大学物理1
大学物理(1)总复习

k a b k(k 1,2,3,...;k只能取整数) a
计算缺级的基本公式。
[B ]
16
补:若用衍射光栅准确测定一单色可见光的波长,在下列各种 光栅常数的光栅中选用哪一种最好?
(A) 5.0×10-1 mm. (B) 1.0×10-1 mm.
(C) 1.0×10-2 mm. (D) 1.0×10-3 mm.
(A) 1.5J (C) 4.5J
(B) 3J (D) -1.5J
F
d
r
1m(v 2
2 2
v12 ),
v
v
2 x
v
2 y
vx
dx dt
5,v y
dy dt
t,
v12
29,v
2 2
41
[B ]
4
4、对质点组有以下几种说法:
(1)质点组总动量的改变与内力无关。
(2)质点组总动能的改变与内力无关。
(3)质点组机械能的改变与保守内力无关。
v 0, t 3
[B ]
r xi yj
v
d
r
d
x
i
d
y
j
dt dt dt
v
v
2 x
v
2 y
d
x
2
d
y
2
dt dt
2
2. 质量为2kg的质点,受力F = t i(SI)的作用,t =0 时刻该质点以v =6i m·s-1的速度通过坐标原点,则该 质点任意时刻的位置矢量为
25
20.一绝热容器被隔板分成两半,一半是真空,另一半是理想 气体。若把隔板抽出,气体将进行自由膨胀,达到平衡后
(A)温度不变,熵增加. (B)温度升高,熵增加. (C)温度降低,熵增加. (D)温度不变,熵不变.
大学物理一综合复习资料

《大学物理(一)》综合复习资料一.选择题1. 某人骑自行车以速率V 向正西方行驶,遇到由北向南刮的风(设风速大小也为V ),则他感到风是从(A )东北方向吹来.(B )东南方向吹来.(C )西北方向吹来.(D )西南方向吹来.[ ]2.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r22+=(其中a 、b 为常量)则该质点作(A )匀速直线运动.(B )变速直线运动.(C )抛物线运动.(D )一般曲线运动.[ ]3.一轻绳绕在有水平轮的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P,滑轮的角加速度为β.若将物体去掉而以与P相等的力直接向下拉绳子,滑轮的角加速度β将(A )不变.(B )变小.(C )变大.(D )无法判断. 4. 质点系的内力可以改变(A )系统的总质量.(B )系统的总动量.(C )系统的总动能.(D )系统的总动量. 5.一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的 (A )1/2 .(B )1/4.(C )2/1.(D) 3/4.(E )2/3.[ ]6.一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 1变为(A )4/1E .(B ) 2/1E .(C )12E .(D )14E .[ ]7.在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )λ/4. (B )λ/2.(C ) 3λ/4 . (D )λ.[ ]8.一平面简谐波沿x 轴负方向传播.已知x =b 处质点的振动方程为)cos(0φω+=t y ,波速为u ,则波动方程为:(A ))cos(0ϕω+++=u x b t A y .(B )⎥⎦⎤⎢⎣⎡++-=0)(cos ϕωu x b t A y . (C )⎥⎦⎤⎢⎣⎡+-+=0)(cos ϕωu b x t A y .(D )⎥⎦⎤⎢⎣⎡+-+=0)(cos ϕωu x b t A y . [ ]9.物体在恒力F 作用下作直线运动,在时间1t ∆内速度由0增加到v ,在时间2t ∆内速度由v 增加到2v ,设F 在1t ∆内作的功是W 1,冲量是I l ,F 在2t ∆内作的功是W 2,冲量是I 2,那么(A ) W 2=W 1,I 2 >I 1.(B ) W 2=W 1 , I 2<I 1.(C ) W 2>W 1,I 2= I 1.(D) W 2<W l ,I 2=I 1 .[ ]10.如图所示,有一个小块物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉.则物体(A )动能不变,动量改变.(B )动量不变,动能改变.(C )角动量不变,动量不变. (D )角动量改变,动量改变. (E )角动量不变,动能、动量都改变.[ ]二.填空题1.一个质点的运动方程为26t t x -=(SI ),则在t 由0至4s 的时间间隔内,质点的位移大小为 ,在t 由0到4s 的时间间用内质点走过的路程为 .2. 如图所示,Ox 轴沿水平方向,Oy 轴竖直向下,在0=t 时刻将质量为m 的质点由a 处静止释放,让它自由下落,则在任意时刻t ,质点所受的对点O 的力矩M= ;在任意时刻t ,质点对原点O 的角动量L= .3.二质点的质量分别为1m 、2m . 当它们之间的距离由a 缩短到b 时,万有引力所做的功为 .4.动量定理的内容是 ,其数学表达式可写 .动量守恒的条件是 .5.一质点作半径为0.l m 的圆周运动,其运动方程为:2214t +=πθ (SI ),则其切向加速度为t a = .6.质量为M 的物体A 静止于水平面上,它与平面之间的滑动摩擦系数为μ,另一质量为m 的小球B 以沿水平方向向右的速度v与物体A 发生完全非弹性碰撞.则碰后它们在水平方向滑过的距离L = .7.简谐振动的振动曲线如图所示,相应的以余弦函数表示的振动方程为 .8.一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为)4/cos(05.01πω+=t x (SI ),)12/19cos(05.01πω+=t x (SI ).其合振运动的振动方程为x = .9.一弹簧振子系统具有1.OJ 的振动能量,0.10m 的振幅和1.0m /s 的最大速率,则弹簧的倔强系数为 ,振子的振动频率为 .10.质量为m 的物体和一个轻弹簧组成弹簧振子,其固有振动周期为T .当它作振幅为A 的自由简谐振动时,其振动能量E=. 三.计算题1.质量为M =1.5kg 的物体,用一根长为 l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10g 的子弹以0v =500m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小m/s 300 v ,设穿透时间极短.求:(l )子弹刚穿出时绳中张力的大小; (2)子弹在穿透过程中所受的冲量.2.某弹簧不遵守胡克定律,若施力F ,则相应伸长为x ,力与伸长的关系为F =52.8 x 十38.4x 2(SI )求:(1)将弹簧从定长1x =0.5m 拉伸到定长2x =1.00m 外力所需做的功.(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17kg 的物体,然后将弹簧拉伸到一定长2x = 1.00m,再将物体有静止释放,求当弹簧回到1x =0.5m 时,物体的速率. (3)此弹簧的弹力是保守力吗?3.一简谐波沿OX 轴正方向传播,波长λ=4m ,周期T =4s ,已知x =0处质点的振动曲线如图所示,(l )写出x =0处质点的振动方程; (2)写出波的表达式;(3)画出t =1s 时刻的波形曲线.Ml答案一.选择题1.(C )2.(B ) 3.(C ) 4.(C )5.(D ) 6.(D ) 7.(B ) 8.(C ) 9.(C) 10.(E) 二.填空题1. 8m 2分 10m 2分2. k mbg2分 k mbgt2分3. )11(21ba m Gm -- 4. 质点系所受合外力的冲量等于质点系(系统)动量的增量. 1分i i i i t t v m v m dt F 2121∑∑⎰-= 2分系统所受合外力等于零. 1分 5. 0.12m/s6. μ+g m M mv 22)(2)(7. )2/cos(04.0ππ-t(其中振相1分,周期1分,初相2分) 8. )12/23cos(05.0π+ωt (SI ) 或)12/cos(05.0πω-t (SI ) 9. 2×102N /m; 1.6Hz.10. 222/2T mA π.三.计算题1.解:(1)穿透时间极短,故可认为物体未离开平衡位置.因此作用于子弹、物体系统上的外力均在铅直方向,故系统在水平方向上动量守恒.令子弹穿出物体的水平速度为v ',有: v M mv mv '+=0 2分s m M v v m v /3/4/)(0,=-= 1分N l Mv Mg T 1.17/2=+= 2分 (2)方向为正方向)设00(v mv mv t f-=∆ 3分 s N •-=2 2分 负号表示冲量方向与0v方向相反. 2分2.解:(l )外力做的功 ⎰•=r d F W ⎰+=21)4.388.52(2x xdx x x J 31= 4分(2)设弹力为F ', =221mv W x d F x x -=•'⎰21 3m W v /2-= 1分s m v /34.5= l 分(3)此力为保守力,因为其功的值仅与弹簧的始末态有关. 3分3.解:(1))3/21cos(10220π+π⨯=-t y (SI ) 3分(2))3/)4/4/(2cos[1022π+-π⨯=-x t y (SI ) 3分(3) t =1s 时,波形方程: )6/521cos[1022π-π⨯=-x y (SI ) 2分故有如图的曲线. 4分(注:可编辑下载,若有不当之处,请指正,谢谢!)。
大学物理第一章质点运动学

)
oR P
方向:永远指向圆心---向心加速度---速度方向的变化率
二、变速圆周运动 切向加速度 法向加速度
t v (t)
t t v (t t)
(t t) Q
(t)
1、加速度定义 已知: v v(t)
v v(t t) v(t)
➢平均加速度
a v t
y
v(t)
P1
P2
r(t)
r (t t)
v(t t)
v(t)
v v(t t)
➢瞬时加速度
0
a
lim
v
dv
t0 t dt
d 2r dt 2
x
方大向小::av的极dd限vt 方向,
且指向轨道凹侧
二、质点的运动方程(运动函数)
1、质点的位置矢量(位矢,矢经)r
r (t)
z z( t )
P( t )
·
r( t )
x( t )
k i0
j
y( t )
x
直角坐标下: P(x, y, z)
x x(t), y y(t), z z(t)
位置矢量: r
y
大小r r : OP间直线距离
方向:
OP
§1.1 质点的运动函数
一、 质点运动学的基本概念
1、参考系和坐标系
运动是绝对性的 运动的描述是相对性
参考系——用来描述物体运动而选作参考的物体或物体系。
(1)描述物体运动必须选取参考系。 (2)运动学中参考系可任选,不同参考系中物体的运动形式可以不同。 (3)常用参考系:
太阳参考系(太阳 ─ 恒星参考系) 地心参考系(地球 ─ 恒星参考系) 地面参考系或实验室参考系 质心参考系(第三章§6)
大学物理 第一章(1)

a
v2 R
n0
dv dt
t0
R―曲率半径
思考 求抛体运动过程中的曲率半径?
如B 点 at 0 , an g ,v B v 0cosθ
RB
v2
B an
(v 0cosθ)2
g
y v
B
思考
· a4 v
· a1
a·2
O
a3
O
x C
上图中分别是什么情形? a4情形是否存在?
(2)物体各点运动情况相同
本课程力学部分,除刚体外,一般都可视为质点.
2 位置矢量(position vector of a particle)
表征某时刻质点位置的矢量, 简称位矢或矢径
r xi yj zk
r 位矢 的大小:
y
r r x2 y2 z2 r 位矢 的方向余弦:
a
ddtv
20
2
sin2ti
16
2
t 1s
cos 2tj
dt
t 1s
16 2 j (m / s2 )
x 5 sin2t
x2 y2
{
y 4 cos 2t
52 42 1
解题思路:
位移(求矢量差)
1 运动方程 轨道 方程(消去t)
:
an
v2 R
n0
(改变速度方向)
切向加速度(tangential acceleration)
:at
dv dt t0
v
aτ
(改变速度大小)
v2 dv a R n0 dt t0
大学物理第一章课件

04
大学物理第一章:电磁学基础
电场与电场强度
电场
电荷和电流在空间中激发的场,对其 中运动的电荷产生力的作用。
电场强度
描述电场对电荷作用力大小的物理量, 用矢量表示,单位是伏特/米(V/m) 或牛顿/库仑(N/C)。
电场线
用来形象地描述电场的强弱和方向的 假想线,电场线上每一点的切线方向 表示该点的电场强度方向。
动量与角动量
动量
一个物体的质量与它的速度的乘 积,表示物体运动的量。
角动量
一个旋转物体的转动惯量与它的 角速度的乘积,表示物体旋转运 动的量。
功与能
功
力在物体运动轨迹上所做的乘积,表 示力对物体运动所做的贡献。
能
一个物体由于它的运动或位置而具有 做功的能力,表示物体运动或位置的 量。
03
大学物理第一章:热学基础
大学物理课程是高等教育的必修基础课程之一,旨在为学生提供物理学的 基本概念、原理和方法,培养其科学素养和解决实际问题的能力。
课程目标
01
掌握物理学的基本概念和原理,理解物质的基本性 质和运动规律。
02
学会运用物理学原理和方法分析、解决实际问题, 培养科学思维和创新能力。
03
培养学生对自然界的敬畏和好奇心,激发探索未知 世界的热情和追求科学的动力。
偏振分类
偏振分为线偏振、椭圆偏振和圆偏振三种类型。
偏振应用
偏振现象在光学仪器、通信和信息处理等领域有 广泛应用,如偏振眼镜、液晶显示等。
06
大学物理第一章:近代物理简介
量子力学基础
量子态与波函数
01
描述微观粒子状态的数学函数,具有波粒二象性。
薛定谔方程
02
描述粒子在给定势能下的运动状态的偏微分方程。
大学物理第一章

r (t) x(t)i y(t) j z(t)k
标量形式 x x(t), y y(t), z z(t)
t 从上式消去参数 得轨迹方程 f ( x, y, z) 0
上页 下页 返回 帮助
1-2 位置矢量 位移
第一章 质点运动学
例如 质点的运动方程为
r R costi R sintj
速度的方向余弦 cos 0, cos 15 , cos 10t
上页 下页 返回 帮助
1-3 速度 加速度
第一章 质点运动学
(2)当t=1s时, 18.03m s-1
cos 0, cos 0.832, cos 0.555
即 90 , 33 42', 56
再求加速度矢量。由定义得 a 10k
质点是实际物体的一个理想模型,后面我们还会建立刚体、 理想气体、点电荷等理想模型,建立理想模型的方法在处理 实际问题中是很有意义的.
上页 下页 返回 帮助
1-2 位置矢量 位移
第一章 质点运动学
一、位置矢量和运动方程
1 位置矢量
在物理学中用一个有向线段来表示质点的位置. 这个有向线段
的长度为质点到原点的距离,方向规定为由坐标原点指向质点 所在位置P点,称为质点的位置矢量,简称位矢,记做r
解 由加速度的定义式 a d 恒量
dt
d a dt
a d t at C1
设当t=0时, 0 ,代入上式可得 C1 0
因此 0 at
由速度的定义式得
0
at
dx dt
d x (0 at) d t
上页 下页 返回 帮助
1-4 直线运动
第一章 质点运动学
积分可得 x (0 at) d t 0 d t at d t
大学物理第一章

r v
r g
近日点
r g r v
r v
注意: 直线运动中“位移、速度、加速度”的矢量性。 注意: 直线运动中“位移、速度、加速度”的矢量性。
当质点作直线运动时 当质点作直线运动时 直线 矢量的方向性体现在指向上,用正、负号表示 矢量的方向性体现在指向上,
x = x(t )
dx v= dt
注意
r v r a
r v r a
r a
r v
速率增大,加速度与速度的夹角小于90° 速率增大,加速度与速度的夹角小于 °。 速率减小,加速度与速度的夹角大于90° 速率减小,加速度与速度的夹角大于 °。
r g
r v r v r g
r g r v
r v
r 远日点 g r v
r v r g r v r r g g
第一篇
力 学
力学
——研究机械运动的规律 研究机械运动的规律 研究机械运动
物体位置随时间的变化
(mechanics)
力学
研究随时间的推移,物体空间位置的变动。 运动学 —研究随时间的推移,物体空间位置的变动。
动力学 —研究物体间相互作用与运动的关系。 研究物体间相互作用与运动的关系。 研究物体间相互作用与运动的关系
∆S
是矢量
S
r r( t )
r ∆r
r r ( t + ∆t )
o
路程 ∆S 平均速率= = >0 时间 ∆t 是标量
( 2 ) 瞬时速度
质点在t时刻的瞬时速度等于t至t + ∆t时间内 的平均速度当∆t → 0时的极限。
r r r ∆r dr v = lim = ∆t → 0 ∆t dt
即:质点的瞬时速度等于位置矢量对时间的 变化率或一阶导数。
《大学物理1》内容提要(PDF)

1.参考系:描述物体运动时用作参考的其它物体和一套同步的钟.2.位矢和位移一运动的描述➢运动方程kt z j t y i t x t r r)()()()(++==➢位移)()(t r t t r r−∆+=∆注意: 一般rr ∆≠∆ 3.速度和速率tsd d =v k t z j dt y i t x t rd d d d d d d ++==v ➢速度➢速率(速度合成)第一章质点运动学3.加速度任意曲线运动都可以视为沿x ,y ,z 轴的三个各自独立的直线运动的叠加(矢量加法).——运动的独立性原理或运动叠加原理.kj i t r t a z y x tv t v t v v d d d d d d d d d d 22++===二. 匀加速运动=a常矢量初始条件:or v ,0ta +=0v v 2021ta t r++=0v r➢匀加速直线运动at+=0v v 2021att x ++=0v x ax22=−20v v ➢抛体运动0=x a ga y −=θcos 0x v v =gty −=θsin 0vv t⋅=θcos 0v x 221sin gtt −⋅=θ0vy 三. 圆周运动➢角速度Rt v ==d d θω➢角加速度td d ωβ=➢速度tt t d d e r e e ts ω===v vnn t t e a e a a +=➢圆周运动加速度22nt a a a +=切向加速度22t d d d d ts r t a ===αv 法向加速度rr a 22n v v ===ωω(指向圆心)(沿切线方向)➢力学的相对性原理:动力学定律在一切惯性系中都具有相同的数学形式.四. 相对运动➢伽利略速度变换u+='v v第二章牛顿定律一牛顿运动定律第一定律:惯性和力的概念,惯性系的定义.第二定律:tp F d d =vm p =当时,写作c <<v a m F=第三定律2112F F−=力的叠加原理+++=321F F F F 二国际单位制力学基本单位m 、kg 、s量纲:表示导出量是如何由基本量组成的关系式.t mma F xx x d d v ==tmma F yy y d d v ===直角坐标表达形式自然坐标表达形式d d t t F ma mt ==vn n F ma mρ==2v牛顿第二定律的数学表达式am t p F ==d d 一般的表达形式nn t t y x e F e F j F i F F +=+=(1)万有引力r221e r m m G F−=重力gm P =三几种常见的力(3)摩擦力滑动摩擦力静摩擦力Nf F F μ=N0f0m 0f F F F μ=≤(2)弹性力:弹簧弹力(张力、正压力和支持力)kxF−=四应用牛顿定律解题的基本思路1)确定研究对象,几个物体连在一起需作隔离体,把内力视为外力;2)受力分析:画受力图;3)建立坐标系,列方程求解;(用分量式)4)先用文字符号求解,后代入数据计算结果.第三章动量守恒定律和能量守恒定律一动量、冲量、动量定理vm p =——机械运动的量度质点的动量力的冲量——力对时间的累计⎰=21d t tt F I1221d v v m m t F t t −=⎰质点的动量定理:质点所受合外力的冲量等于质点在此时间内动量的增量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意:题目要答在专门设计的答卷上,答在试卷上无效!!
一、 选择题(单选题,每小题3分,共30分)
1. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 2
2+=(其中a 、b 为
常量), 则该质点作 (A) 匀速直线运动. (B) 变速直线运动.
(C) 抛物线运动. (D) 一般曲线运动.
2. 一个质点同时在几个力作用下的位移为:
k j i r
654+-=∆ (SI)
其中一个力为恒力k j i F
953+--= (SI),则此力在该位移过程中所作的功为
(A) -67 J . (B) 17 J . (C) 67 J . (D) 91 J .
3. 关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量, 与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置. (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.
4. 在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速) (A) (4/5) c . (B) (3/5) c .
(C) (2/5) c . (D) (1/5) c .
5. 一质点作简谐振动,周期为T .质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为
(A) T /4. (B) T /6
(C) T /8 (D) T /12
6. 当一平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的? (A) 媒质质元的振动动能增大时,其弹性势能减小,总机械能守恒.
(B) 媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同. (C) 媒质质元的振动动能和弹性势能的相位在任一时刻都相同,但二者的数值不相等.
(D) 媒质质元在其平衡位置处弹性势能最大.
7. 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分
(A) 凸起,且高度为λ / 4. (B) 凸起,且高度为λ / 2. (C) 凹陷,且深度为λ / 2.
(D) 凹陷,且深度为λ / 4. 8. 三个偏振片P 1、P 2与P 3堆叠在一起,P 1与P 3的偏振化方向相互垂直,P 2与P 1的偏振化方向间的夹角为
30,强度为0I 的自然光垂直入射于偏振片P 1,并依次透过偏振片P 1、P 2与P 3,若不考虑偏振片的吸收和反射,则通过三个偏振片后的光强为
(A)40I (B) 30I (C) 3230I (D) 160I
9. 一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们
(A) 温度相同、压强相同. (B) 温度、压强都不相同. (C) 温度相同,但氦气的压强大于氮气的压强.
(D) 温度相同,但氦气的压强小于氮气的压强.
10. 一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:
(A) Z 减小而λ不变. (B)
Z 减小而λ增大.
(C) Z 增大而λ减小. (D)Z 不变而λ增大.
二、 填空题(共30分)
1. (本题2分)
质点p 在一直线上运动,其坐标x 与时间t 有如下关系: x =-A sin ω t (SI) (A 为常数) (1) 任意时刻t,质点的加速度a =_______; (2) 质点速度为零的时刻t =__________.
2. (本题4分)
一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动.已知在此力作用下质点的运动学方程为3
2
43t t t x +-= (SI).在0到4 s 的时间间隔内, (1) 力F 的冲量大小I =__________________. (2) 力F 对质点所作的功W =________________. 3.(本题3分)
质量分别为m 和2m 的两物体(都可视为质点),用一长为l 的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动,已知O 轴离质量为2m 的质点的距离为
3
1
l ,质量为m 的质点的线速度为v 且与杆垂直,则该系统对转轴的角动量(动量矩)大小为________.
4. (本题4分)
一电子以0.99 c 的速率运动(电子静止质量为9.11×10-31 kg ,则电子的总能量是__________J ,电子的经典力学的动能与相对论动能之比是_____________.
5.(本题4分)
一平面余弦波沿Ox 轴正方向传播,波动表达式为 ])(
2cos[φλ
+-π=x
T t A y ,则x = -λ 处质点的振动方程是_____;若以x = λ处为新的坐标轴原点,且此坐标轴指向与波的传播方向相反,则对此新的坐标轴,该波的波动表达式是_________________________。
6. (本题2分)
如图所示,一束自然光入射到折射率分别为n 1和n 2的两种介 质的交界面上,发生反射和折射.已知反射光是完全偏振光,那 么折射角r 的值为_______________________.
7. (本题3分)
一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度a 与不透明部分宽度b
相等,则可能看到的衍射光谱的级次为 。
m
2m
l R 俯视图
8. (本题2分)
一束光线入射到单轴晶体后,成为两束光线,沿着不同方向折射.这样的现象称为双折射现象.其中一束折射光称为寻常光,它______________定律;另一束光线称为非常光,它___________定律.
9.(本题4分) 图示曲线为处于同一温度T 时氦(原子量4)、氖(原子量
20)和氩(原子量40)三种气体分子的速率分布曲线。
其中曲线(a )是 气分子的速率分布曲线;曲线(c )是
气分子的速率分布曲线;
10.(本题2分)
从统计的意义来解释, 不可逆过程实质上是一个______________________________的转变过程, 一切实际过程都向着________________________ 的方向进行.
三、计算题(每小题10分,共40分)
1. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为
22
1
MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.
2. 1 mol 单原子分子的理想气体,经历如图所示的可逆循环,联结ac 两点的曲线Ⅲ的方程为2020/V V p p =, a 点的温度为T 0
(1) 试以T 0 , 普适气体常量R 表示Ⅰ、Ⅱ、Ⅲ过程中气体吸收的热量。
(2) 求此循环的效率。
(提示:循环效率的定义式η=1- Q 2 /Q 1, Q 1为循环中气体吸收的热量,Q 2为循环中气体放出的热量。
)
3. 如图所示,一平面简谐波沿x 轴正方向传播,BC 为波密媒质的反射面.波由P 点反射,OP = 3λ /4,DP = λ /6.在t = 0时,O 处
质点的合振动是经过平衡位置向负方向运动.求D 点处入射波与反射波的合振动方程.(设入射波和反射波的振幅皆为A ,频率为ν.)
4. 一衍射光栅,每厘米200条透光缝,每条透光缝宽为a=2×10-3 cm ,
在光栅后放一焦距f=1 m 的凸透镜,现以λ=600 nm (1 nm =10-9 m)的单色平行光垂直照射光栅,求:
(1) 透光缝a 的单缝衍射中央明条纹宽度为多少? (2) 在该宽度内,有几个光栅衍射主极大?
p 9p 0
(a)(b)(c)
v
f (v )。