八年级数学(人教版)1
人教版八年级下册数学:正比例函数(1)

别说出哪些是函数、常量和自变量. 这些函数解析式 函数解析式 函数 常量 自变量 有什么共同点?
l =2πr
l 2π
r
这些函数解析式都
是常数与自变量的
m =7.8V m 7.8 V
乘积的形式!
h = 0.5n h 0.5 n
函数=常数×自变量
T = -2t T -2 t
y= k﹒ x
一 正比例函数的概念
m-2≠0, ∴ m=-2.
|m|-1=1, (2)若 y (m 1)x m2 1 是正比例函数,则m= 1 ;
m+1≠0, m2-1=0, ∴ m=1.
(3)若 y (m 2)xm23 是关于x的正比例函数,m= -2 .
二 正比例函数的应用
问题3 2011年开始运营的京沪高速铁路全长1318千米. 设列车的平均速度为300千米每小时.考虑以下问题: (1)乘高铁,从始发站北京南站到终点站上海站, 约需多少小时(保留一位小数)? (2)京沪高铁的行程 y(单位:千米)与时间t(单 位:时)之间有何数量关系? (3)从北京南站出发2.5小时后,是否已过了距始发 站1100千米的南京南站?
典例精析
已知函数 y (m 1)xm2 是正比例函数,求m的值.
解:∵函数y (m 1)xm2是正比例函数,
∴ m-1≠0, m2=1,
∴ m=-1.
即 m≠1, m=±1,
函数解析式可转化为y=kx 函数是正比例函数 (k是常数,k ≠0)的形式.
变式训练
(1)若y = (m - 2)x |m|- 1 是正比例函数,则m= -2 ;
。
2、若y =(3m-2)x是正比例函数,则m____.
3、若y=(m-1)xm2是关于 x的正比例函数,则
【初中数学】人教版八年级上册第1课时 角的平分线的性质(练习题)

人教版八年级上册第1课时角的平分线的性质(348) 1.如图,已知∠1=∠2,BA<BC,P为BN上的一点,PF⊥BC于点F,PA=PC.求证:∠PCB+∠BAP=180∘2.证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,. 求证:.请你补全已知和求证,并写出证明过程.3.如图,已知AD//BC,∠D=90∘.(1)如图①,若∠DAB的平分线与∠CBA的平分线交于点P,CD经过点P.试问:P是线段CD的中点吗?为什么?(2)如图②,如果P是DC的中点,BP平分∠ABC,∠CPB=35∘,求∠PAD的度数4.如图OP是∠AOB的平分线,点P到OA的距离为3,N是OB上的任意一点,则线段PN的取值范围为()A.PN<3B.PN>3C.PN≥3D.PN≤35.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE等于()A.2cmB.3cmC.4cmD.5cm6.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长为()A.3B.4C.6D.57.如图,在△ABC中,∠C=90∘,AD平分∠BAC,过点D作DE⊥AB于点E,测得BC=9,BE=3,则△BDE的周长是.8.如图,在△ABC中,两条外角平分线交于点P,PM⊥AC交AC的延长线于点M.若PM=6cm,则点P到AB的距离为.9.如图,已知AB//CD,O是∠BAC与∠ACD的平分线的交点.OE⊥AC于点E,OE=2,则AB与CD之间的距离为.10.如图,已知点B,D分别在∠DAB的两边上,C为∠DAB的内部的一点,且AB=AD,DC=BC,CE⊥AD交AD的延长线于点E,CF⊥AB交AB的延长线于点F.试判断CE与CF是否相等,并说明理由.11.如图,利用尺规作∠AOB的平分线OC,其作法如下:①以O为圆心,任意长为半径画弧,分别交OA,OB于点D,E;DE的长为半径画弧,两弧在∠AOB的内部交于点②分别以D,E为圆心,以大于12C;③画射线OC,则OC就是∠AOB的平分线.这样作图的原理是一种三角形全等的判定方法,这种判定方法是()A.SSSB.SASC.ASAD.AAS12.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是()A.PC=PDB.∠CPD=∠DOPC.∠CPO=∠DPOD.OC=OD13.求证:直角三角形的两锐角互余14.如图,在△ABC中,∠C=90∘,∠CAB=50∘,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB,AC于点E,F;EF的长为半径画弧,两弧相交于点G;②分别以点E,F为圆心,大于12③作射线AG,交BC边于点D.则∠ADC的度数为()A.40∘B.55∘C.65∘D.75∘15.如图,AB∥CD,以点A为圆心,小于AC长为半径画圆弧,分别交AB,AC于E,EF的长为半径画圆弧,两条圆弧交于点G,F两点,再分别以E,F为圆心,大于12作射线AG交CD于点H.若∠C=140∘,则∠AHC的大小是()A.20∘B.25∘C.30∘D.40∘参考答案1.【答案】:证明:如图,过点P 作PE ⊥BA 交BA 的延长线于点E . ∵∠1=∠2,PF ⊥BC 于点F ,∴PE =PF ,∠PEA =∠PFC =90∘.在Rt △PEA 与Rt △PFC 中,PA =PC ,PE =PF ,∴Rt △PEA ≌Rt △PFC(HL ),∴∠PAE =∠PCB .∵∠PAE +∠BAP =180∘,∴∠PCB +∠BAP =180∘.2.【答案】:解:PD ⊥OA ,PE ⊥OB ,垂足分别为D,E 求证:PD =PE证明:∵PD ⊥OA ,PE ⊥OB ,∴∠PDO =∠PEO =90∘.在△PDO 和△PEO 中,{∠PDO =∠PEO ,∠AOC =∠BOC ,OP =OP.∴△PDO ≌△PEO(AAS ),∴PD =PE .3(1)【答案】解:P 是线段CD 的中点.理由如下: 如图,过点P 作PE ⊥AB 于点E .∵AD//BC ,∠D =90∘,∴∠C =180∘−∠D =90∘,即PC ⊥BC .∵∠DAB 的平分线与∠CBA 的平分线交于点P ,∴PD =PE ,PC =PE ,∴PC=PD,∴P是线段CD的中点.(2)【答案】解:如图,过点P作PE⊥AB于点E.∵AD//BC,∠D=90∘,∴∠C=180∘−∠D=90∘,即PC⊥BC.在△PBE与△PBC中,{∠PEB=∠C,∠PBE=∠PBC,PB=PB.∴△PBE≌△PBC(AAS),∴∠EPB=∠CPB=35∘,PE=PC.∵PC=PD,∴PD=PE.在Rt△PAD与Rt△PAE中,{PA=PA,PD=PE∴Rt△PAD≌Rt△PAE(HL),∴∠APD=∠APE.∵∠APD+∠APE=180∘−2×35∘=110∘,∴∠APD=55∘,∴∠PAD=90∘−∠APD=35∘.4.【答案】:C【解析】:作PM⊥OB于点M.∵OP是∠AOB的平分线,PE⊥OA,PM⊥OB,∴PM=PE=3,∴PN≥3. 故选 C5.【答案】:B【解析】:因为BE平分∠ABC,∠ACB=90°,DE⊥AB于点D,所以DE=EC,AE+DE=AE+EC=AC=3cm.故选 B.6.【答案】:A【解析】:如图,过点D作DF⊥AC于点F.∵AD是△ABC中∠BAC的平分线,DE⊥AB,∴DE=DF=2.由图可知S△ABC=S△ABD+S△ACD,即12×4×2+12AC×2=7,解得AC=3.故选A.7.【答案】:12【解析】:解:∵∠C=90∘,∴AC⊥CD.∵AD平分∠BAC,DE⊥AB,∴DE=CD.∵BC=9,BE=3,∴△BDE的周长=BE+BD+DE=BE+BD+CD=BE+BC=3+9=12.8.【答案】:6cm【解析】:如图,过点P作PN⊥BC于点N,PQ⊥AB,交AB的延长线于点Q.∵PB,PC分别是∠ABC与∠ACB的外角平分线,PM⊥AC,∴PN=PM,PQ=PN,∴PQ=PM.∵PM=6cm,∴PQ=6cm,即点P到AB的距离为6cm.9.【答案】:4【解析】:如图,过点O作MN,使MN⊥AB于M,交CD于N.∵AB//CD,∴MN⊥CD.∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,∴OM=OE=2.∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,∴ON=OE=2,∴MN=OM+ON=4,即AB与CD之间的距离是4.10.【答案】:解:CE=CF.理由:∵AD=AB,DC=BC,AC=AC,∴△ACD≌△ACB,∴∠DAC=∠BAC,∴AC为∠EAF的平分线.∵CE⊥AE,CF⊥AF,∴CE=CF(角平分线上的点到角两边的距离相等).11.【答案】:A12.【答案】:B【解析】:∵OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,∴PC=PD,故A项正确.在Rt△OCP与Rt△ODP中,∵OP=OP,PC=PD,∴Rt△OCP≌Rt△ODP,∴∠CPO=∠DPO,OC=OD,故C,D两项正确.不能得出∠CPD=∠DOP,故B项错误.故选B13.【答案】:已知:在△ABC中,∠C=90∘.求证:∠A+∠B=90∘.证明:∵∠A+∠B+∠C=180∘,而∠C=90∘,∴∠A+∠B=90∘,即∠A与∠B互余.14.【答案】:C【解析】:根据作图方法可得AG是∠CAB的平分线,∵∠CAB=50∘,∠CAB=25∘,∴∠CAD=12∵∠C=90∘,∴∠CDA=90∘−25∘=65∘.故选C.15.【答案】:A【解析】:解:由题意可得AH平分∠CAB.∵AB∥CD,∴∠C+∠CAB=180∘,∠HAB=∠AHC.∵∠ACD=140∘,∴∠CAB=40∘.∵AH平分∠CAB,∴∠HAB=20∘,∴∠AHC=20∘.。
八年级上册数学1等腰三角形(人教版)

设∠A=x,则 ∠BDC=∠A+∠ABD=2x
从而 ∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有 ∠A+∠ABC+∠C=x+2x+2x=180°
解得x=36° 所以, 在△ABC中,∠A=36°, ∠ABC=∠C=72°
在等腰三角形性质的探索过程和证明过程中,“折 痕”“辅助线”发挥了非常重要的作用,由此,你能发 现等腰三角形具有什么特征?
等腰三角形是轴对称图形,底边上的中线(顶角平 分线、底边上的高)所在直线就是它的对称轴.
例 如图,在△ABC中,AB=AC,点D在AC上, 且BD=BC=AD.求△ABC各角的度数
∵ ∠ADB +∠ADC =180°, 例 如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.
的中线.求证:∠BAD =∠CAD,AD⊥BC. 证明:作底边的中线AD.
(1)你能根据结论画出图形,写出已知、求证吗? 你还有其他方法证明性质1吗?
(3)已知等腰三角形的一个内角为70°,则它的另外两 探索并证明等腰三角形的性质
∴ ∠B =∠C.
B
C
D
探索并证明等腰三角形的性质
你还有其他方法证明性质1吗? 可以作底边的高线或顶角的角平分线.
A
B
C
D
探索并证明等腰三角形的性质
性质2可以分解为三个命题,本节课证明“等腰三 角形的底边上的中线也是底边上的高和顶角平分线”.
探索并证明等腰三角形的性质
已知:如图,△ABC 中,AB =AC,AD 是底边BC
探索并证明等腰三角形的性质 2.能利用性质证明两个角相等或两条线段相等.
8上数学第一单元人教版

8上数学第一单元人教版一、引言八年级数学上册的第一单元是全等形和全等多边形。
这一单元是初中数学几何部分的重要内容,它为后续学习相似形、勾股定理等知识打下基础。
通过学习全等形和全等多边形,学生们可以加深对基础几何知识的理解,提高空间想象能力和解决问题的能力。
二、全等形的定义和性质全等形的定义全等形是指两个可以完全重合的图形。
这意味着它们的形状和大小完全相同,可以通过平移、旋转或翻转等变换完全重合。
全等形的性质(1)对应边相等:全等形的对应边相等。
(2)对应角相等:全等形的对应角相等。
(3)面积相等:全等形的面积相等。
三、全等多边形的定义和性质全等多边形的定义全等多边形是指可以完全重合的多边形。
这意味着它们的所有对应边和对应角都相等。
全等多边形的性质(1)对应边相等:全等多边形的对应边相等。
(2)对应角相等:全等多边形的对应角相等。
(3)面积相等:全等多边形的面积相等。
四、全等三角形的判定方法边角边定理:两个三角形如果有两边的长度和夹角相等,那么这两个三角形是全等的。
即如果AB=BC,∠A=∠C,则△ABC≌△CBA。
角边角定理:两个三角形如果有两个角和一边的长度相等,那么这两个三角形是全等的。
即如果∠A=∠B,AB=BC,则△ABC≌△CBA。
边边边定理:两个三角形如果有三边的长度都相等,那么这两个三角形是全等的。
即如果AB=BC=CA,则△ABC≌△CBA≌△CAB。
角角角定理:两个三角形如果有三个角都相等,那么这两个三角形是全等的。
即如果∠A=∠B=∠C,则△ABC≌△CBA≌△CAB。
斜边直角边定理:两个直角三角形如果有斜边和一个直角边相等,那么这两个三角形是全等的。
即如果AC为斜边,AB为直角边且∠A为直角,则△ABC≌△CBA。
直角三角形中斜边的中线等于斜边的一半:在直角三角形中,斜边的中线长度等于斜边长度的一半,这个性质在解决几何问题时非常有用。
等腰三角形的三线合一:在等腰三角形中,底边的中线、高线和顶角的平分线三线合一,这也是一个重要的几何性质。
八年级上册人教版数学第一课

八年级上册人教版数学第一课
八年级上册人教版数学第一课是“同位角、内错角、同旁内角”。
这一课主要介绍了角的分类和性质,以及如何判断两直线是否平行。
具体内容如下:
1. 角的分类:根据角的定义,将角分为同位角、内错角和同旁内角。
2. 平行线的性质:平行线的性质是判定两直线是否平行的依据。
如果两直线平行,那么它们的同位角相等、内错角相等、同旁内角互补。
3. 平行线的判定:根据平行线的性质,可以通过判断角的性质来确定两直线是否平行。
例如,如果两直线的同位角相等,则它们平行;如果两直线的内错角相等,则它们平行;如果两直线的同旁内角互补,则它们平行。
通过这一课的学习,学生可以更好地理解角的分类和性质,掌握判断两直线是否平行的依据和方法。
这对于后续学习平面几何和立体几何都非常重要。
八年级上册数学课本答案人教版

⼋年级上册数学课本答案⼈教版 认真做⼋年级数学课本习题,就⼀定能成功!⼩编整理了关于⼈教版⼋年级数学上册课本的答案,希望对⼤家有帮助! ⼋年级上册数学课本答案⼈教版(⼀) 第41页练习 1.证明:∵ AB⊥BC,AD⊥DC,垂⾜分为B,D, ∴∠B=∠D=90°. 在△ABC和△ADC中, ∴△ABC≌△ADC(AAS). ∴AB=AD. 2.解:∵AB⊥BF ,DE⊥BF, ∴∠B=∠EDC=90°. 在△ABC和△EDC,中, ∴△ABC≌△EDC(ASA). ∴AB= DE. ⼋年级上册数学课本答案⼈教版(⼆) 习题12.2 1.解:△ABC与△ADC全等.理由如下: 在△ABC与△ADC中, ∴△ABC≌△ADC(SSS). 2.证明:在△ABE和△ACD中, ∴△ABE≌△ACD(SAS). ∴∠B=∠C(全等三⾓形的对应⾓相等). 3.只要测量A'B'的长即可,因为△AOB≌△A′OB′. 4.证明:∵∠ABD+∠3=180°, ∠ABC+∠4=180°, ⼜∠3=∠4, ∴∠ABD=∠ABC(等⾓的补⾓相等). 在△ABD和△ABC中, ∴△ABD≌△ABC(ASA). ∴AC=AD. 5.证明:在△ABC和△CDA中, ∴△ABC≌△CDA(AAS). ∴AB=CD. 6.解:相等,理由:由题意知AC= BC,∠C=∠C,∠ADC=∠BEC=90°, 所以△ADC≌△BEC(AAS). 所以AD=BE. 7.证明:(1)在Rt△ABD和Rt△ACD中, ∴Rt△ABD≌Rt△ACD( HL). ∴BD=CD. (2)∵Rt△ABD≌ Rt△ACD, ∴∠BAD=∠CAD. 8.证明:∵AC⊥CB,DB⊥CB, ∴∠ACB=∠DBC=90°. ∴△ACB和△DBC是直⾓三⾓形. 在Rt△ACB和Rt△DBC中, ∴Rt△ACB≌Rt△DBC(HL). ∴∠ABC=∠DCB(全等三⾓形的对应⾓相等). ∴∠ABD=∠ACD(等⾓的余⾓相等). 9.证明:∵BE=CF, ∴BE+EC=CF+EC.∴BC=EF. 在△ABC和△DEF中, ∴△ABC≌△DEF(SSS). ∴∠A=∠D. 10.证明:在△AOD和△COB中. ∴△AOD≌△COB(SAS).(6分) ∴∠A=∠C.(7分) 11.证明:∵AB//ED,AC//FD, ∴∠B=∠E,∠ACB=∠DFE. ⼜∵FB=CE,∴FB+FC=CE+FC, ∴BC= EF. 在△ABC和△DEF中, ∴△ABC≌△DEF(ASA). ∴AB=DE,AC=DF(全等三⾓形的对应边相等). 12.解:AE=CE. 证明如下:∵FC//AB, ∴∠F=∠ADE,∠FCE=∠A. 在△CEF和△AED中, ∴△CEF≌△AED(AAS). ∴ AE=CE(全等三⾓形的对应边相等). 13.解:△ABD≌△ACD,△ABE≌△ACE,△EBD≌△ECD. 在△ABD和△ACD中, ∴△ABD≌△ACD(SSS). ∴∠BAE= ∠CAE. 在△ABE和△ACE中, ∴△ABE≌△ACE(SAS). ∴BD=CD, 在△EBD和△ECD中, :.△EBD≌△ECD(SSS). ⼋年级上册数学课本答案⼈教版(三) 习题12.3 1.解:∵PM⊥OA,PN⊥OB,∴∠OMP=∠ONP=90°.在Rt△OPM和Rt△ONP中,∴Rt△OMP≌Rt△ONP(HL). ∴PM=PN(全等三⾓形的对应边相等).∴OP是∠AOB的平分线. 2.证明:∵AD是∠BAC的平分线,且DE,DF分别垂直于AB ,AC,垂⾜分别为E,F,∴DE=DF.在Rt△BDE和Rt△CDF中,Rt△BDE≌Rt△CDF(HL). ∴EB=FC(全等三⾓形的对应边相等) 3.证明:∵CD⊥AB, BE⊥AC,∴∠BDO=∠CEO= 90°. ∵∠DOB=∠EOC,OB=OC, ∴△DOB≌△EOC ∴OD= OE. ∴AO是∠BAC的平分线. ∴∠1=∠2. 4.证明:如图12 -3-26所⽰,作DM⊥PE于M,DN⊥PF于N, ∵AD是∠BAC的平分线, ∴∠1=∠2. ⼜:PE//AB,PF∥AC, ∴∠1=∠3,∠2=∠4. ∴∠3 =∠4. ∴PD是∠EPF的平分线, ⼜∵DM⊥PE,DN⊥PF,∴DM=DN,即点D到PE和PF的距离相等. 5.证明:∵OC是∠ AOB的平分线,且PD⊥OA,PE⊥OB, ∴PD=PE,∠OPD=∠OPE. ∴∠DPF=∠EPF.在△DPF和△EPF中, ∴△DPF≌△EPF(SAS). ∴DF=EF(全等三⾓形的对应边相等). 6.解:AD与EF垂直. 证明:∵AD是△ABC的⾓平分线,DE⊥AB,DF⊥AC,∴DE=DF.在Rt△ADE和Rt△ADF中,∴Rt△ADE≌Rt△ADF(HL). ∴∠ADE=∠ADF.在△GDE和△GDF中, ∴△GDF≌△GDF(SAS). ∴∠DGE=∠DGF.⼜∵∠DGE+∠DGF=180°,∴∠DGE=∠DGF=90°,∴AD⊥EF. 7,证明:过点E作EF上AD于点F.如图12-3-27所⽰, ∵∠B=∠C= 90°, ∴EC⊥CD,EB⊥AB. ∵DE平分∠ADC, ∴EF=EC. ⼜∵E是BC的中点, ∴EC=EB. ∴EF=EB. ∵EF⊥AD,EB⊥AB, ∴AE是∠DAB的平分线,。
八年级数学 人教版

八年级数学人教版一、三角形。
1. 三角形的性质。
- 三角形内角和为180°。
例如,在△ABC中,∠A + ∠B+∠C = 180°。
- 三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边。
如三边为a、b、c(a>b>c),则a + b>c且a - c<b。
2. 等腰三角形。
- 性质:两腰相等,两底角相等。
等腰三角形三线合一(底边上的高、中线、顶角平分线重合)。
- 判定:有两边相等的三角形是等腰三角形;有两角相等的三角形是等腰三角形。
3. 等边三角形。
- 性质:三边相等,三个角都是60°。
- 判定:三边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形。
二、全等三角形。
1. 全等三角形的性质。
- 全等三角形的对应边相等,对应角相等。
2. 全等三角形的判定方法。
- SSS(边边边):三边对应相等的两个三角形全等。
- SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。
- ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。
- AAS(角角边):两角和其中一角的对边对应相等的两个三角形全等。
- HL(斜边、直角边):斜边和一条直角边对应相等的两个直角三角形全等。
三、轴对称。
1. 轴对称图形。
- 定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
- 性质:对称轴是任何一对对应点所连线段的垂直平分线。
2. 线段的垂直平分线。
- 性质:线段垂直平分线上的点与这条线段两个端点的距离相等。
- 判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
3. 等腰三角形与轴对称。
- 等腰三角形是轴对称图形,其对称轴是底边上的高(中线、顶角平分线)所在的直线。
四、整式的乘除与因式分解。
1. 整式的乘法。
- 同底数幂的乘法:a^m· a^n=a^m + n(m、n为正整数)。
人教版八年级数学上册: 1. 完全平方公式

人教版八年级数学上册: 1. 完全平方公式
人教版八年级数学上册: 1. 完全平方公式
例例12 运用完全平方公式计算: (1)1022; (2)1972 .
分析:把1022和1972改写成(a b)2 还是(a - b)2?
a、b怎样确定?
解:(1)102 2
(2)197 2
=(100+2) 2
= (200-3)2
人教版八年级数学上册: 1. 完全平方公式
人教版八年级数学上册: 1. 完全平方公式
观察下列计算过程,判断其是否正确,若不正确,请改正. (1)(2a-3b)2=4a2-9b2; (2)(-2m-3n)2=4m2-12mn+9n2.
人教版八年级数学上册: 1. 完全平方公式
人教版八年级数学上册: 1. 完全平方公式
证明:(a - b)2 = [a + (-b)]2 = a2 +2a (-b)+(-b)2 = a2 -2ab + b2 .
人教版八年级数学上册: 1. 完全平方公式
人教版八年级数学上册: 1. 完全平方公式
初识完全平方公式:(a - b)2 =a2 -2ab + b2 .
1.结构特征:左边是二项式(两数和或差)的平方;右边是两数的 平方和加(或减)这两数乘积的2倍.
人教版八年级数学上册: 1. 完全平方公式
3.在解题过程中要准确确定a和b,对照公式原型的两 边,做到不丢项、不弄错符号、2ab时不少乘2. 4.有时需要进行变形,使变形后的式子符合应用完 全平方公式的条件,即为“两数和(或差)的平方 ”,然后运用公式计算. 5.公式中的字母a,b可以表示数,单项式和多项式.
(3)(3x - 2)2 = __9_x_2_-_12_x_+_4___;