2015高中数学 第1部分 2.2.3-2.2.4直线与平面、平面与平面平行的性质
高一数学必修二2.1.3 2.1.4 直线与平面 平面与平面之间的位置关系练习题(解析版)

2.1.3 空间中直线与平面之间的位置关系2.1.4 空间中平面与平面之间的位置关系一、选择题1.若a ∥α,b ∥α,则直线b a ,的位置关系是 ( )A.平行B.相交C.异面D.A 、B 、C 、均有可能2.直线与平面平行式指 ( )A.直线与平面内的无数条直线都无公共点B.直线上的两点到直线的距离相等C.直线与平面无公共点D.直线不在平面内3.有下列命题:①若直线在平面外,则这条直线与平面没有公共点②若直线与一个平面平行,则这条直线与平面内的任何一条直线都平行③若直线a 与平面α的一条直线平行,则直线a 与平面α也平行④两个平面有无数个公共点,则这两个平面的位置关系为相交或重合则正确命题的个数为 ( )A.0B.1C.2D.34.若三个平面两两相交,则它们交线的条数 ( )A .1条 B.2条 C.3条 D.1条或3条5.过平面外一条直线作与平面的平行平面 ( )A.必定可以且只能作一个B.至少可以作一个C.至多可以作一个D.一定不能作6.给出下列命题:①垂直于同一条直线的两条直线互相平行②垂直于同一个平面的两个平面互相平行③若直线b a ,与同一个平面所成的角相等,则b a ,互相平行④若直线b a ,是异面直线,则与b a ,都相交的两条直线是异面直线其中假命题的个数是 ( )A.1B.2C.3D.4二、填空题7.面α∥面β,直线α⊂a ,则直线a 与平面β的位置关系是______8.两直线a ,b 相互平行,且a ∥α,则b 与α的位置关系是______9.若平面α和这个平面外的一条直线m 同时垂直于直线n ,则直线m 与面α的位置关系是 _______10.一个平面内有无数条直线平行于另外一个平面,那么两个平面的位置关系为_____三、解答题11.用符号语言表述语句:“直线l 经过平面α内一定点P,但l 在平面α外”,并画图12.a a ,α⊄已知∥a b b 求证:,,α⊂∥α13.平面α内有无数条直线与平面β平行,那么α∥β是否正确?说明理由.答案2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系1.D2.C3.A4.D5.C6.D7.β//a 8.αα⊂b b 或// 9.平行 10.平行或相交11.略 12.略 13.略 14.略2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定1.C2.A3.A4.C5.D6.C7.相交与或ααb b ,// 8.平行或相交 9.无数 110.M D BM M A A ACE BD 111,,,//连接中点取平面证明:CE BM BMEC ME BC ////为平行四边形,故,则易证= ACE BM MD AE 平面即同理//,//1M MD BM ACE MD =11// ,又平面111,//BMD BD ACE BMD 平面又平面故平面⊂ACE BD 平面所以//111.证明:连接AC C A ,11,,,,11O BD AC Q P EF MN C A 于交于分别交设 OQ AP ACC A OQ AP //,,11中,易证在矩形连接 1111//,//,//D B EF D B MN EFDB AP 又平面从而 MN EF //所以EFDB MN 平面所以//EFDB AMN 平面所以平面//12.略13.证明:如图所示,作相交两平面分别与γβα,,相交 f b e a //,////∴γαd b c a f de c //,////,//∴同理ββ//,//b a ∴βα//∴14.略。
高中数学人教版必修二2.1.3,2.14空间中直线与平面,平面与平面之间的位置关系

①若a∥b,b,则a∥ ②若a∥,b∥,则
a∥b ③若a∥b,b∥,则a∥ ④若a∥,
b,则a∥b 新疆 王新敞 奎屯
其中正确命题的个数是
( A)
(A)0个 (B)1个 (C)2个 (D)3个
巩固练习:
3.已知m,n为异面直线,m∥平面,n∥ 平面,∩=l,则l ( C ) (A)与m,n都相交 (B)与m,n中至少一条相交 (C)与m,n都不相交 (D)与m,n中一条相交
a
/ /
a
/
/
面//面
线//面
④ 1、下列正确的有
:
①直线 l 平行于平面 α 内的无数条直线,则 l∥α;
②若直线 a 在平面 α 外,则 a∥α;
③若直线 a∥b,直线 b⊂α,则 a∥α;
④若直线 a∥b,b⊂α,那么直线 a 就平行于平面 α 内的无数条直线.
B 2、若直线 a 不平行于平面 α 且 a α 内,则下列结论成立的是( )
∨ 任意一条直线都没有公共点。( )
复习引入: 1、空间两直线的位置关系 (1)相交;(2)平行;(3)异面 2.公理4的内容是什么? 平行于同一条直线的两条直线互相平行. 3.等角定理的内容是什么? 空间中如果两个角的两边分别对应平行,那么 这两个角相等或互补。 新疆
王新敞 奎屯
4.等角定理的推论是什么? 如果两条相交直线和另两条相交直线分别平行, 那么这两条直线所成的锐角(或直角)相等.
X X X
例4、判断下列命题的正确
(1)若直线 l上有无数个点不在平面 内,
则 l// 。( )
(2)若直线l与平面 平行,则l与平面 内的任
意一条直线都平行。(
)
(3)如果两条平行直线中的一条与一个平面平行, 那么另一条也与这个平面平行。( )
高中数学教学课例《2.2.1直线与平面平行的判定》课程思政核心素养教学设计及总结反思

α 内平移 b,得到直线 c,不难发现 ac(强调直线 a, c 没有公共点).
紧接着,提出问题,直线 a 能与平面 α 内的无数 条直线都平行吗?(能)
教师追问,直线 a 与平面 α 内的这无数条直线有 公共点吗?(没有)
教师带领全体同学思考一个问题:“反过来,直线 a 与平面 α 内的无数条直线都平行,则 a 与平面 α 平 行吗?”
导者,学习的主体是学生.
本节课的教学达到了预期的效果,学生基本上掌握
了直线与平面平行的判定定理的内容,会注意到定理中
的三个条件缺一不可。通过例题的讲解和练习的训练,
学生学会了证明直线与平面平行的方法,知道了利用判
定定理证明的关键是要去平面内去找一条直线与已知 课例研究综
直线平行,将空间问题转化为平面问题。本节课由于时 述
间与平面互相转化的思想。培养学生主动探究知识、合 作交流的意识,在体验数学美的过程中激发学生的学习 兴趣,从而培养学生勤于思考、勤于动手的良好习惯。
学生通过第一章课程的学习,对简单空间几何体的 结构特征有了初步认识,对几何体的直观图及三视图的 画法有了基本的了解.结合他们生活和学习中的空间实 例,学生对空间图形的基本关系也有了大致的了解,初 步具备了最朴素的空间观念.由于刚刚接触立体几何不 学生学习能 久,学习经验有限,学习立体几何所应具备的语言表达 力分析 能力及空间想象能力相对不足,他们从生活实例中抽象 概括出问题的数学本质的能力相对欠缺,从具体情境发 现并归纳出直线与平面平行的判定定理以及对定理的 理解是教学难点.教学时应注意及时纠正学生错误的地 方,这样有利于学生实现由平面图形到立体几何图形的 转变,更好的培养学生空间想象能力。
高一数学(2.2.3直线与平面平行的性质)

a b
α
作平行线的方法,判断线线平行的依据.
2015年1月20日星期二7 时47分27秒
思考4:教室内日光灯管所在的直线与地 面平行,如何在地面上作一条直线与灯 管所在的直线平行?
2015年1月20日星期二7 时47分27秒
理论迁移
例1 如图所示的一块木料中,棱BC平行 于面A′C′. (1)要经过面A′C′ 内一点P和棱BC将 木料锯开,应怎样画线? (2)所画的线与平面AC是什么位置关系?
EF//面AC BE、CF都与面相交. 线面平行 2015年1月20日星期二7 线线平行
时47分27秒
D' A' D E
F P
B'
C' C
A
B
线面平行
例2.已知平面外的两条平行直线中的一条平行于这
个平面,求证:另一条也平行于这个平面. 且a//b, 已知:直线a、b,平面, a // , a,b , 求证: b//
2015年1月20日星期二7 时47分27秒
思考3:如果直线a与平面α 平行,那么 经过直线a的平面与平面α 有几种位置关 系?
a a
α
α
2015年1月20日星期二7 时47分27秒
思考4:如果直线a与平 面α 平行,经过直线a的 平面与平面α 相交于直线b, 那么直线a、b的位置 α 关系如何?为什么?
2.2
直线、平面平行的判定及其性质 直线与平面平行的性质
2.2.3
2015年1月20日星期二7 时47分26秒
问题提出
1.直线与平面平行的判定定理是什么? 定理 若平面外一条直线与此平面内的 一条直线平行,则该直线与此平面平行. 2.直线与平面平行的判定定理解决了直 线与平面平行的条件问题,反之,在直 线与平面平行的条件下,可以得到什么 结论呢?
数学必修2——2.2.3-2.2.4《直线与平面、平面与平面平行的性质》导学导练

高中数学必修2个人原创,版权所有,翻印必究,如需借用,QQ 索取密码 第1页 解密佛山吉红勇老师扣扣:一0七669八11高中数学必修二2.2.3《直线与平面平行的性质》2.2.4《平面与平面平行的性质》导学导练【知识要点】1、直线与平面平行的性质定理(重点)1)直线与平面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.2)符号语言描述:b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βαβα3)图形语言描述,如右图.2、平面与平面平行的性质(重点、难点)1)、两个平面平行的性质(1):如果两个平面平行,那么其中一个平面内的直线平行于另一个平面. 简言之,“面面平行,则线面平行.”2)、两个平面平行的的性质(2):如果两个平行平面同时和第三个平面相交,那么它们的交线平行.【范例析考点】考点一.线面平行性质的应用考点1:由“线面平行”证明“线线平行”例1、如图,已知异面直线AB 、CD 都与平面α平行,CA 、CB 、DB 、DA 分别交α于点E 、F 、G 、H .求证:四边形EFGH 是平行四边形.HGFEBADCα【针对练习】1.若直线a 不平行于平面α,则下列结论成立的是( )A .α内的所有直线都与直线a 异面B .α内不存在与a 平行的直线C .α内的直线都与a 相交D .直线a 与平面α有公共点2.直线a ∥平面α,P ∈α,过点P 平行于α的直线( )A .只有一条,不在平面α内B .有无数条,不一定在α内C .只有一条,且在平面α内D .有无数条,一定在α内 3.下列判断正确的是( )A .a ∥α,b α,则a ∥bB .a ∩α=P ,b α,则a 与b 不平行C .aα,则a ∥α D .a ∥α,b ∥α,则a ∥b4.直线和平面平行,那么这条直线和这个平面内的( )A .一条直线不相交B .两条相交直线不相交C .无数条直线不相交D .任意一条直线都不相交 5、判断下列说法是否正确:①一条直线和一个平面平行,它就和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何一条直线无公共点;③过直线外一点,有且仅有一个平面和已知直线平行;④如果直线l 和平面α平行,那么过平面α内一点和直线l 平行的直线在α内。
高中数学2.2.3 直线与平面平行的性质定理 教学设计

《直线与平面平行的性质定理》教学设计一.教材内容与学情分析:本节课内容是人教A版数学必修2第二章第二节第三课时《直线与平面平行的性质定理》,“直线与平面平行的位置关系〞是“空间直线平行关系〞和“空间平面平行关系〞的桥梁和纽带。
“直线与平面平行的性质〞是立体几何的第一节性质定理课,揭示了“直线与平面平行的判定定理〞与“直线与平面平行的性质定理〞的内在关系,构建了新的知识与方法体系。
本节课也是在学生已经学习了“空间直线与平面的位置关系〞“直线与平面平行的判定〞等知识的根底上展开的,这为学习“直线与平面平行的性质〞作了必要的知识准备。
其次学生通过“空间几何体〞,“空间点,直线,平面之间的位置关系〞“直线与平面平行的判定〞的学习,已经初步形成了一定的空间思维和想象能力,以及初步具备了逻辑思维和推理论证能力,从而提高了学习的效率。
二、教学目标:1.知识与技能:学生初步学会应用直线与平面平行的性质定理解决简单问题;2.过程与方法:学生通过对线面平行性质的学习,进一步掌握直线与平面平行的判定和性质定理;通过对探究成果的归纳,整理,分析,从而认清结论的地位和作用,建立知识之间的联系;3.情感态度、价值观:学生通过对线面平行的性质的学习,进一步提高空间想象能力和严谨的思维习惯,养成实事求是的学习态度。
三、教学重点、难点:1.重点:线面平行的性质定理及应用。
2.难点:发现线面平行的性质,理解性质定理与判定定理的关系,并把它们整合到数学知识方法体系中。
四、教法与教具选择:1.教学方法:开放式探究、启发式引导、互动式讨论2.教学手段:多媒体、三角板、纸棒。
五、教学过程设计:〔一〕导直线与平面平行的判定定理〔符号描述〕线线平行→线面平行【设计意图】“温故而知新,可以为师也〞,回忆上节课的内容既可以对上节课内容作以稳固,也可为本节内容的展开做铺垫。
尤其是“线线平行→线面平行〞要板书在黑板的左方,等线面平行的性质定理得出后,提炼为“线面平行→线线平行〞只需要在原根底上加上反向箭头即可。
2014-2015学年高中数学(人教版必修二)课时训练第二章 2.2 2.2.1 直线与平面平行、平面与平面平行的判定

栏 目 链 接
又 MN⊂平面 BCE, PQ⊄平面 BCE,∴PQ∥平面 BCE. 证法二:如图,
栏 目 链 接
连接 AQ 并延长交 BC 于 K,连接 EK. AQ QD 在△AQD 和△BQK 中,由△AQD∽△BQK,得QK= BQ. ∵正方形 ABCD 和正方形 ABEF 有公共边 AB, ∴其对角线 AE=BD. 又 AP=DQ, ∴PE=BQ.
第二章
点、直线、平面之间的位置关系
2.2 直线、平面平行的判定及其性质 2.2.1 直线与平面平行、平面与平面平行的判定
栏 目 链 接
1 . 理解直线与平面平行、平面与平面平行的判定定 理的含义. 2 .能运用直线与平面平行的判定定理、平面与平面
栏 目 链 接
平行的判定定理证明一些空间线面关系的简单问题.
则这两个平面平行
栏 目 链 接
一条直线平行 , 直线与另一个平面平行, _________________
基 础 梳 理
符号表示
b⊂α
a∩b=A
栏 目 链 接
图形表示
基 础 梳 理 练习 1 : 正方体 ABCDA1B1C1D1 的 6 个面中,与 AB 平行 的面有多少个? 答案:两个 练习2:若平面α内有直线 b与 a平行,那么 α与a的位置 关系如何? 答案:a∥α或a⊂α
栏 目 链 接
QD AP AQ AP ∴BQ =PE,因此QK=PE. ∴PQ∥EK.又 PQ⊄平面 BEC,EK⊂平面 BEC, ∴PQ∥平面 BEC. 点评:证法一可称为“平行四边形法”,证法二可称 为“三角形中的比例线段法”,都是证明线面平行时常用 的方法.
栏 目 链 接
数学:2.2.3《直线与平面平行的性质》课件(新人教A版必修2)

C1
A1
D
FLeabharlann B1C BA例题示范 例2:有一块木料如图,已知棱 BC平行于面A′C′(1)要经过木料表面 A′B′C′D′ 内的一点P和棱BC将木料锯开,应 怎样画线?(2)所画的线和面AC有什么关系?
(2)因为棱BC平行于平面A'C',平面BC'与平 面A'C'交于B'C',所以BC∥B'C',由(1)知, EF∥B'C',所以,EF∥BC,因此,EF//BC, EF平面AC,BC平面AC.所以,EF//平面AC. BE、CF显然都与平面AC相交。
线面平行 线线平行
如果一条直线和一个平面平行,经过这条直 线的平面和这个平面相交,那么这条直线和交线 平行。
作业:P62 5、 6题.
例题示范
如图,已知直线a,b,平面α, 且a//b,a//α ,a,b都在平面 α 外.求证:b//α.
证明:过a作平面β ,使它与 平面α相交,交线为c. 因为a//α,a β ,α Çβ =c, 所以 a// c. 因为a//b,所以,b//c. 又因为c α, b α, 所以 b// α。
证明:∵α ∩β =b,∴bα ∵ a∥α ,∴a与b无公共点, ∵aβ ,bβ ,∴a∥b。
我们可以把这个结论作定理来用.
直线与平面平行的性质定理: 一条直线和一个平面平行,则过这条直线的 任一平面与这个平面的交线与该直线平行。 符号表示:
a // , a , b
提出问题、引入新课
提出问题:如果已知直线与平面平 行,会有什么结论?
直线与平面平行的性质
探研新知
探究1.如果一条直线与平面平行,那么 这条直线是否与这个平面内的所有直线 都平行? 这条直线与这个平面内有多少条直线平 行?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【三维设计】2015高中数学第1部分 2.2.3-2.2.4直线与平面、平面与平面平行的性质课时达标检测新人教A版必修2
一、选择题
1.已知平面α∥平面β,过平面α内的一条直线a的平面γ,与平面β相交,交线为直线b,则a,b的位置关系是( )
A.平行B.相交
C.异面D.不确定
解析:选A 由面面平行的性质定理可知选项A正确.
2.过平面α外的直线l,作一组平面与α相交,如果所得的交线为a,b,c,…,则这些交线的位置关系为( )
A.都平行
B.都相交且一定交于同一点
C.都相交但不一定交于同一点
D.都平行或交于同一点
解析:选D ∵l⊄α,∴l∥α或l∩α=A,若l∥α,则由线面平行性质定理可知,l ∥a,l∥b,l∥c,…,∴由公理可知,a∥b∥c…;若l∩α=A,则A∈a,A∈b,A∈c,…,a∩b∩c=A.
3.在正方体ABCD-A1B1C1D1中,若经过D1B的平面分别交AA1和CC1于点E、F,则四边形D1EBF的形状是( )
A.矩形B.菱形
C.平行四边形D.正方形
解析:选C 因为平面和左右两个侧面分别交于ED1、BF,所以ED1∥BF,同理D1F∥EB,所以四边形D1EBF是平行四边形.
4.设平面α∥平面β,A∈α,B∈β,C是AB的中点,当A,B分别在α,β内运动时,那么所有的动点C( )
A.不共面
B.当且仅当A,B在两条相交直线上移动时才共面
C.当且仅当A,B在两条给定的平行直线上移动时才共面
D .不论A ,B 如何移动都共面
解析:选D 由面面平行的性质,不论A 、B 如何运动,动点C 均在过点C 且与α、β都平行的平面上.
5.下列说法正确的是( )
A .平行于同一条直线的两个平面平行
B .平行于同一个平面的两个平面平行
C .一个平面内有三个不共线的点到另一个平面的距离相等,则这两个平面平行
D .若三直线a ,b ,c 两两平行,则在过直线a 的平面中,有且只有一个平面与b ,c 均平行
解析:选B 平行于同一条直线的两个平面可以平行也可以相交,所以A 错;B 正确;C 中没有指明这三个点在平面的同侧还是异侧,不正确;D 不正确,因为过直线a 的平面中,只有b ,c 不在其平面内,则与b ,c 均平行.
二、填空题
6.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱A 1B 1、B 1C 1的中点,P 是棱AD 上一点,AP =a 3
,过P 、M 、N 的平面与棱CD 交于Q ,则PQ =________. 解析:∵MN ∥平面AC ,平面PMN ∩平面AC =PQ , MN ⊂平面PMN ,
∴MN ∥PQ .易知DP =DQ =23
a , 故PQ =2×23a =223
a . 答案:223
a
7.如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在
CD 上,若EF ∥平面AB 1C ,则线段EF 的长度等于________.
解析:∵EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面AB 1C ∩平面ABCD =AC ,
∴EF ∥AC .又点E 为AD 的中点,点F 在CD 上,
∴点F 是CD 的中点,∴EF =12
AC = 2. 答案: 2
8.如图是正方体的平面展开图:。