八年级分式方程复习总结与练习

合集下载

最新初二数学八上分式和分式方程所有知识点总结和常考题型练习题

最新初二数学八上分式和分式方程所有知识点总结和常考题型练习题

分式知识点一、分式的定义如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。

二、与分式有关的条件①分式有意义:分母不为0(0B ≠)②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A )④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) ⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)三、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

字母表示:C B C ∙∙=A B A ,CB C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。

四、分式的约分定义:把分式的分子与分母的公因式约去,叫做分式的约分。

步骤:把分式分子分母因式分解,然后约去分子与分母的公因。

注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。

②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。

最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。

五、分式的通分定义:把几个异分母的分式化成同分母分式,叫做分式的通分。

步骤:分式的通分最主要的步骤是最简公分母的确定。

最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

确定最简公分母的一般步骤:Ⅰ 取各分母系数的最小公倍数;Ⅱ 单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式;Ⅲ 相同字母(或含有字母的式子)的幂的因式取指数最大的。

Ⅳ 保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。

注意:分式的分母为多项式时,一般应先因式分解。

八年级数学上册第十五章分式基础知识点归纳总结(带答案)

八年级数学上册第十五章分式基础知识点归纳总结(带答案)

八年级数学上册第十五章分式基础知识点归纳总结单选题1、若数a使关于x的分式方程2x−1+a1−x=4的解为正数,则a的取值正确的是()A.a<6且a≠2B.a>6且a≠1C.a<6D.a>6答案:A分析:表示出分式方程的解,由解为正数确定出a的范围即可.解:分式方程整理得:2x−1−ax−1=4,去分母得:2−a=4x−4,解得:x=6−a4,由分式方程的解为正数,得到6−a4>0,且6−a4≠1,解得:a<6且a≠2.故选:A.小提示:此题考查了分式方程的解,始终注意分母不为0这个条件.2、若关于x的分式方程m+4x−3=3xx−3+2有增根,则m的值为()A.2B.3C.4D.5答案:D分析:根据分式方程有增根可求出x=3,方程去分母后将x=3代入求解即可.解:∵分式方程m+4x−3=3xx−3+2有增根,∴x=3,去分母,得m+4=3x+2(x−3),将x=3代入,得m+4=9,解得m=5.故选:D.小提示:本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.3、若把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值( )A .扩大到原来的3倍B .扩大到原来的6倍C .缩小为原来的13D .不变 答案:D分析:根据分式的基本性质即可求出答案.解:∵2×3x 3x+3y =2×3x 3(x+y )=2xy x+y ,∴把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值不变,故选:D .小提示:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4、计算x x+1+1x+1的结果是( )A .x x+1B .1x+1C .1D .−1答案:C分析:根据同分母分式的加法法则,即可求解.解:原式=x+1x+1=1, 故选C .小提示:本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键.5、若a +b =5,则代数式(b 2a ﹣a )÷(a−b a )的值为( )A .5B .﹣5C .﹣15D .15 答案:B分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.∵a +b =5,∴原式=b 2−a 2a ⋅a a−b =−(a+b )(a−b )a ⋅a a−b =−(a +b )=−5, 故选:B .小提示:考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用.6、某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,可列方程为()A.300x =200x+30B.300x−30=200xC.300x+30=200xD.300x=200x−30答案:C分析:乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,根据300÷甲的工效= 200÷乙的工效,列出方程即可.乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,依题意得:300x+30=200x,故选C.小提示:本题考查了分式方程的应用,弄清题意,根据关键描述语句找到合适的等量关系是解决问题的关键..7、若关于x的分式方程2x−a −3x=0的解为x=3,则常数a的值为()A.a=2B.a=−2C.a=−1D.a=1答案:D分析:根据题意将原分式方程的解x=3代入原方程求出a的值即可.解:∵关于x的分式方程2x−a −3x=0解为x=3,∴23−a−1=0,∴2=3−a,∴a=1,经检验,a=1是方程23−a−1=0的解,故选:D.小提示:本题主要考查了利用分式方程的解求参数,熟练掌握相关方法是解题关键.8、解方程2x−13=x+a2−1时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是( )A .x =−3B .x =−2C .x =13D .x =−13答案:A分析:先按此方法去分母,再将x=-2代入方程,求得a 的值,然后把a 的值代入原方程并解方程.解:把x =2代入方程2(2x -1)=3(x +a )-1中得:6=6+3a -1,解得:a =13,正确去分母结果为2(2x -1)=3(x +13)-6, 去括号得:4x -2=3x +1-6,解得:x =-3.故选:A小提示:本题考查了一元一次方程的解的定义以及解一元一次方程.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.9、下列运算正确的是( )A .2a +3b =5abB .(−ab)2=a 2bC .a 2⋅a 4=a 8D .2a 6a 3=2a 3答案:D分析:根据合并同类项法则,同底数幂的乘法、幂的乘方与积的乘方以及单项式除以单项式法则解答. 解:A 、2a 与3b 不是同类项,不能合并,故本选项错误;B 、原式=a 2b 2,故本选项错误;C 、原式=a 6,故本选项错误;D 、原式=2a 3,故本选项正确.故选D .小提示:本题考查了同底数幂的乘法的性质与同类项合并同类项法则,熟练掌握性质和法则是解题的关键.10、下列分式中是最简分式的是( )A .2x 2B .42xC .x−1x 2−1D .x−1(x−1)2答案:A分析:一个分式的分子分母无公因式或公因数叫最简分式,四个选项逐个分析排除,只有选项A是最简分式,选项B、C、D中分子分母分别有公因数2、公因式x−1、公因式x−1,都不是最简分式.选项A不能约分,是最简分式;选项B中分子分母有公因数2,可约分,不是最简分式;选项C中x−1x2−1=x−1(x+1)(x−1),分子分母有公因式x−1,可约分,不是最简分式;选项D中分子分母有公因式x−1,可约分,不是最简分式;故选:A.小提示:本题主要考查了最简分式的概念,最简分式指的是分子分母无无公因式或公因数的分式,有时需要将分子分母进行因式分解再判断.填空题11、计算2m−2−mm−2的结果是 ____.答案:−1分析:根据分式的减法法则即可得.解:原式=2−mm−2=−(m−2) m−2=−1,所以答案是:−1.小提示:本题考查了分式的减法,熟练掌握运算法则是解题关键.12、若实数m使得关于x的不等式组{2x>23x<m+1无解,则关于y的分式方程yy−1=4−m2y−2的最小整数解是_________.答案:2分析:先求出每个不等式的解集,然后根据不等式组无解求出m的取值范围,再解分式方程从而确定y的取值范围即可得到答案.解:解不等式2x>2得:x>1,解不等式3x <m +1得:x <m+13, ∵不等式组无解,∴m+13≤1,∴m ≤2;y y −1=4−m 2y −2去分母得2y =4−m ,解得y =4−m 2,∵m ≤2,∴4−m ≥2∴y =4−m 2≥1,又∵y −1≠0,∴y >1,∴y 的最小整数解为2,所以答案是:2小提示:本题主要考查了根据不等式组的解集情况求参数,解分式方程,熟知相关计算法则是解题的关键.13、方程22x−1+x 1−2x =1的解是________.答案:x =1分析:原方程去分母得到整式方程,求解整式方程,最后检验即可.解:22x−1+x 1−2x =1, 22x−1﹣x 2x−1=1, 方程两边都乘2x ﹣1,得2﹣x =2x ﹣1,解得:x =1,检验:当x =1时,2x ﹣1≠0,所以x =1是原方程的解,即原方程的解是x=1,所以答案是:x=1.小提示:本题考查了解分式方程,把分式方程转化为整式方程是解答本题的关键,注意解分式方程不一定要检验.14、若|a|=2,且(a−2)0=1,则2a的值为_______.##0.25答案:14分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4所以答案是:1.4小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.15、用科学记数法将﹣0.03896保留两位有效数字为____.答案:﹣3.9×10﹣2分析:先根据科学记数法表示该数,再保留两个有效数字即可.解:﹣0.03896=﹣3.896×10﹣2≈﹣3.9×10﹣2,所以答案是:﹣3.9×10﹣2.小提示:此题考查了科学记数法的表示方法,有效数字的概念,正确理解各知识点是解题的关键.解答题16、为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?答案:每个篮球的原价是120元.分析:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据“该公司出资10000元就购买了和原计划一样多的篮球”列出方程并解答.解:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据题意,得12000x =10000x−20.解得x =120.经检验x =120是原方程的解.答:每个篮球的原价是120元.小提示:本题考查了分式方程的应用,根据题意列出方程是解题的关键.17、若a ,b 为实数,且(a−2)2+|b 2−16|b+4=0,求3a ﹣b 的值. 答案:2分析:根据题意可得{a −2=0b 2−16=0b +4≠0,解方程组可得a,b,再代入求值.解:∵(a−2)2+|b 2−16|b+4=0,∴{a −2=0b 2−16=0b +4≠0,解得{a =2b =4, ∴3a ﹣b=6﹣4=2.故3a ﹣b 的值是2.小提示:本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.18、阅读材料:对于非零实数a ,b ,若关于x 的分式(x−a)(x−b)x 的值为零,则解得x 1=a ,x 2=b .又因为(x−a)(x−b)x =x 2−(a+b)x+ab x=x +ab x ﹣(a +b ),所以关于x 的方程x +ab x =a +b 的解为x 1=a ,x 2=b . (1)理解应用:方程x 2+2x =3+23的解为:x 1= ,x 2= ;(2)知识迁移:若关于x 的方程x +3x =5的解为x 1=a ,x 2=b ,求a 2+b 2的值;(3)拓展提升:若关于x 的方程4x−1=k ﹣x 的解为x 1=t +1,x 2=t 2+2,求k 2﹣4k +2t 3的值. 答案:(1)3,23;(2)19;(3)12. 分析:(1)根据题意可得x =3或x =23;(2)由题意可得a +b =5,ab =3,再由完全平方公式可得a 2+b 2=(a +b )2-2ab =19;(3)方程变形为x -1+4x−1=k -1,则方程的解为x -1=t 或x -1=t 2+1,则有t (t 2+1)=4,t +t 2+1=k -1,整理得k =t +t 2+2,t 3+t =4,再将所求代数式化为k 2-4k +2t 3=t (t 3+t )+4t 3-4=4(t 3+t )-4=12.(1)解:∵x +ab x =a +b 的解为x 1=a ,x 2=b ,∴x 2+2x =x +2x =3+23的解为x =3或x =23,所以答案是:3,23;(2)解:∵x +3x =5,∴a +b =5,ab =3,∴a 2+b 2=(a +b )2-2ab =25-6=19; (3)解:4x−1=k -x 可化为x -1+4x−1=k -1,∵方程4x−1=k -x 的解为x 1=t +1,x 2=t 2+2,则有x -1=t 或x -1=t 2+1,∴t (t 2+1)=4,t +t 2+1=k -1, ∴k =t +t 2+2,t 3+t =4, k 2-4k +2t 3=k (k -4)+2t 3=(t+t2+2)(t+t2-2)+2t3=t4+4t3+t2-4=t(t3+t)+4t3-4=4t+4t3-4=4(t3+t)-4=4×4-4=12.小提示:本题考查了分式方程的解,理解题意,灵活求分式方程的解,并结合完全平方公式对代数式求值是解题的关键.。

(完整word版)初二分式方程应用题总结

(完整word版)初二分式方程应用题总结

分式方程应用题行程问题:这类问题涉及到三个数量:路程、速度和时间。

它们的数量关系是:路程=速度*时间。

列分式方程解决实际问题要用到它的变形公式:速度=路程/时间,时间=路程/速度。

1、走完全长3000米的道路,如果速度增加25%,可提前30分到达,那么速度应达到多少?2、从甲地到乙地有两条公路:一条是全长600Km 的普通公路,另一条是全长480Km 的告诉公路。

某客车在高速公路上行驶的平均速度比在普通公路上快45Km ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。

3、从甲地到乙地的路程是15千米,A 骑自行车从甲地到乙地先走,40分钟后,B 骑自行车从甲地出发,结果同时到达。

已知B 的速度是A 的速度的3倍,求两车的速度。

4、假日工人到离厂25千米的浏览区去旅游;一部分人骑自行车,出发1小时20分钟后,其余的人乘汽车出发,结果两部分人同时到达,已知汽车速度是自行车的3倍,求汽车和自行车速度5、我部队到某桥头阻击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。

6、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。

求先遣队和大队的速度各是多少?7、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度8、八年级(1)班学生周末乘汽车到游览区游览,游览区到学校120千米,一部分学生乘慢车先行,出发1小时后,另一部分学生乘快车前往,结果他们同时到达,已知快车速度是慢车的1。

5倍,求慢车的速度9、两地相距360千米,回来时车速比去时提高了50%,因而回来比去时途中时间缩短了2小时,求去时的速度 .10、甲、乙两人同时从A 、B 两地相向而行,如果都走1小时,两人之间的距离等于A 、B 两地距离的81;如果甲走32小时,乙走半小时,这样两人之间的距离等于A 、B 间全程的一半,求甲、乙两人各需多少时间走完全程?11、某人骑自行车比步行每小时多走8千米,已知他步行12千米所用时间和骑自行车走36千米所用时间相等,求这个人步行每小时走多少千米?12、某校少先队员到离市区15千米的地方去参加活动,先遣队与大队同时出发,但行进的速度是大队的2.1倍,以便提前半小时到达目的地做准备工作,求先遣队和大队的速度各是多少.13、供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度.水流问题1、轮船顺流航行66千米所需时间和逆流航行48千米所需时间相等,已知水流速度每小时3千米,求轮船在静水中的速度2、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。

专题5.16 分式与分式方程(全章复习与巩固)(知识讲解)八年级数学下册基础知识专项讲练(北师大版)

专题5.16 分式与分式方程(全章复习与巩固)(知识讲解)八年级数学下册基础知识专项讲练(北师大版)

专题5.16分式与分式方程(全章复习与巩固)(知识讲解)【学习目标】1.理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.了解分式的基本性质,掌握分式的约分和通分法则.3.掌握分式的四则运算.4.结合分式的运算,将指数的讨论范围从正整数扩大到全体整数,构建和发展相互联系的知识体系.5.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.【要点梳理】要点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.特别说明:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算a b a b c c c±±=;同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算a c acb d bd⋅=,其中a b c d 、、、是整式,0bd ≠.两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算a c a d adb d bc bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠.两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方.4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.要点三、分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.特别说明:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.【典型例题】类型一、分式➽➼分式的意义✭✭分式的基本性质1.已知分式2x nx m+-(m ,n 为常数)满足表格中的信息,则下列结论中错误..的是()x 的取值-22pq分式的值无意义012A .2n =B .2m =-C .6p =D .q 的值不存在【答案】A【分析】根据分式有意义的条件可得m ,n 的值,进而可知p ,q 的值,选出符合要求的选项即可.解:∵x 为﹣2时方程无意义,∴x -m =0,解得:m =﹣2,故B 正确,故分式为:22x n x ++,当x =2时,分式的值为0,故2×2+n =0,n =﹣4,故A 错误,故分式为:242x x -+,当分式值为1时,2x -4=x +2,解得:x =6,故6p =,故C 正确,当2422x x -=+时,2x -4=2x +4,此等式不成立,则q 的值不存在,故D 正确,故选:A .【点拨】本题考查分式有意义的条件,方程思想,能够熟练掌握分式有意义的条件时解决本题的关键.举一反三:【变式1】若不论x 取何实数时,分式22ax x a-+总有意义,则a 的取值范围是()A .1a ≥B .1a >且0a ≠C .1a >D .1a <【答案】C 【分析】分式22ax x a-+总有意义,则分母永远不等于0,即22x x a -+的最小值大于0,据此解题即可.解:∵分式22ax x a-+总有意义,∴()22211x x a x a -+=-+-的最小值10a ->,解得1a >.【点拨】本题主要考查分式有意义的条件及二次函数的最值问题,能够熟练利用条件列不等式是解题关键.【变式2】若分式||3(3)(2)a a a --+的值为0,则a 满足的条件是()A .3a =B .3a =-C .3a =±D .3a =或2a =-【答案】B【分析】由分式的值为0的条件可得:()()30320a a a ì-=ïí-+¹ïî①②,再解方程与不等式即可.解:∵分式||3(3)(2)a a a --+的值为0,()()30320a a a ì-=ï\í-+¹ïî①②由①得:3,a =±由②得:3a ≠且2,a ≠-∴ 3.a =-故选B【点拨】本题考查的是分式的值为0的条件,掌握“分式的值为0,则分子为0,而分母不为0”是解本题的关键.2.不改变分式的值,下列各式变形正确的是()A .11x x y y +=+B .1x yx y-+=--C .22x y x y x y-=++D .22233x x y y ⎛⎫= ⎪⎝⎭【答案】B【分析】根据分式的基本性质即可一一判定.解:A.11x x y y ++≠,故该选项错误,不符合题意;B.()1x y x y x y x y---+==---,故该选项正确,符合题意;C.22x y x y x y-=-+,故该选项错误,不符合题意;D.22239x x y y ⎛⎫= ⎪⎝⎭,故该选项错误,不符合题意;【点拨】本题考查了分式的基本性质,解题的关键是熟练运用分式的基本性质.举一反三:【变式1】下列各式从左边到右边的变形正确的是()A .22x y y xx y x y--=++B .a b a bc c-+-=-C .0.220.22a b a ba b a b++=++D .1x yx y--=+【答案】B【分析】根据分式的基本性质作答.解:A 、22x y y xx y x y--=-++,此选项变形错误;B 、a b a bc c -+-=-,此选项变形正确;C 、0.22100.2102a b a ba b a b++=++,此选项变形错误;D 、1x yx y--=-+,此选项变形错误;故选B .【点拨】本题主要考查了分式的变形,解答此类题一定要熟练掌握分式的基本性质.【变式2】如果把分式xyx y+中的x 和y 都扩大10倍,则分式的值()A .扩大20倍B .扩大10倍C .不变D .缩小10倍【答案】B【分析】根据分式的基本性质即可求出答案;解:()x y xy xyx y x y x y==+++101010010101010 故选:B .【点拨】本题考查了分式的基本性质;解题的关键是熟练运用分式的基本性质进行化简比较.类型二、分式➽➼相关概念➽➼最简分式✭✭约分✭✭最简公分母✭✭通分3.分式122m +与11m +的最简公分母是()A .22m +B .2m +C .1m +D .21m -【答案】A【分析】根据最简公分母的概念,求解即可.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.解:分式122m +与11m +的最简公分母22m +,故选:A【点拨】此题考查了最简公分母的概念,解题的关键是熟练掌握最简公分母的概念.举一反三:【变式】分式212x y 和216xy 的最简公分母是()A .2xyB .222x y C .226x y D .336x y 【答案】C【分析】根据最简公分母的确定方法解答即可.解:分式212x y 和216xy的最简公分母是226x y .故选:C .【点拨】本题主要考查了最简公分母的确定方法,确定最简公分母的一般方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.4.下列分式中,属于最简分式的是()A .2xB .22x x C .42xD .11x x --【答案】A【分析】根据最简分式的定义逐一判断即可.解:A.2x,是最简分式,符合题意;B.22x x =12x,不是最简分式,不合题意;C.422x x=,不是最简分式,不合题意;D.111xx -=--,不是最简分式,不合题意,故选:A .【点拨】本题考查最简分式的定义,一个分式的分子与分母没有非零次的公因式时(即分子与分母互素)叫最简分式.举一反三:【变式】下列分式中是最简分式的是()A .224x x B .22x y x y++C .2211x x x +++D .242x x -+【答案】B【分析】分子分母不含公因式的分式叫做最简分式,对四个选项逐一检查是否还能化简即可求得结果.解:A 选项22142x x x=,故不是最简分式;B 选项不能再化简,故是最简分式;C 选项()22121111x x x x x x +++==+++,故不是最简分式;D 选项()()2224222x x x x x x +--==-++,故不是最简分式.故选:B .【点拨】本题考查了分式的约分,解决本题的关键是找到分子分母中的公因式.类型三、解分式方程➽➼根的情况➽➼增根✭✭无解5.(1)通分:()22xyx y +和22x x y -;(2)约分:22416m mm --.【答案】(1)()()()()2222xy x y xyx y x y x y -=++-,()()()222x x y x x y x y x y +=-+-;(2)4m m +【分析】(1)找出两分母的最简公分母,通分即可;(2)原式变形后,约分即可得到结果.解:(1)()()()()2222xy x y xyx y x y x y -=++-,()()()222x x y xx y x y x y +=-+-;(2)()()()224416444m m m m m m m m m --==-+-+.【点拨】此题考查了通分及约分,通分的关键是找出各分母的最简公分母,约分的关键是找出分子分母的公因式.举一反三:【变式】(1)约分:236a bab;(2)通分:223b a 与abc 【答案】(1)2a ;(2)2223b c a bc 与3233a a bc【分析】(1)直接利用分式的性质化简,进而得出答案;(2)首先得出最简公分母,进而得出答案.解:(1)2336322a b ab a aab ab ⨯==⨯;(2)223b a与abc 最简公分母为:23a bc ,则:2222222333b b bc b ca a bc a bc ⨯==⨯,23223333a a a a bc bc a a bc⨯==⨯.【点拨】本题主要考查了通分与约分,正确掌握分式的性质是解题关键.6.若分式方程1x aa x -=+有增根,则a 的值为________.【答案】1-【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母10x +=,得到=1x -,然后代入整式方程算出a 的值即可.解:方程两边同时乘以1x +得,()1x a a x -=+,∵方程有增根,∴10x +=,解得=1x -.∴10a --=,解得1a =-.故答案为:1-.【点拨】本题考查了分式方程的增根,先根据增根的定义得出x 的值是解答此题的关键.举一反三:【变式】如果关于x 的方程2133mx x =---有增根,那么m 的值为________.【答案】2-【分析】先将分式方程去分母转化为整式方程,再由分式方程有增根,得到最简公分母为0求出x 的值,最后代入整式方程求出k 的值即可.解:分式方程去分母得:23x m =--,由分式方程有增根,得到30x -=,即3x =,把3x =代入整式方程得:2m =-.故答案为:2-.【点拨】本题主要考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.类型四、解分式方程➽➼根的情况➽➼正(负)数解✭✭非负(正)数解7.若关于x的不等式组341227x xa x+⎧-≥⎪⎨⎪->⎩无解,且关于y的分式方程3122y a yy y+=---的解为非负整数,则符合条件的所有整数a的和为______.【答案】16【分析】首先根据不等式组无解求得a的取值范围,再解分式方程,根据分式方程的解为非负整数得出a为整数,23a+为非负整数,然后确定出符合条件的所有整数a,即可得出答案.解:341227x xa x+⎧-≥⎪⎨⎪->⎩①②,解不等式①得:3x≥,解不等式②得:7x a<-,∵不等式组341227x xa x+⎧-≥⎪⎨⎪->⎩无解,∴73a-≤,∴10a≤,分式方程3122y a yy y+=---去分母,得32y y a y-=---,∴23ay+=,∵分式方程3122y a yy y+=---的解为非负整数,∴0y≥且20y-≠,∴203a+≥且4a≠,∵a为整数,23a+为非负整数,∴2a=-,1,7,10,∴整数a的和为2171016-+++=.故答案为:16.【点拨】此题考查的是解分式方程、解一元一次不等式组,掌握分式方程、一元一次不等式组的解法是解决此题关键.举一反三:【变式】若关于x 的方程301ax x+=-无解,则a 的值为______.【答案】0或-3【分析】先去分母化为整式方程,根据分式方程无解得到x =0或x =1或3+a =0,将解代入整式方程求出a 即可.解:去分母,得3x +a (x -1)=0,∴(3+a )x-a =0,∵原分式方程无解,∴x =0或x =1或3+a =0,当x =0时,a =0;当x =1时,3+0=0,无解;∴a =0,当3+a =0时,解得a =-3,故答案为:0或-3.【点拨】此题考查了根据分式方程解的情况求参数,正确掌握解分式方程的解法是解题的关键.8.若关于x 的分式方程3121m x +=-的解为非负数,则m 的取值范围是____.【答案】4m ≥-且3m ≠-【分析】先解关于x 的分式方程,求得x 的值,然后再依据“解是非负数”建立不等式求m 的取值范围.解:去分母得,m +3=2x ﹣1,∴x =42+m ,∵方程的解是非负数,∴m +4≥0即m ≥﹣4,又因为2x ﹣1≠0,∴x ≠12,∴42+m ≠12,∴m ≠-3,则m 的取值范围是m ≥﹣4且m ≠-3.故答案为:m ≥﹣4且m ≠-3.【点拨】本题考查了分式方程的解及分式有意义的条件,理解题意得出相应不等式求解即可.举一反三:【变式】关于x 的方程1233x m x x -=+--有正数解,则m 取值范围是______.【答案】5m <且2m ≠【分析】先解分式方程求出方程的解,再根据这个方程有正数解和3x ≠建立不等式,由此即可得.解:1233x m x x -=+--,方程两边同乘以()3x -,得()123x m x -=+-,去括号,得126x m x -=+-,移项、合并同类项,得5x m -=-,系数化为1,得5=-+x m ,关于x 的方程1233x m x x -=+--有正数解,50m ∴-+>,且53m -+≠,解得:5m <且2m ≠,故答案为:5m <且2m ≠.【点拨】本题考查了解分式方程,熟练掌握方程的解法是解题关键,需注意的是,分式方程有正数解隐含方程不能有增根.类型五、分式➽➼化简✭✭求值9.关于x 的分式方程334111ax x x x +-+=--的解为正整数,则满足条件的整数a 的值为____________.【答案】-3【分析】求得分式方程的解,利用方程的解的特征确定整数a 的值.解:分式方程334111ax x x x +-+=--的解为:24x a =+,∵分式方程有可能产生增根1,又∵关于x 的分式方程334111ax x x x +-+=--的解为正整数,且24x a =+≠1,∴满足条件的所有整数a 的值为:-3,∴a 的值为:-3,故答案为:-3.【点拨】本题主要考查了分式方程的解,方程的整数解,考虑分式方程可能产生增根的情况是解题的关键.举一反三:【变式】对于关于x 的分式方程()2141111k k x x x +=≠-+--①若k =1,则方程的解为________;②若方程有增根且无解,则k 的值为________;③若方程的解为负数,请你写出符合条件的且互为相反数的两个k 的值________.【答案】2x =k =2|k|>5即可,如6±【分析】①若k =1,得到分式方程为2114111x x x +=+--,解分式方程即可求解;②根据方程有增根且无解,可得x =±1,然后把x 的值代入整式方程中进行计算即可解答;③根据题意可得51k x k -=+,利用方程的解为负数求出k 的取值范围,再求出互为相反的两个k 值.解:①若k =1,得到分式方程为2114111x x x +=+--,去分母得114x x -++=,解得2x =.故答案为:2x =;②将()2141111k k x x x +=≠-+--去分母得()114x k x -++=,解得51k x k-=+.∵方程有增根且无解,∴210x -=,解得1x =±,当x =1时,511k k-=+,解得:2k =,当x =-1时,511k k -=-+无解,∴k 的值为2.故答案为:2k =;③∵方程的解为负数,∴x <0且x ≠±1,∴501k k-<+且511k k -≠±+,解得5k <-或5k >,∴符合条件的且互为相反数的两个k 的值可以是±6.故答案为:5k <-或5k >,如±6.【点拨】本题考查了分式方程的增根,分式方程的解法,根据题意求出x 的值后,代入整式方程中进行计算是解题的关键.10.计算:(1)211a a a ---;(2)4222⎛⎫⎛⎫+-÷ ⎪ ⎪--⎝⎭⎝⎭a a a a 【答案】(1)11a -(2)a 【分析】(1)先对原式通分变为同分母的分式,再相减即可解答本题;(2)先将括号内的进行计算,再将除法转换为乘法后,再约分即可得到答案.解:(1)211a a a ---=2(1)(1)11a a a a a +----=2(1)(1)1a a a a -+--=22(1)1a a a ---=22+11a a a --=11a -(2)4222⎛⎫⎛⎫+-÷ ⎪ ⎪--⎝⎭⎝⎭a a a a =4222a a a a ⎛⎫⎛⎫++÷ ⎪ ⎪--⎝⎭⎝⎭=24422a a a a -+⎛⎫÷ ⎪--⎝⎭=222a a a a-⨯-=a【点拨】本题主要考查了分式的混合运算,解题的关键是明确分式混合运算的计算方法.举一反三:【变式】计算:(1)22122x x x x-+÷;(2)2126339x x x x --++--.(3)22241123x x x x x ---÷+--.(4)2443111m m m m m -+⎛⎫÷-- ⎪--⎝⎭.【答案】(1)12x -;(2)2239x x --;(3)52x +;(4)22m m --+.【分析】(1)根据分式的加减运算以及乘除运算法则进行计算;(2)根据分式的加减运算以及乘除运算法则进行计算;(3)根据分式的加减运算以及乘除运算法则进行计算;(4)根据分式的加减运算以及乘除运算法则进行计算.解:(1)22122x x x x-+÷解:原式()()()1121x x x x x +-=⋅+12x -=;(2)2126339x x x x --++--解:原式()()1263333x x x x x -=+++-+-()()()()()()()()2336333333x x x x x x x x x -+-=+++--++-()()236633x x x x x -++-+=+-22239x x x +-=-()()()()3133x x x x +-=+-13x x -=-;(3)22241123x x x x x ---÷+--解:原式()()()()3121122x x x x x x -+-=-⋅+-+2322x x x x +-=-++()232x x x +--=++(4)2443111m m m m m -+⎛⎫÷-- ⎪--⎝⎭解:原式()()()22113111m m m m m m -+-⎡⎤=÷-⎢⎥---⎣⎦()()2231211m m m m ⎡⎤---⎢⎥=÷--⎢⎥⎣⎦()222411m m m m -⎡⎤-=-÷⎢⎥--⎣⎦()()()221122m m m m m --=-⋅--+22m m -=-+.【点拨】本题考查分式的混合运算,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型.类型五、解分式方程➽➼运算✭✭化简✭✭求值11.先化简,再求值:2224124421x x x x x x x x ⎛⎫-+-÷--- ⎪-+--⎝⎭,然后从1-,0,1,2中选择一个合适的数作为x 的值代入求值.【答案】21--x x,1x =-时,12-【分析】先根据分式的运算法则把所给代数式化简,然后从所给数中取一个使分式有意义的数代入计算.解:原式()()()22222412212x x x x x x x x x ⎛⎫+--+-=÷- ⎪----⎝⎭()22224412212x x x x x x x x ⎛⎫-+--=÷-- ⎪----⎝⎭()2222441212x x x x x x x -+--+=÷----12121x x x x -=⋅---111x x =---21x x =--20x -≠ ,且10x -≠,且0x ≠2x ∴≠,且1x ≠,且0x ≠取=1x -时,原式12=-【点拨】本题考查了分式的计算和化简,解决这类题目关键是把握好通分与约分;关键是掌握分式加减的本质是通分,乘除的本质是约分,同时注意在进行运算前要尽量保证每个分式最简.举一反三:【变式】先化简22424422x x x x x x x ⎛⎫--+÷ ⎪-++-⎝⎭,从不等式组()3421213212x x x x ⎧-≤-⎪⎪⎨+⎪-<⎪⎩的整数解中,选取一个你最喜欢的x 的值代入求值.【答案】82x +,1x =时,83【分析】根据分式的乘除法法则和约分法则把原式化简,根据解一元一次不等式组的步骤解出不等式组,从解集中选取使分式有意义的值代入计算即可.解:22424422x x x x x x x ⎛⎫--+÷ ⎪-++-⎝⎭22(2)22(2)(2)x x x x x x x ⎡⎤-=+÷⎢⎥-⎣⎦-++-22(2)(2)(2)(2)(2)2(2)x x x x x x x x ⎡⎤-=-÷⎢⎥-+-+-⎣⎦+2428x x x x =÷--2482x x x x -=⋅-82x =+,由()34212x x -≤-,2863x x -≤-,解得:54x ≥-;由13212x x +-<,4132x x --<,解得:3x <,故不等式组的解集为:534x -≤<,0,2,2x ≠- 当1x =时,原式83=.【点拨】本题考查的是分式的化简求值和一元一次不等式组的解法,掌握分式的乘除法法则和约分法则是解题的关键.12.解分式方程.(1)33122x x x-+=--;(2)214111x x x -+=+-【答案】(1)1x =(2)无解【分析】(1)分式方程两边同乘以(2)x -去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程两边同乘以(1)(1)x x +-去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解:(1)33122x x x-+=--323x x -+-=-3+23x x +=-22x =解得,1x =经检验,1x =是原方程的解,所以,原方程的解为:1x =(2)214111x x x-+=+-2(1)4(1)(1)x x x --=+-222141x x x -+-=-22x -==1x -经检验,=1x -是增根,原方程无解.【点拨】此题主要考查了解分式方程,正确找出分式方程的最简公分母是解答本题的关键.举一反三:【变式】解分式方程(1)432x x =+;(2)217133x x x+=---【答案】(1)6x =(2)无解【分析】(1)等号两边同时乘以(2)x x +将原方程转换为整式方程,然后求解验根即可;(2)等号两边同时乘以(3)x -将原方程转换为整式方程,然后求解验根即可.(1)解:432x x=+,去分母得:43(2)x x =+,解得:6x =,经检验6x =是原方程的解;(2)217133x x x+=---去分母得:2137x x +=-+,解得:3x =,经检验3x =是原方程的增根,故原方程无解.【点拨】本题考查了解分式方程,熟练掌握解分式方程的一般步骤是解本题的关键,注意解分式方程需要验根.类型五、分式方程的应用➽➼列方程✭✭解方程✭✭求值13.(1)解方程:411233x x x -=+--;(2)先化简,再求值:222(2)5242x x x x x x ++-÷---+,其中x 从2-,2和3中选一个合适的值.【答案】(1)2x =-(2)72x +,75【分析】(1)将分式方程化为整式方程,再解整式方程,最检验整式方程的解是不是分式方程的解即可;(2)根据分式的运算法则化简,再代入一个使原方式有意义的值求解即可.(1)解:411233x x x -=+--,方程两边同乘3x -,得()41231x x -=-+,解得2x =-,检验:当2x =-时,30x -≠,∴原分式方程的解是2x =-;(2)解:222(2)5242x x x x x x ++-÷---+()()222252(2)2x x x x x x x +-+-=⋅--++512x x -=-+252x x x +-+=+72x =+,2x =- 或2时,原分式无意义,3x ∴=,当3x =时,原式77325==+.【点拨】本题考查了解分式方程,分式的化简求值,分式有意义的条件,熟练掌握知识点是解题的关键.举一反三:【变式】解方程:(1)2232122x x x x x --+=--(2)()32011x x x x +-=--【答案】(1)1x =(2)无解【分析】(1)根据解分式方程的步骤求解即可;(2)根据解分式方程的步骤求解即可.解:(1)2232122x x x x x--+=--去分母,得()22322x x x x ---=-,解得1x =,经检验,1x =是原方程的根,∴原方程的解为:1x =;(2)()32011x x x x +-=--去分母,得()320x x -+=,解得1x =,经检验,1x =是原方程的增根,∴原方程无解.【点拨】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键,注意验根.14.小状元书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、15元,甲种图书每本的售价是乙种图书每本售价的1.5倍,若用1800元在该店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(假设购进的两种图书全部销售完)【答案】(1)甲种图书售价每本30元,乙种图书售价每本20元(2)甲种图书进货400本,乙种图书进货800本时利润最大【分析】(1)根据题意,列出分式方程即可;(2)先用进货量表示获得的利润,求函数最大值即可.(1)解:设乙种图书售价每本x 元,则甲种图书售价为每本1.5x 元,,由题意得:14001800101.5x x-=,解得:20x =,经检验,20x =是原方程的解,∴甲种图书售价为每本1.52030⨯=元,答:甲种图书售价每本30元,乙种图书售价每本20元;(2)设甲种图书进货a 本,总利润W 元,则(30203)(20152)(1200)48400W a a a =--+---=+∵2015(1200)20000a a +⨯-≤,解得400a ≤,∵W 随a 的增大而增大,∴当a 最大时W 最大,∴当400a =本时,W 最大,此时,乙种图书进货本数为1200400800-=(本),答:甲种图书进货400本,乙种图书进货800本时利润最大.【点拨】本题分别考查了分式方程和一次函数最值问题,注意研究利润最大分成两个部分,先表示利润再根据函数性质求出函数最大值.举一反三:【变式1】为做好新冠疫情的防控工作,某单位需购买甲、乙两种消毒液,经了解每桶甲种消毒液的零售价比乙种消毒液的零售价多5元,该单位以零售价分别用900元和720元采购了相同桶数的甲、乙两种消毒液,(1)求甲、乙两种消毒液的零售价分别是每桶多少元?(2)由于疫情防控进入常态化,该单位需再次购买两种消毒液共100桶,且甲种消毒液的桶数不少于乙种消毒液桶数的12,由于是第二次购买,商家给予八折优惠.求甲种消毒液购买多少桶时,所需资金总额最少最少总金额是多少元?【答案】(1)甲种消毒液的零售价为25元/桶,乙种消毒液的零售价为20元/桶(2)当甲种消毒液购买34桶时,所需资金总额最少,最少总金额是1736元【分析】(1)设乙种消毒液的零售价为x 元/桶,则甲种消毒液的零售价为()+5x 元/桶,结合该单位分别用900元和720元采购相同桶数的甲、乙两种消毒液,即可列出关于x 的分式方程,进而求解即可.(2)设购买甲种消毒液m 桶,则购买乙种消毒液为()100m -桶,根据甲种消毒液的桶数不少于乙种消毒液的桶数的12,即可得出关于m 的一元一次不等式,解得m 的取值范围,然后设所需资金总额为w 元,根据题意列出函数关系式,再利用函数性质即可解决最值.(1)解:设乙种消毒液的零售价为x 元/桶,则甲种消毒液的零售价为()5+x 元/桶,依题意得:9007205x x =+,解得:=20x ,经检验,=20x 是原方程的解,且符合题意,525x ∴+=.答:甲种消毒液的零售价为25元/桶,乙种消毒液的零售价为20元/桶:(2)解:设购买甲种消毒液m 桶,则购买乙种消毒液()100m -桶,依题意得:()11002m m ≥-,解得:1003m ≥,设所需资金总额为w 元,则()250.8201000.841600w m m m =+-=+ ,40> ,w ∴随m 的增大而增大,∴当34m =时,w 取得最小值,最小值43416001736=⨯+=,答:当甲种消毒液购买34桶时,所需资金总额最少,最少总金额是1736元.【点拨】此题考查了分式方程的运用、一元一次不等式以及一次函数运用,解题关键是找准等量关系,正确列出方程.【变式2】某水果店一次购进了若干箱水蜜桃和李子,已知购进水蜜桃花费800元,购进李子花费1680元,所购李子比水蜜桃多10箱,李子每箱的进价是水蜜桃每箱进价的1.4倍.(1)水蜜桃和李子每箱进价分别为多少元?水蜜桃和李子各多少箱?(2)根据市场情况,每箱李子可以比每箱水蜜桃的利润多5元,这批水果全部售完后,店家若想获得不少于800元的利润,应该如何确定每箱水蜜桃和李子的售价?【答案】(1)水蜜桃和李子每箱进价分别为40元和56元,各20箱和30箱(2)每箱水蜜桃和李子的售价分别不少于53元和74元【分析】(1)设水蜜桃每箱x 元,则李子每箱1.4x 元,由题意列出分式方程,解之,再根据进货费用算出多少箱即可;(2)设水蜜桃每箱利润y 元,则李子每箱利润(5)y +元,由题意列出不等式,解不等式即可.(1)解:设水蜜桃每箱x 元,则李子每箱1.4x 元,根据题意得:1680800101.4x x -=,解得:40x =,经检验40x =是原方程的解,则1.4 1.44056x =⨯=,8004020÷=,16805630÷=,答:水蜜桃和李子每箱进价分别为40元和56元,各20箱和30箱;(2)设水蜜桃每箱利润y 元,则李子每箱利润(5)y +元,根据题意得:8001680(5)8004056y y ++≥,解得:13y ≥,134053+=,1355674++=,答:每箱水蜜桃和李子的售价分别不少于53元和74元.【点拨】本题考查了分式方程的应用以及一元一次不等式的应用;理解题意,列出分式方程和一元一次不等式是解题的关键.【变式3】为预防新冠疫情的反弹,桐君阁大药房派采购员到厂家去购买了一批A 、B 两种品牌的医用外科口罩.已知每个B 品牌口罩的进价比A 品牌口罩的进价多0.7元,采购员用7200元购进A 品牌口罩的数量为用5000元购进B 品牌数量的2倍.(1)求A 、B 两种品牌每个口罩的进价分别为多少元?(2)若B 品牌口罩的售价是A 品牌口罩的售价的1.5倍,要使桐君阁大药房销售这批A 、B 两种品牌口罩的利润不低于8800元,则A 品牌口罩每个的售价至少定为多少元?【答案】(1)A 品牌每个口罩的进价为1.8元,则B 品牌每个口罩的进价为2.5元(2)3元【分析】(1)设A 品牌每个口罩的进价为x 元,则B 品牌每个口罩的进价为()0.7x +元,根据用7200元购进A 品牌口罩的数量为用5000元购进B 品牌数量的2倍列分式方程解答;(2)先求出两种品牌口罩购买的数量,设每个A 品牌口罩的售价定为y 元,则每个B 品牌口罩的定价为1.5y 元,列不等式求解即可.(1)解:设A 品牌每个口罩的进价为x 元,则B 品牌每个口罩的进价为()0.7x +元,720050020.7x x =⨯+,解得 1.8x =,经检验, 1.8x =是原方程的解,且符合题意,∴0.7 2.5x +=,答:A 品牌每个口罩的进价为1.8元,则B 品牌每个口罩的进价为2.5元;(2)购进B 品牌口罩的数量为5000 2.52000÷=(个),购进A 品牌口罩的数量为200024000⨯=(个),设每个A 品牌口罩的售价定为y 元,则每个B 品牌口罩的定价为1.5y 元,依题意得:()()4000 1.82000 1.5 2.58800y y ⨯-+⨯-≥,解得3y ≥,答:A 品牌口罩每个的售价至少定为3元.【点拨】此题考查了分式方程的应用,一元一次不等式的应用,正确理解题意列得方程或不等式是解题的关键.。

(完整版)八年级下册数学第十六章分式方程知识点与练习题,推荐文档

(完整版)八年级下册数学第十六章分式方程知识点与练习题,推荐文档

页眉内容16.3分式方程一、基础知识:1、分式方程:分母中含有未知数的方程叫分式方程。

下列关于x 的方程哪1900015003004801232,,4,20,,,45030002321x x x x x x x x x x x x-+==-=-===-=+-些是整式方程,哪些是分式方程?2、分式方程的解法:(1)去分母,方程两边乘最简公分母,化成整式方程。

(2)解整式方程。

(3)检验:把解带入最简公分母,使最简公分母不等于0的解是方程的解,否则原分式方程无解。

例一、解分式方程:(1) (2)30048042x x -=21233x x x-=---(3) (4)2236111x x x +=+--32322x x x +=+-3、分式方程的应用。

(列方程解应用题)(1)关于工程问题。

某工程,原计划由52人在一定时间内完成,后来决定自开工之日起采用新技术,工作效率提高,现只派40人去工作,结果比原计划提前6天完成,求50%采用新技术后完成这项工程所需的天数。

(2)关于行程问题从甲地到乙地共50千米,其中开始的10千米是平路,中间的20千米是上坡路,余下的20千米又是平路,小明骑自行车从甲地出发,经过2小时10分钟到达甲乙两地的中点,再经过1小时50分钟到达乙地,求小明在平路上的速度。

(假设小明在平路上和上坡路上均保持匀速)练习:一、选择题1.方程=的解为( )23+x 11+x A .x=B .x= - C .x=-2 D .无解54212.(2009·山西中考)解分式方程11222x x x-+=--,可知方程( )A .解为2x = B .解为4x = C .解为3x = D .无解3.关于x 的方程211x a x +=-的解是正数,则a 的取值范围是( ).A .a >-1 B .a >-1且a≠0 C .a <-1D .a <-1且a≠-2 4.用换元法解分式方程时,如果设,将原方程化为关于的整式方13101x x x x --+=-1x y x -=y 程,那么这个整式方程是( )A .B .C .D .230y y +-=2310y y -+=2310y y -+=2310y y --=二、填空题5.方程 = 的解是1x –22x 6.当x =___________时,分式 的值等于2.x +3x -17.分式方程的解为 。

八年级因式分解分式与分式方程

八年级因式分解分式与分式方程

因式分解、分式复习一、知识梳理知识点一 因式分解1.分解因式:把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式.2.分解困式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:平方差公式: ; 完全平方公式: ;3.分解因式的步骤:(1)分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解.(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。

4.分解因式时常见的思维误区:提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项“ 1”易漏掉.分解不彻底,如保留中括号形式,还能继续分解等【课前练习】1.下列各组多项式中没有公因式的是( )A .3x -2与 6x 2-4x B.3(a -b )2与11(b -a )3C .mx —my 与 ny —nxD .ab —ac 与 ab —bc 2. 下列各题中,分解因式错误的是( ) 3. 列多项式能用平方差公式分解因式的是()22222222.949 .949.949 .(949)A x y B x y C x y D x y ---+-+4. 分解因式:x 2+2xy+y 2-4 =_____5. 分解因式:(1)()229=n ;()222=a(2)22x y -= ;(3)22259x y -= ; (4)22()4()a b a b +--;(5)以上三题用了 公式222222.1(1)(1) ;.14(12)(12).8164(98)(98);.(2)(2)(2)A x x x B y y y C x y x y x y D y x y x y x -=+--=+--=+---=-+-【经典考题剖析】 例 1. 分解因式:(1)33x y xy -;(2)3231827x x x -+;(3)()211x x ---;(4)()()2342x y y x ---分析:①因式分解时,无论有几项,首先考虑提取公因式。

分式典型知识点与例题总结

分式典型知识点与例题总结

人教版八年级下册分式全章 知识点和典型例习题 知识点回顾知识点一:分式形如 的式子叫做分式 。

知识点二:分式B A 的值1.当 时,分式有意义;2.当 时,分式无意义;3.当 时,分式的值为0;4.当 时,分式的值为1;5.当 时, 分式的值为正;6.当 时,分式的值为负; 知识点三:分式的基本性质用式子表示 知识点四:分式中的符号法则用式子表示 知识点五: 分式的约分 约去分子、分母的最大公因式,使分式变成最简分式或者整式 1.最大公因式= 。

2.当分式的分子和分母为多项式时, 知识点六:分式的通分把异分母分式变成同分母分式的过程。

1.最简公分母= 。

2.当分式的分子和分母为多项式时,知识点七:分式的乘除法法则(用式子表示)乘法法则:用式子表示 除法法则: 用式子表示 知识点八:回顾因式分解总步骤:一提二套三分组1. 提公因式: 套 平方差公式: 2 . 公 完全平方和:式 完全平方差:知识点九:分式的加减法法则 加法法则:减法法则:知识点十:分式的混合运算先 再 最后再 。

知识点十一:整数指数幂七大公式1.同底数幂的乘法2.同底数幂的乘法3.幂的乘方4.积的乘方5.分式的乘方法则6.0指数幂7.负整数指数幂 知识点十二:科学计数法1.绝对值大于1数都可表示成2. 绝对值小于1数都可表示成 其中101<≤a 。

知识点十三:分式方程 1. 概念 2. 解法:①去分母:② ③知识点十四:分式方程解应用题的步骤 、 、 、 、【例题】下列有理式中是分式的有(1)-3x ;(2)yx ;(3)22732xy y x -;(4)x 81-;(5)35+y ; (6)112--x x ;(7)π12--m ; (8)5.023+m ;【练习】1、在下列各式ma m x xb a x xa,),1()3(,43,2,3222--÷++π中,是分式的有 个2.找出下列有理式中是分式的代号(1)-3x ;(2)yx ;(3)22732xyy x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7) π-12m ; (8)5.023+m .二.分式的值 【例题】 1.当a 时,分式321+-a a 有意义;2.当_____时,分式4312-+x x 无意义;3.若分式33x x --的值为零,则x = ;4.当_______时,分式534-+x x 的值为1;5.当______时,分式51+-x 的值为正;6.当______时分式142+-x 的值为负.【练习】1.①分式36122--x x 有意义,则x ;②当x_____时,分式1x x x-- 有意义;③当x ____时分式x x 2121-+有意义;④当x_____时,分式11x x +-有意义;⑤使分式9x 1x 2-+有意义的x 的取值范围是 ; 2.当x = 3时,分式bx a x +-无意义,则b ______ 3. ①若分式11x x -+的值为零,则x 的值为 ;②若分式)1x )(3x (1|x |=-+-,则x 的值为_________________; ③分式392--x x 当x __________时分式的值为0;④当x= _时,分式22943x x x --+的值为0;⑤当a=______时,分式2232a a a -++ 的值为零;4.当x __ 时,分式x -51的值为正.5.当x=_____时,分式232x x --的值为1.6.若分式231-+x x 的值为负数,则x 的取值范围是__________。

新湘教版八年级数学上册第一章分式小结与复习

新湘教版八年级数学上册第一章分式小结与复习
例子
混合运算
03
CHAPTER
分式方程
根据实际问题或数学问题,通过数学模型将问题转化为分式方程。
方程的建立
利用分式方程的解法,如去分母、换元法等,求解分式方程。
方程的求解
方程的建立与求解
利用分式方程解决与速度、时间和距离相关的实际问题,如追及问题、相遇问题等。
通过建立分式方程,解决与工作效率相关的实际问题,如工程问题、工作分配问题等。
分式与其他知识点的联系
整式和分式都是代数的基本形式,整式是由数字和字母通过有限次加、减、乘运算得到的代数式,而分式是整式的一种特殊形式,其分母中含有字母。
分式可以看作是整式的除法运算,即一个分式除以另一个分式等于被除数乘以除数的倒数。
分式的约分和通分也是基于整数的约分和通分原理,通过因式分解或找最大公约数来实现。
在几何学中,我们经常需要计算图形的面积或体积。当知道图形的边长或其他尺寸时,我们可以通过分式来表示和计算面积或体积。例如,计算矩形的面积时,我们可以用分式来表示长度和宽度的关系。
详细描述
面积、体积问题
分式在解决其他实际问题中也有广泛应用,如溶液的稀释、金融投资等。
总结词
除了速度、时间、距离和面积、体积问题外,分式在现实生活中还有许多应用。例如,在化学实验中,我们经常需要稀释溶液,这时可以用分式来表示稀释的比例。在金融领域,分式可以用来表示投资回报率或利率等经济指标。
Hale Waihona Puke 与整式的联系分式方程可以转化为整式方程,通过去分母或消去分母的方法,将分式方程转化为整式方程进行求解。
解分式方程时,需要注意验根,因为分母不能为零。
分式经常出现在方程中,尤其是高次方程和分式方程。
与方程的联系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点:正整数指数幂运算和分式方程
考点:解分式方程及分式方程的简单实际应用
能力:结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想。

方法:指导法、讲解法、启发式
知识点总结:
分式方程:含分式,并且分母中含未知数的方程——分式方程。

1、解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

2、解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

3、解分式方程的步骤:
(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。

(2)解这个整式方程。

(3)把整式方程的根代入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。

(4)写出原方程的根。

增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

4、分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

5、分式方程出现无解的原因
等式的性质是左右两边同乘以一个数或整式,等式仍然成立;而这个数或整式不能为零;
分式方程在化为整式方程时同时乘以最简公分母时,这个最简公分母有可能为零,当左右两边同乘的这个最简公分母为零时,就会产生增根,即无解情况;解出的根是化为整式的方程的根,但使分式方程的分母为零,从而不是分式方程的根;
例题解析:
例1、解分式方程。

1
1112+=-+x x x
24321x x x x x ++=++
212422
x x x -=--
例2、我市要筑一水坝,需要规定日期内完成,如果由甲队去做,•恰能如期完成,如果由乙队去做,需超过规定日期三天,现由甲、乙两队合做2天后,•余下的工程由乙队独自做,恰好在规定日期内完成,求规定的日期x ,下面所列方程错误的是( )
1223x x =+
A .2x +3x x +=1
B .2x =33
x + C .(
1x +13x +)×2+13x +(x-2)=1 D .1x +3x x +=1
例3、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。

问:乙单独整理需多少分钟完工?
例4、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。

已知这个人骑自行车的速度是步行速度的4倍。

求步行的速度和骑自行车的速度。

课堂练习:
1.满足分式方程x+11x-22
x x -=+的x 值是( ) A .2 B .-2 C .1 D .0
2.当=_____时,方程
212mx m x +=-的根为12
3.如果25452310
A B x x x x x -+=-+--,则 A=____ B =________. 4.分式方程
0111x k x x x x +-=--+有增根x=1,则 k 的值为________
5.若方程1322
a x x x -=---有增根,则增根为_____, a=________. 6、 已知方程
261=311x ax a x -=+-的解与方程的解相同,则a 等于( ) A .3 B .-3 C 、2 D .-2
7、 当 k 等于( )时,125k k k k
+--与是互为相反 A .65 B. 56 C. 32 D. 23
6.解方程: 52111 2552323x x x x x x -+==+--++⑴
;⑵
7、某车间要加工170个零件,在加工完90个以后改进了操作方法,每天多加工10个,一共用 5天完成了任务.求改进操作方法后每天加工的零件个数.
8、2004年12月28日,我国第一条城际铁路一合宁铁路(合肥至南京)正式开工建设.建成后,合肥至南京的铁路运行里程将由目前的312 km缩短至154 km,设计时速是现行时速的2.5倍,旅客列车运行时间将因此缩短约3.13小时,求合宁铁路的设计时速.
9、就要毕业了,几位要好的同学准备中考后结伴到某地游玩,预计共需费用1200元,后来又有2名同学参加进来,但总费用不变,于是每人可少分摊30元,试求原计划结伴游玩的人数.
10、甲、乙两地相距200千米,一艘轮船从甲地逆流航行至乙地,然后又从乙地返回甲地,已知水流的速度为4千米/时,回来时所用的时间是去时的3

4
求轮船在静水中的速度.。

相关文档
最新文档