splines b i,n of degree n.The P i are called control points or de Boor points. There are m−n-1 control points, and they form a convex hull.The m-n-1 basis B-splines of degree n can be defined, for n=0,1,...,m-2, using the Cox-de Boor recursion formulaNote that j+n+1 can not exceed m-1, which limits both j and n.When the knots are equidistant the B-spline is said to be uniform, otherwise non-uniform. If two knots t j are identical, any resulting indeterminate forms 0/0 are deemed to be 0.Note that when one sums a run of adjacent n-degree basis B-splines one obtains, from this recursionfor any sum withWhen here, then this sum is, by this recursion, identically equal to 1, within the limited subrange, (since this interval excludes the supports of the two basis B-splines in the separate terms at the ends of this sum).Uniform B-splineWhen the B-spline is uniform, the basis B-splines for a given degree n are just shifted copies of each other. An alternative non-recursive definition for the m−n-1 basis B-splines iswithandwhereis the truncated power function.Cardinal B-splineDefine B 0 as the characteristic function of , and B k recursively as the convolution productthen B k are called (centered) cardinal B-splines. This definition goes back to Schoenberg.B k has compact support and is an even function. As the normalized cardinal B-splines tend to the Gaussian function.[5]NotesWhen the number of de Boor control points is one more than the degree and and(thus ), the B-Spline degenerates into a Bézier curve. In particular, the B-Spline basis function b i,n(t) coincides with the n-th degree univariate Bernstein polynomial.[6] The shape of the basis functions is determined by the position of the knots. Scaling or translating the knot vector does not alter the basis functions.The spline is contained in the convex hull of its control points.A basis B-spline of degree nis non-zero only in the interval [t i, t i+n+1] that isIn other words if we manipulate one control point we only change the local behaviour of the curve and not the global behaviour as with Bézier curves.Also see Bernstein polynomial for further details.ExamplesConstant B-splineThe constant B-spline is the simplest spline. It is defined on only one knot span and is not even continuous on the knots. It is just the indicator function for the different knot spans.Linear B-splineThe linear B-spline is defined on two consecutive knot spans and is continuous on the knots, but not differentiable.Uniform quadratic B-splineQuadratic B-splines with uniform knot-vector is a commonly used form of B-spline. The blending function can easily be precalculated, and is equal for each segment in this case.Put in matrix-form, it is:[7]forCubic B-SplineA B-spline formulation for a single segment can be written as:where S i is the i th B-spline segment and P is the set of control points, segment i and k is the local control point index. A set of control points would be where the w i is weight, pulling the curve towards control point P i as it increases or moving the curve away as it decreases.An entire set of segments, m-2 curves (S3,S4,...,S m) defined by m+1 control points (), as one B-spline in t would be defined as:where i is the control point number and t is a global parameter giving knot values. This formulation expressesa B-spline curve as a linear combination of B-spline basis functions, hence the name.There are two types of B-spline - uniform and non-uniform. A non-uniform B-spline is a curve where theintervals between successive control points is not, or not necessarily, equal (the knot vector of interior knot spans are not equal). A common form is where intervals are successively reduced to zero, interpolating control points.Uniform cubic B-splinesCubic B-splines with uniform knot-vector is the most commonly used form of B-spline. The blending function can easily be precalculated, and is equal for each segment in this case. Put in matrix-form, it is:for See alsoSpline (mathematics)Nonuniform rational B-splines (NURBS)De Boor algorithm M-spline I-splineReferences1. ^ Carl de Boor (1978). A Practical Guide to Splines . Springer-Verlag. pp. 113–114.2. ^ Carl de Boor (1978). A Practical Guide to Splines . Springer-Verlag. pp. 114–115.3. ^ Lee, E. T. Y. (December 1982). "A Simplified B-Spline Computation Routine". Computing (Springer-Verlag) 29 (4):365–371. doi:10.1007/BF02246763 (/10.1007%2FBF02246763) .4. ^ Lee, E. T. Y. (1986). "Comments on some B-spline algorithms". Computing (Springer-Verlag) 36 (3): 229–238.doi:10.1007/BF02240069 (/10.1007%2FBF02240069) .5. ^ Brinks R: On the convergence of derivatives of B-splines to derivatives of the Gaussian function, Comp. Appl. Math.,27, 1, 20086. ^ Prautzsch et al., Hartmut (2002). Bezier and B-Spline Techniques . Springer-Verlag. pp. 60–66. ISBN 3540437614.7. ^ Splitting a uniform B-spline curve (/education/CAGDNotes/Quadratic-Uniform-B-Spline-Curve-Splitting/Quadratic-Uniform-B-Spline-Curve-Splitting.html)External linksB-spline on MathWorld (/B-Spline.html)Module B-Splines by John H. Mathews (/mathews/n2003/B-SplinesMod.html)B-splines of third order on a non-uniform grid by Johannes Ruf (/~ruf/ruf_bspline.pdf)FORTRAN code for interpolation using B-splines (/doc/cmlib/doc/dtensbs/Summary.html)bivariate B-spline from numpyComparison between a uniform cubic B-spline (yellow) and a cubic Hermite spline (dark red).(/doc/scipy/reference/generated/scipy.interpolate.bisplrep.html)Interactive B-splines with JSXGraph (http://jsxgraph.uni-bayreuth.de/wiki/index.php/B-splines) Retrieved from "/wiki/B-spline"Categories: Splines | InterpolationThis page was last modified on 18 March 2011 at 21:22.Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of Use for details.Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.。
三次样条和三次多项式

三次样条和三次多项式
三次样条(Cubic Spline)和三次多项式(Cubic Polynomial)是在数学和计算机科学领域中常用的插值和拟合方法。
它们都涉及使用三次多项式来逼近给定的数据点,但在一些方面有所不同。
三次多项式是一个3次的多项式函数,通常具有以下形式:f(x) = a + bx + cx^2 + dx^3,其中a、b、c和d是拟合过程中的系数。
三次样条插值基于分段函数的概念,将所需区域划分为多个小段,并在每个小段内使用三次多项式进行插值。
这些多项式满足一系列插值条件,如在节点处的函数值、一阶导数或二阶导数的连续性。
这种方法通过在小段内拟合曲线来克服三次多项式全局拟合的一些限制,以提高拟合的灵活性和平滑度。
与三次多项式相比,三次样条插值具有以下优点:
•保证节点处的插值条件,使得拟合曲线经过给定数据点。
•通过在小段内使用局部三次多项式来提供更平滑的曲线。
•具备良好的数值稳定性,不容易出现振荡或震荡现象。
然而,三次样条插值也有一些限制:
•随着数据点数量的增加,所需要的节点和控制点也会相应增加,增加了计算和存储的复杂性。
•在边界点附近可能出现不足的拟合问题,需要通过调整插值条件或采用其他策略进行处理。
总之,三次样条和三次多项式是常见的插值和拟合方法,用于数据近似和曲线拟合。
三次样条插值通过局部多项式逼近和保持插值条件,提供更平滑和稳定的拟合结果。
CUBIC B SPLINE CURVE GENERATING METHOD

专利名称:CUBIC B SPLINE CURVE GENERATING METHOD发明人:OKAMOTO MASAYUKI,YAMAUCHIMITSURU申请号:JP29358188申请日:19881122公开号:JPH02140889A公开日:19900530专利内容由知识产权出版社提供摘要:PURPOSE:To smoothly connect a cubic B spline curve to an additional curve by providing an edge point processing means which deletes a first or a last curve defining vector to generate respective curve segments on both edges of the cubic spline curve and supplies it to a curve generating means. CONSTITUTION:A curve defining vector converting means 11 reads a NOT position vector from a memory means 10, converts it at a point, which is immediately before a point where to curvature of the both edge points is zero, obtains the curve defining vector, and supplies it to an edge point processing means 12. According to generated section selecting information inputted by an input means 13, the edge processing means 12 deletes the first or last curve defining vector in order to generate the respective curve segments at the both edge parts of the cubic B spline curve whose curvature is set at zero. Thus, the curve segment at the start point or end point of the curve is not generated, when the next additional curve is connected, the curvature on the contact point continues through the both curves, and the both curves can be smoothly connected.申请人:FUJITSU LTD更多信息请下载全文后查看。
双三次b样条曲面与费格森曲面和双三次贝齐尔曲面的等价关系式

双三次b样条曲面与费格森曲面和双三次贝齐尔曲面的等价关系式双三次B样条曲面(Bi-Cubic B-Spline Surface)是一类基于多项式插值的曲面表示方法。
在计算机图形学、计算机辅助设计、机器视觉等领域中广泛应用。
而费格森曲面(Ferguson Surface)和双三次贝齐尔曲面(Bi-Cubic Bezier Surface)也是常见的曲面生成方法。
本文将介绍这三种曲面生成方法的等价关系式。
首先我们来介绍双三次B样条曲面。
B样条曲面是一种通过控制顶点来控制曲面形状的方法。
B样条曲面利用局部控制的特点,可以被看作是一种分段多项式曲面,因此具有一定的灵活性。
双三次B样条曲面是一种常用的B样条曲面表示方法,其控制点的方程用二阶分段多项式表示。
费格森曲面是另一种曲面表示方法,它采用二次多项式的形式表示曲面。
它的控制顶点包括四个点:一个内部点和三个连接该内部点的边界点。
费格森曲面对于局部变形和替换,具有一定的优势。
双三次贝齐尔曲面也是一种常用的曲面表示方法,其控制点方程用三次多项式表示。
通过控制顶点的变换,可以轻松地调整曲面的形状和平滑度。
关于这三种曲面表示方法的等价关系式,在很长一段时间内一直是一个研究热点。
事实上,它们之间有一定程度上的等价性。
具体而言,费格森曲面和双三次贝齐尔曲面都可以看作是双三次B样条曲面的一种特殊情况。
以费格森曲面为例,我们可以将其表示成如下形式:S(u,v) = [(1-u)^3P0 + 3u(1-u)^2P1 + 3u^2(1-u)P2 +u^3P3]× (1-v)^2+ [(1-u)^3Q0 + 3u(1-u)^2Q1 + 3u^2(1-u)Q2 + u^3Q3] × v^2+ 3[(1-u)^2P0 + 2u(1-u)P1 + u^2P2] × (1-v)^2v+ 3[(1-u)^2Q0 + 2u(1-u)Q1 + u^2Q2] × v^2(1-v)其中,P0、P1、P2、P3和Q0、Q1、Q2、Q3为角点坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
© University of Wisconsin, CS559 Spring 2004
Demo
4/29/04
© University of Wisconsin, CS559 Spring 2004
Uniform B-spline at Arbitrary t
• The interval from an integer parameter value i to i+1 is essentially the same as the interval from 0 to 1
4/29/04
© University of Wisconsin, CS559 Spring 2004
Demo
4/29/04
© University of Wisconsin, CS559 Spring 2004
B-splines and Interpolation, Continuity
• Uniform B-splines do not interpolate control points, unless:
Uniform Cubic B-spline on [0,1)
• The blending functions sum to one, and are positive everywhere
– The curve lies inside its convex hull
• The curve does not interpolate its endpoints
– You repeat a control point three times – But then all derivatives also vanish (=0) at that point – To do interpolation with non-zero derivatives you must use non-uniform Bsplines with repeated knots
• To align tangents, use double control vertices
– Then tangent aligns similar to Bezier nes are automatically C2
– All the blending functions are C2, so sum of blending functions is C2 – Provides an alternate way to define blending functions – To reduce continuity, must use non-uniform B-splines with repeated knots
x(t ) Pi Bi , 4 (t )
i 0
3
P0
1 1 1 1 3 2 3 2 3 1 3t 3t 2 t 3 P 4 6 t 3 t P 1 3 t 3 t 3 t P t 1 2 3 6 6 6 6
4/29/04
© University of Wisconsin, CS559 Spring 2004
x(t ) P0
B0,4
B3,4
t
1 1 3t 3t 2 t 3 6 1 P 4 6t 2 3t 3 61 1 P2 1 3t 3t 2 3t 3 6 1 3 P3 t 6
4/29/04
© University of Wisconsin, CS559 Spring 2004
4/29/04
© University of Wisconsin, CS559 Spring 2004
Uniform Cubic B-spline Blending Functions
0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -3 -2.5 -2 -1.5
B0,4
B1,4
B2,4
– Not surprising for a cubic curve with 4 degrees of freedom
• The equation looks just like a Bezier curve, but with different basis functions
– Also called blending functions - they describe how to blend the control points to make the curve
– We will only look closely at uniform B-splines
• With uniform B-splines, continuity is always one degree lower than the degree of each curve piece
– Linear B-splines have C0 continuity, cubic have C2, etc
Last Time
• Geometric continuity • Parametric surfaces
– General Tensor product surfaces – Bezier surfaces
4/29/04
© University of Wisconsin, CS559 Spring 2004
– The parameter value is offset by i – A different set of control points is needed
• To evaluate a uniform cubic B-spline at an arbitrary parameter value t:
4/29/04
© University of Wisconsin, CS559 Spring 2004
B3,4
B4,4
B5,4
B6,4
-1
-0.5
0
0.5
1
t
1.5
2
2.5
3
3.5
4
4.5
5
4/29/04
© University of Wisconsin, CS559 Spring 2004
Computing the Curve
X t Pk Bk , 4 t
0.25 0.2 0.15 0.1 0.05 0
4/29/04
© University of Wisconsin, CS559 Spring 2004
Uniform Cubic B-spline on [0,1)
• Four control points are required to define the curve for 0t<1 (t is the parameter)
4/29/04
© University of Wisconsin, CS559 Spring 2004
Uniform Cubic B-splines on [0,m)
• Curve:
– – – – –
X t P k Bk, d t
k 0
n
n is the total number of control points d is the order of the curves, 2 d n+1, d typically 3 or 4 Bk,d are the uniform B-spline blending functions of degree d-1 Pk are the control points Each Bk,d is only non-zero for a small range of t values, so the curve has local control
Today
• BSplines
4/29/04
© University of Wisconsin, CS559 Spring 2004
B-splines
• B-splines automatically take care of continuity, with exactly one control vertex per curve segment • Many types of B-splines: degree may be different (linear, quadratic, cubic,…) and they may be uniform or nonuniform
n
k 0
P0B0,4
P1B1,4
P2B2,4 P3B3,4
P4B4,4
P6B6,4 P5B5,4
-3
-2
0.1
0.5
0.8
1.2
1.5
1.9
2.2
2.6
2.9
3.3
3.6
4
4.3
-2.7
-2.3
-1.6
-1.3
-0.9
-0.6
-0.2
t
The curve can’t start until there are 4 basis functions active
4/29/04 © University of Wisconsin, CS559 Spring 2004
4.7
Using Uniform B-splines
• At any point t along a piecewise uniform cubic B-spline, there are four non-zero blending functions • Each of these blending functions is a translation of B0,4 • Consider the interval 0t<1