2017考研数学真题和模拟题

合集下载

2017年考研(数学二)真题试卷(题后含答案及解析)

2017年考研(数学二)真题试卷(题后含答案及解析)

2017年考研(数学二)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.若函数f(x)=在x=0处连续,则( )A.ab=1/2B.ab=-C.ab=0D.ab=2正确答案:A解析:=1/2a,∵f(x)在x=0处连续,1/2a=bab=1/2,选A.2.设二阶可导函数f(x)满足f(1)=f(-1)=1,f(0)=-1且f”(x)>0,则( ) A.∫-11f(x)dx>0B.∫-11f(x)dx<0C.∫-10f(x)dx>∫01f(x)dxD.∫-10f(x)dx<∫01f(x)dx正确答案:B解析:f(x)为偶函数时满足题设条件,此时∫-10f(x)dx=∫01f(x)dx,排除C,D.取f(x)=2x2-1满足条件,则∫-11f(x)dx=∫-11(2x2-1)dx=-<0,选B.3.设数列{xn}收敛,则( )A.B.C.D.正确答案:D解析:特值法:A取xn=π,有xn=π,A错;取xn=-1,排除B,C.所以选D.4.微分方程y”-4y’+8y=e2x(1+cos2x)的特解可设为yk=( )A.Ae2x+e2x(Bcos2x+Csin2x)B.Axe2x+e2x(Bcos2x+Csin2x)C.Ae2x+xe2x(Bcos2x+Csin2x)D.Axe2x+xe2x(Bcos2x+Csin2x)正确答案:C解析:特征方程为:λ2-4λ+8=0λ1.2=2±2i∵f(x)=e2x(1+cos2x)=e2x+e2xcos2x,∴y1*=Ae2x,y2*=xe2x(Bcos2x+Csin2x),故特解为:y*=y1*+y2*=Ae2x+xe2x(Bcos2x+Csin2x),选C.5.设f(x,y)具有一阶偏导数,且对任意的(x,y),都有>0,则( )A.f(0,0)>f(1,1)B.f(0,0)<f(1,1)C.f(0,1)>f(1,0)D.f(0,1)<f(1,0)正确答案:D解析:f(x,y)是关于y的单调递减函数,所以有f(0,1)<f(1,1)<f(1,0),故答案选D.6.甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,图中实线表示甲的速度曲线v=v1(t)(单位:m/s),虚线表示乙的速度曲线v=v2(t),三块阴影部分面积的数值依次为10,20,3计时开始后乙追上甲的时刻记为t0(单位:s),则( )A.t0=10B.15<t0<20C.t0=25D.t0>25正确答案:C解析:从0到t0这段时间内甲乙的位移分别为∫0t0v1(t)dt,∫0t0v2(t)dt,则乙要追上甲,则∫0t0v2(t)dt-v1(t)dt=10,当t0=25时满足,故选C.7.设A为三阶矩阵,P=(α1,α2,α3)为可逆矩阵,使得P-1AP=,则A(α1,α2,α3)=( )A.α1+α2B.α2+2α3C.α2+α3D.α1+2α2正确答案:B解析:P-1AP=A(α1,α2,α3)=(α1,α2,α3)=α2+2α3,因此B正确.8.已知矩阵A=,则( )A.A与C相似,B与C相似B.A与C相似,B与C不相似C.A与C不相似,B与C相似D.A与C不相似,B与C不相似正确答案:B解析:由|λE-A|=0可知A的特征值为2,2,1,因为3-r(2E-A)=1,∴A可相似对角化,即A~由|λE-B|=0可知B特征值为2,2,1.因为3-r(2E-B})=2,∴B不可相似对角化,显然C可相似对角化,∴A~C,但B不相似于C.填空题9.曲线y=x(1+arcsin)的斜渐近线方程为_______.正确答案:y=x+2解析:∵=2,∴y=x+2.10.设函数y=y(x)由参数方程确定,则d2y/dx2=|t=0_______.正确答案:解析:11.∫0+∞dx=_______.正确答案:1解析:12.设函数f(x,y)具有一阶连续偏导数,且af(x,y)=yeydx+x(1+y)eydy,f(0,0)=0,则f(x,y)=_______.正确答案:xyey解析:f’x=yey,f’y1=x(1+y)ey,f(x,y)=∫yeydx=xyey+c(y),故f’y=xey+xyey+c’(y)=xey+xyey,故c’(y)=0,即c(y)=c,由f(0,0)=0,即f(x,y)=xyey.13.∫01dy∫y1dx=_______.正确答案:lncos1解析:∫01dy∫y1dx=∫01dx∫0xdy=∫01tanxdx=lncos1.14.设矩阵A=的一个特征向量为,则a=_______.正确答案:-1解析:设α=,由题设知Aα=λα,故(1 1 2)T=λ(1 1 2)T故a=1.解答题解答应写出文字说明、证明过程或演算步骤。

2017年考研数学一二三真题

2017年考研数学一二三真题

2017年考研数学一二三真题绝密★启用前2017年全国硕士研究生入学统一考试数学(一)(科目代码301)考生注意事项1.答题前,考生必须在试题册指定位置上填写考生姓名和考生编号;在答题卡指定位置上填写报考单位、考生姓名和考生编号,并涂写考生编号信息点。

2.考生须把试题册上的试卷条形码粘贴条取下,粘贴在答题卡“试卷条形码粘贴位置”框中。

不按规定粘贴条形码而影响评卷结果的,责任由考生自负。

3.选择题的答案必须涂写在答题卡相应题号的选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内。

超出答题区域书写的答案无效;在草稿纸、试题册上答题无效。

4.填(书)写部分必须使用黑色字迹签字笔或者钢笔书写,字迹工整、笔迹清楚;涂写部分必须使用2B铅笔填涂。

5.考试结束后,将答题卡和试题册按规定一并交回,不可带出考场。

2017年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=?≤?在0x =处连续,则() ()()11()22()02A abB abC abD ab ==-==(2)设函数()f x 可导,且'()()0f x f x >,则()()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >-<->-<-(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量()1,2,2u =的方向导数为()()12()6()4()2A B C D(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则()()s0000()10()1520()25()25A t B t C t D t =<<=>(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则()()()()()22T T TT A E B E C E D E αααααααα-++-不可逆不可逆不可逆不可逆(6)设矩阵200210100021,020,020*********A B C ===??????,则() ()()(),,(),,A A C B C B A C B C C A C B C D A C B C 与相似与相似与相似与不相似与不相似与相似与不相似与不相似(7)设,A B 为随机概率,若0()1,0()1P A P B <<<<,则()()P A B P A B >的充分必要条件是()()()()()()()()()()()()()A PB A P B A B P B A P B AC P B A P B AD P B A P B A ><><(8)设12,(2)n X X X n ≥为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论中不正确的是()()()22221122221()()2()()()()ni n i ni i A X B X X C X X D n X μχχχμχ==----∑∑服从分布服从分布服从分布服从分布二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 已知函数21()1f x x=+,则(3)(0)f =__________ (10) 微分方程'''230y y y ++=的通解为y =_________(11) 若曲线积分221L xdx aydy x y -+-?在区域{}22(,)|1D x y x y =+<内与路径无关,则 a =__________(12) 幂级数111(1)n n n nx ∞--=-∑在区间(1,1)-内的和函数()S x =________(13)设矩阵101112011A ??= ? ???,123,,ααα为线性无关的3维列向量组,则向量组123,,A A A ααα的秩为_________(14)设随机变量X 的分布函数为4()0.5()0.5()2x F x x -=Φ+Φ,其中()x Φ为标准正态分布函数,则EX =_________三、解答题:15—23小题,共94分.请将解答写在答题..纸.指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)设函数(,)f u v 具有2阶连续偏导数,(,cos )xy f e x =,求0x dydx=,22x d y dx=(16)(本题满分10分)求21limln 1nn k k k n n →∞=??+ ∑ (17)(本题满分10分)已知函数()y x 由方程333320x y x y +-+-=确定,求()y x 的极值(18)(本题满分10分)设函数()f x 在区间[0,1]上具有2阶导数,且0()(1)0,lim 0x f x f x+→><,证明: ()I 方程()0f x =在区间(0,1)内至少存在一个实根;()∏方程2''()()(())0f x f x f x +=在区间(0,1)内至少存在两个不同实根。

2017年全国研究生入学考试考研数学(一)真题及答案解析

2017年全国研究生入学考试考研数学(一)真题及答案解析

一点的密度为 9 x2 y2 z2 ,记圆锥面与柱面的交线为 C 。
(I)求 C 在 xOy 面上的投影曲线的方程;
3
(9)已知函数
f
(x)
1 1 x2
,则
f
(3) (0)
_______。
【答案】 0
【解析】
因为
f
(
x)
1
1 x2
1 x2
x4
x6
n
( x2 )
n0
n
(1) x2n
n0
n
f (x) (1) 2n(2n 1)(2n 2)x 2n3
n0
将 x 0 带入 f (0) 0
(10)微分方程 y 2 y 3y 0 的通解为 y _______。
程或演算步骤.
(15)(本题满分 10 分)设函数
f (u, v) 具有 2 阶连续偏导数,y
f (ex , cos x) ,求 dy dx
d2y
x0

dx2
x0 。
【解析】由复合函数求导法则,可得:
dy dx
f1ex
f2(sin x)
dy 故 dx
x0
f1(1,1)
进一步地:
5
d2y dx2
ex
[V2
(t
)
V1
(t
)]dt
,由定积分的几何意义可知,
25
0 [V2
(t)
V1 (t )]dt
20
10
10
,可知
t0
25
,故选(C)。
(5)设 是 n 维单位列向量, E 为 n 阶单位矩阵,则
(A) E T 不可逆
(B) E T 不可逆

2017年全国硕士研究生入学统一考试数学一真题及答案解析 .doc

2017年全国硕士研究生入学统一考试数学一真题及答案解析 .doc

五年级下册数学期末试卷37一、 填空题(39分)1、折线统计图不仅可以表示( ),还可以表示( )。

2、一盒糖果共有14块,平均分给7个同学,每块糖果是这盒糖果的( );每人分得( )块。

3、要画一个周长21.98分米的圆,圆规两脚尖的距离是( )分米;这个圆的周长是( )平方分米。

4、圆周率是( )与( )的商,它是一个( )小数,计算时取近似值( )。

5、2203的分数单位是( ),它减去( )个这样的分数单位后,就是1。

6、一个圆的半径扩大5倍时,那么它的面积扩大( );直径扩大( ); 周长扩大( );。

7、14和15的最大公因数是( );最小公倍数是( )。

24和48的最大公因数是( );最小公倍数是( )。

15和20 的最大公因数是( );最小公倍数是( )。

8、美术兴趣小组有36人,女生12人。

男生人数是女生的( ),女生人数是男生的( ),男生人数占美术兴趣小组的( )。

9、1里面有( )个141;分母是18的最简真分数有( ) 它们的和是( )。

10、在( )里填适当的最简分数。

20时=( )日 25厘米=( )米 150毫升=( )升 50公顷=( )平方千米15平方厘米=( )平方分米 300千克=( )吨11、在○里填“>” “<”或“=”73○0.43 613○2.2 1.2○151 12、在54、1012、1010、715、914、1352中,真分数有( );假分数有( );最简分数有( )。

二、选择题(6分)1、如果下面各图形的周长都相等,那么( )的面积最小。

A 、 长方形B 、正方形C 、圆2、两个圆的面积相等,那么它们的周长( )。

A 、不一定相等B 、相等3、一个分数的分母扩大3倍,分子缩小3倍,这个分数就( )A 、扩大9倍B 、不变C 、扩大6倍D 、缩小9倍4、136的分子增加12,要使分数的大小不变,分母应增加( ) A 、26 B 、24 C 、395、直径是半径的( )。

2017年考研(数学二)真题试卷(题后含答案及解析)

2017年考研(数学二)真题试卷(题后含答案及解析)

2017年考研(数学二)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.若函数f(x)=在x=0处连续,则( )A.ab=1/2B.ab=-C.ab=0D.ab=2正确答案:A解析:=1/2a,∵f(x)在x=0处连续,1/2a=bab=1/2,选A.2.设二阶可导函数f(x)满足f(1)=f(-1)=1,f(0)=-1且f”(x)>0,则( ) A.∫-11f(x)dx>0B.∫-11f(x)dx<0C.∫-10f(x)dx>∫01f(x)dxD.∫-10f(x)dx<∫01f(x)dx正确答案:B解析:f(x)为偶函数时满足题设条件,此时∫-10f(x)dx=∫01f(x)dx,排除C,D.取f(x)=2x2-1满足条件,则∫-11f(x)dx=∫-11(2x2-1)dx=-<0,选B.3.设数列{xn}收敛,则( )A.B.C.D.正确答案:D解析:特值法:A取xn=π,有xn=π,A错;取xn=-1,排除B,C.所以选D.4.微分方程y”-4y’+8y=e2x(1+cos2x)的特解可设为yk=( )A.Ae2x+e2x(Bcos2x+Csin2x)B.Axe2x+e2x(Bcos2x+Csin2x)C.Ae2x+xe2x(Bcos2x+Csin2x)D.Axe2x+xe2x(Bcos2x+Csin2x)正确答案:C解析:特征方程为:λ2-4λ+8=0λ1.2=2±2i∵f(x)=e2x(1+cos2x)=e2x+e2xcos2x,∴y1*=Ae2x,y2*=xe2x(Bcos2x+Csin2x),故特解为:y*=y1*+y2*=Ae2x+xe2x(Bcos2x+Csin2x),选C.5.设f(x,y)具有一阶偏导数,且对任意的(x,y),都有>0,则( )A.f(0,0)>f(1,1)B.f(0,0)<f(1,1)C.f(0,1)>f(1,0)D.f(0,1)<f(1,0)正确答案:D解析:f(x,y)是关于y的单调递减函数,所以有f(0,1)<f(1,1)<f(1,0),故答案选D.6.甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,图中实线表示甲的速度曲线v=v1(t)(单位:m/s),虚线表示乙的速度曲线v=v2(t),三块阴影部分面积的数值依次为10,20,3计时开始后乙追上甲的时刻记为t0(单位:s),则( )A.t0=10B.15<t0<20C.t0=25D.t0>25正确答案:C解析:从0到t0这段时间内甲乙的位移分别为∫0t0v1(t)dt,∫0t0v2(t)dt,则乙要追上甲,则∫0t0v2(t)dt-v1(t)dt=10,当t0=25时满足,故选C.7.设A为三阶矩阵,P=(α1,α2,α3)为可逆矩阵,使得P-1AP=,则A(α1,α2,α3)=( )A.α1+α2B.α2+2α3C.α2+α3D.α1+2α2正确答案:B解析:P-1AP=A(α1,α2,α3)=(α1,α2,α3)=α2+2α3,因此B正确.8.已知矩阵A=,则( )A.A与C相似,B与C相似B.A与C相似,B与C不相似C.A与C不相似,B与C相似D.A与C不相似,B与C不相似正确答案:B解析:由|λE-A|=0可知A的特征值为2,2,1,因为3-r(2E-A)=1,∴A可相似对角化,即A~由|λE-B|=0可知B特征值为2,2,1.因为3-r(2E-B})=2,∴B不可相似对角化,显然C可相似对角化,∴A~C,但B不相似于C.填空题9.曲线y=x(1+arcsin)的斜渐近线方程为_______.正确答案:y=x+2解析:∵=2,∴y=x+2.10.设函数y=y(x)由参数方程确定,则d2y/dx2=|t=0_______.正确答案:解析:11.∫0+∞dx=_______.正确答案:1解析:12.设函数f(x,y)具有一阶连续偏导数,且af(x,y)=yeydx+x(1+y)eydy,f(0,0)=0,则f(x,y)=_______.正确答案:xyey解析:f’x=yey,f’y1=x(1+y)ey,f(x,y)=∫yeydx=xyey+c(y),故f’y=xey+xyey+c’(y)=xey+xyey,故c’(y)=0,即c(y)=c,由f(0,0)=0,即f(x,y)=xyey.13.∫01dy∫y1dx=_______.正确答案:lncos1解析:∫01dy∫y1dx=∫01dx∫0xdy=∫01tanxdx=lncos1.14.设矩阵A=的一个特征向量为,则a=_______.正确答案:-1解析:设α=,由题设知Aα=λα,故(1 1 2)T=λ(1 1 2)T故a=1.解答题解答应写出文字说明、证明过程或演算步骤。

2017年全国硕士研究生入学统一考试数学三真题及答案解析 .doc

2017年全国硕士研究生入学统一考试数学三真题及答案解析 .doc

2017年全国硕士研究生入学统一考试数学三真题及答案解析一、选择题(本题共8小题,每小题4分,满分32分)(1)若函数⎪⎩⎪⎨⎧≤>-=0,,0,cos 1)(x b x axxx f 在0=x 处连续,则( ) )(A 21=ab 。

)(B 21-=ab 。

)(C 0=ab 。

D (2=ab 。

【答案】)(A【解】aax x f x 21cos 1lim)00(0=-=++→,b f f =-=)00()0(,因为)(x f 在0=x 处连续,所以)00()0()00(-==+f f f ,从而21=ab ,应选)(A 。

(2)二原函数)3(y x xy z--=的极值点为( ))(A )0,0(。

)(B )3,0(。

)(C )0,3(。

)(D )1,1(。

【答案】)(D【解】由⎪⎩⎪⎨⎧=--='=--='023,02322x xy x z y xy y z yx 得⎩⎨⎧==0,0y x ⎩⎨⎧==1,1y x ⎩⎨⎧==3,0y x ⎩⎨⎧==0,3y x y z xx 2-='',y x z xy 223--='',x z yy 2-='',当)0,0(),(=y x 时,092<-=-B AC ,则)0,0(不是极值点;当)1,1(),(=y x 时,032>=-B AC 且02<-=A ,则)1,1(为极大点,应选)(D 。

(3)设函数)(x f 可导,且0)()(>'⋅x f x f ,则( ))(A )1()1(->f f 。

)(B )1()1(-<f f 。

)(C |)1(||)1(|->f f 。

)(D |)1(||)1(|-<f f 。

【答案】)(C 【解】若0)(>x f ,则0)(>'x f ,从而0)1()1(>->f f ;若0)(<x f ,则0)(<'x f ,从而0)1()1(<-<f f ,故|)1(||)1(|->f f ,应选)(C 。

2017考研数学模拟测试题完整版及标准答案解析(数一)

2017考研数学模拟测试题完整版及标准答案解析(数一)

2017考研数学模拟测试题完整版及答案解析(数一)一、选择题(本题共8小题,每小题4分,满分32分,每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)当0x →时,下面4个无穷小量中阶数最高的是 ( )(A)(B) 23545x x x ++(C) 33ln(1)ln(1)x x +--(D) 1cos 0x-⎰【答案】(D )【解析】(A )项:当0x →时22x =(B)项:显然当0x →时,2352454x x xx ++(C )项:当0x →时,333333333122ln(1)ln(1)ln ln12111x xx x x x x x x⎛⎫++--==+ ⎪---⎝⎭(D)项:1cos 31100001(1cos )2limlim lim k k k x x x x xx x x kx kx ---→→→→-⋅===⎰所以,13k -=,即4k =时1cos 0limkx x-→⎰存在,所以41cos 08x -⎰(2)下列命题中正确的是( )(A) 若函数()f x 在[],a b 上可积,则()f x 必有原函数 (B )若函数()f x 在(,)a b 上连续,则()baf x dx ⎰必存在(C)若函数()f x 在[],a b 上可积,则()()x ax f x dx Φ=⎰在[],a b 上必连续 (D)若函数()f x 在[],a b 上不连续,则()f x 在该区间上必无原函数【答案】 C【解析】选项(A )错误,反例:1,01()2,12x f x x ≤≤⎧=⎨<≤⎩,在[]1,2可积,但它无原函数。

选项(B )错误,反例:1()f x x=在(0,1)上连续,但101dx x ⎰不存在。

选项(D)错误,反例:112cos sin ,0()00x x f x x xx ⎧+≠⎪=⎨⎪=⎩ 在0x =处不连续,但其原函数可取21cos ,0()00x x F x xx ⎧≠⎪=⎨⎪=⎩ 。

2017考研数学二真题及答案

2017考研数学二真题及答案

2017考研数学二真题及答案一、选择题(本题共8小题,每小题4分,满分32分)(1)若函数⎪⎩⎪⎨⎧≤>-=0,,0,cos 1)(x b x axxx f 在0=x 处连续,则( ) )(A 21=ab 。

)(B 21-=ab 。

)(C 0=ab 。

D (2=ab 。

【答案】)(A【解】aax x f x 21cos 1lim)00(0=-=++→,b f f =-=)00()0(,因为)(x f 在0=x 处连续,所以)00()0()00(-==+f f f ,从而21=ab ,应选)(A 。

(2)设二阶可导函数)(x f 满足1)1()1(=-=f f ,1)0(-=f ,且0)(>''x f ,则( ))(A ⎰->110)(x f 。

)(B ⎰-<110)(x f 。

)(C ⎰⎰->101)()(dx x f x f 。

)(D ⎰⎰-<11)()(dx x f x f 。

【答案】)(B【解】取12)(2-=x x f ,显然⎰-<110)(x f ,应选)(B 。

(3)设数列}{n x 收敛,则 ( ))(A 当0sin lim =∞→n n x 时,0lim =∞→n n x 。

)(B 当0)||(lim =+∞→n n n x x 时,0lim =∞→n n x 。

)(C 当0)(lim 2=+∞→nn n x x 时,0lim =∞→n n x 。

)(D 当0)sin (lim =+∞→n n n x x 时,0lim =∞→n n x 。

【答案】)(D【解】令A x n n =∞→lim ,由0sin )sin (lim =+=+∞→A A x x n n n 得0=A 。

(4)微分方程)2cos 1(842x e y y y x+=+'-''的特解可设为=*y ( ))(A )2sin 2cos (22x C x B e Ae x x ++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

凯程考研,为学员服务,为学生引路!
第 1 页 共 1 页 2017考研数学真题和模拟题
1、重视真题。

最好的辅导资料一定是历年真题,最好方法一定是历年真题做透。

如何用好真题?建议大家两轮,第一老真题可以按照高学、线代、概率章节做。

尽快尽早做。

第二近十年真题按照套卷做,三小时能不能完成,遇到困难怎么办?高分学员建议数1数2数3,都要做,只要考纲要求的。

试卷之间有差异,只要考卷要求。

对真题要做归纳和总结。

第二要做12套左右高质量的模拟卷。

真题在强化课程当中引用过、老师讲过。

做的时候感觉做过吗?但是模拟卷都是全新的。

为什么要交错做。

真题做一套感觉自己考清华的,做做模拟题信心又没了。

模拟卷是打击你的,真题提升你信心的。

交错使用效果会更好。

第三不要偏科,放弃线代或者概率。

特别是概率,一直同学们把概率当做小三,概率永远爬不上去,然后说概率放弃。

线代和概率大题很容易把握很容易拿分。

所以同学们一定要记住考场上要把会做的题拿下,复习的时候把可能考的题先拿下,千万不要放弃线代和概率。

命题专家2013年到2016年都说了考生分析问题和解决问题的能力比较差,特别是处理概率题的能力很差。

你做题是不是可以考虑高学留在最后,今年得分率0.08,不做也无所谓了。

资料舍取,真题是必须的,真题是最核心的,真题两遍不能完成的话,其他资料让位。

模拟卷也是,是打击你的,上了考场不至于崩溃。

提高学习效率,一定要独立做题。

看懂不等于做出来,看看都懂,一本数学书看得很快,如果我选择我宁愿从第一步独立做到最后。

整理错题本,周一到周五做新题,双休日整理错题。

由厚到薄,看需要注意什么。

计算错误照片集,每次拍一张照,考前定期看自己的错误,如果想发朋友圈也可以。

所以这是一些提高学习效率的方法。

相关文档
最新文档