初二上册整式的乘除和因式分解
第14章整式知识点

第十四章 整式的乘除与分解因式一、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯= (m 、n 为正整数)同底数幂相乘,底数不变,指数相加.⑵幂的乘方:()n m mn a a =(m 、n 为正整数)幂的乘方,底数不变,指数相乘.⑶幂的乘方:()nn n ab a b =(n 为正整数)积的乘方等于各因式乘方的积.(4)幂的除法:n m a a ÷= a m -n (a ≠0,m 、n 都是正整数,且m >n ) 同底数幂相除,底数不变,指数相减.(5)零指数幂的概念: a 0=1 (a ≠0) 任何一个不等于零的数的零指数幂都等于l .(6)负指数幂的概念:a -p =p a 1(a ≠0,p 是正整数)任何一个不等于零的数的-p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数. 也可表示为:pp n m m n ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-(m ≠0,n ≠0,p 为正整数) 2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式.⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用其中一个多项式除以另一个多项式再把所得的商相加4.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++; ()2222a b a ab b -=-+ 二、因式分解:因式分解定义:把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解。
人教版八年级上册数学的知识点

人教版八年级上册数学的知识点主要包括以下几个方面:
一、数的开方与实数
1. 数的开方:了解平方根、算术平方根的概念以及求一个数的平方根的估算方法。
2. 实数:认识实数的概念,实数与数轴上的点一一对应的关系,实数的分类(有理数和无理数)。
二、整式的乘除与因式分解
1. 整式的乘除:掌握单项式、多项式的乘法,幂的运算性质,整式的除法等。
2. 因式分解:理解因式分解的概念和方法,如提取公因式法、公式法等。
三、一元一次方程与不等式
1. 一元一次方程:掌握一元一次方程的解法,包括合并同类项、移项、系数化为1等步骤。
2. 不等式:了解不等式的基本性质,掌握一元一次不等式的解法。
四、图形和几何
1. 平面几何图形的初步认识:了解点、线、面、角等基本概念,掌握基本图形的性质和判定(如线段的中垂线、角的平分线等)。
2. 三角形:掌握三角形的分类(等腰、直角、不等边等),认识三角形的基本性质(如内角和定理等)。
3. 空间几何:了解几何图形的三维模型和计算,如长方体、圆柱、圆锥等的体积和表面积。
五、概率初步
1. 概率的基本概念:了解概率的定义和计算方法,如频率估计概率等。
2. 生活中的概率问题:通过实例了解概率在生活中的应用,如彩票中奖的概率等。
以上是八年级上册数学的一些主要知识点,通过学习这些内容,学生可以掌握基本的数学知识和技能,为后续的学习打下坚实的基础。
八年级上数学整式的乘除与因式分解基本知识点

整式是一个或多个代数式的和、差或积。
整式的乘除与因式分解是数学中非常重要的概念,是解决各种代数问题的基础。
本文将详细介绍八年级上数学中整式的乘除与因式分解的基本知识点。
一、整式的乘法1.1 单项式的乘法:单项式的乘法是指单项式与单项式之间的乘法。
例如:2x ×3y = 6xy,-4a^2 × 5b^3 = -20a^2b^31.2多项式的乘法:多项式的乘法是指多项式与多项式之间的乘法。
例如:(3x+2)(x-1)=3x^2+x-2二、整式的除法2.1 单项式的除法:单项式的除法是指单项式除以单项式。
例如:4x^2 ÷ x = 4x,10a^3b^2 ÷ 2ab = 5a^2b。
2.2多项式的除法:多项式的除法是指多项式除以多项式。
例如:(12x^3+9x^2+3x)÷3x=4x^2+3x+1三、整式的因式分解整式的因式分解是将一个整式写成几个整式的乘积的形式,其中每个整式都是原来整式的因式。
例如:12x^2+8xy,将其因式分解为4x(3x+2y)。
3.1 提取公因式:如果一个整式的每一项都能被同一个整式整除,那么这个公因式就是整式的一个因子。
例如:12x^2+8xy,公因式是4x。
3.2分解差的平方:差的平方是指形如"一个数的平方减另一个数的平方"的表达式。
例如:x^2-9,可因式分解为(x-3)(x+3)。
3.3 分解二次三项式:二次三项式是指形如"一个平方项加两个相同系数的次项"的表达式。
例如:x^2+2xy+y^2,可因式分解为(x+y)^2四、习题例析例1:将多项式4x^2+16x因式分解。
解:这个多项式2x的平方加4x的倍数,所以可以因式分解为4x(x+4)。
例2:将多项式a^2-9因式分解。
解:由差的平方公式可得,a^2-9=(a-3)(a+3)。
例3:将多项式4x^2y^2-8xy^2因式分解。
第14章整式的乘除和因式分解-(教案)

在今天的教学过程中,我发现学生们对于整式的乘除和因式分解这一章节的内容普遍感到有些吃力。在讲解整式的乘法法则时,我注意到有的学生在进行多项式乘多项式的运算时,容易混淆同类项和如何正确合并它们。这让我意识到,需要通过更多的例题和练习来加强他们的这部分能力。
在因式分解的教学中,我发现十字相乘法对学生来说是一个难点。他们往往在寻找能够相乘得到多项式系数的两个数时遇到困难。我尝试通过一些具体的例题和分解步骤来引导学生,但感觉效果并不如预期。这可能是因为我需要在课堂上提供更多的时间和机会,让学生自己尝试和探索,而不仅仅是观看我的演示。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式的乘除和因式分解的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在解决实际代数问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
1.培养学生的逻辑推理能力,使其能够理解和运用整式的乘除法则,以及因式分解的各种方法;
2.提升学生的数学运算能力,熟练掌握整式乘除和因式分解的运算技巧;
3.增强学生的数学抽象思维,通过解决实际问题,体会数学在现实生活中的应用;
4.培养学生的团队合作意识,通过小组讨论和合作,共同解决复杂的整式乘除和因式分解问题;
第14章整式的乘除和因式分解-(教案)
一、教学内容
第14章整式的乘除和因式分解:
1.单项式乘单项式、单项式乘多项式、多项式乘多项式;
2.乘法公式:平方差公式、完全平方公式;
3.整式的除法:整式除以单项式、整式除以多项式;
初二数学整式的乘法与因式分解

初二数学整式的乘法与因式分解
初二数学中,整式的乘法与因式分解是重要的概念。
整式的乘法是指将两个或多个整式相乘的操作。
整式是由常数、
变量和运算符(加法、减法和乘法)组成的表达式。
在进行整式的乘
法运算时,需要根据乘法分配律,先分别对系数和变量进行乘法运算,然后再进行相应的合并。
例如,将整式(3x - 2y)和(4x + 5y)相乘,按照乘法分配律
展开可以得到:3x * 4x + 3x * 5y - 2y * 4x - 2y * 5y。
再按照乘
法运算的规则进行计算和合并,最终得到一个新的整式。
因式分解是指将一个整式拆分成若干个能够被整除的因式的乘积。
因式分解在解题过程中经常用到,能够简化问题的计算和分析。
例如,将整式2x^2 + 6x分解因式,首先可以因式分解出一个公
因式2x,然后将原始整式除以2x,得到x + 3。
所以整式2x^2 + 6x
可以分解为2x * (x + 3)。
整式的乘法与因式分解在初二数学中应用广泛,并且在其他数学
学科,如代数和方程式的解法中也有重要作用。
因此,我们需要掌握
整式的乘法和因式分解的方法,以便能够解决与整式相关的数学问题。
八上数学整式的乘除与因式分解教案

八上数学整式的乘除与因式分解教案第一章:整式的乘法1.1 单项式乘以单项式教学目标:了解单项式乘以单项式的计算方法。
能够正确计算单项式乘以单项式的结果。
教学内容:引导学生通过具体例子,探索单项式乘以单项式的计算方法。
让学生通过小组合作,发现单项式乘以单项式的规律。
教学步骤:Step 1:引入新课,展示例题。
Step 2:引导学生通过观察、讨论,发现单项式乘以单项式的规律。
Step 3:让学生进行小组合作,练习计算单项式乘以单项式。
Step 5:学生独立完成练习题,教师进行点评和讲解。
1.2 单项式乘以多项式教学目标:了解单项式乘以多项式的计算方法。
能够正确计算单项式乘以多项式的结果。
教学内容:引导学生通过具体例子,探索单项式乘以多项式的计算方法。
让学生通过小组合作,发现单项式乘以多项式的规律。
教学步骤:Step 1:引入新课,展示例题。
Step 2:引导学生通过观察、讨论,发现单项式乘以多项式的规律。
Step 3:让学生进行小组合作,练习计算单项式乘以多项式。
Step 5:学生独立完成练习题,教师进行点评和讲解。
第二章:整式的除法2.1 多项式除以单项式教学目标:了解多项式除以单项式的计算方法。
能够正确计算多项式除以单项式的结果。
教学内容:引导学生通过具体例子,探索多项式除以单项式的计算方法。
让学生通过小组合作,发现多项式除以单项式的规律。
教学步骤:Step 1:引入新课,展示例题。
Step 2:引导学生通过观察、讨论,发现多项式除以单项式的规律。
Step 3:让学生进行小组合作,练习计算多项式除以单项式。
Step 5:学生独立完成练习题,教师进行点评和讲解。
2.2 多项式除以多项式教学目标:了解多项式除以多项式的计算方法。
能够正确计算多项式除以多项式的结果。
教学内容:引导学生通过具体例子,探索多项式除以多项式的计算方法。
让学生通过小组合作,发现多项式除以多项式的规律。
教学步骤:Step 1:引入新课,展示例题。
人教版八年级数学上册14.整式的乘除与因式分解--复习课件

例2 把下列各式分解因式. (1)(a+b)2-4a2 ; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9
解:(1)(a+b)2-4a2=(a+b)2-(2a)2 =(a+b+2a)(a+b-2a) =(3a+b)(b-a)
(2)1-10x+25x2 =1-10x+(5x)2 =(1-5x)2 (3)(m+n)2-6(m+n)+9=(m+n-3)2.
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 ,
则z应为多少?
(4)(x 3y 2z)(x 3y 2z)
(5)19992, (6)20012 19992
练习:计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
1、 205×195 2、 (3x+2) (3x-2) 3、(-x+2y) (-x-2y) 4 、 (x+y+z)(x+y-z)
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
(a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
即: (a b)2 a2 2ab b2
探索与创新题 例4 若9x2+kxy+36y2是完全平方式,则k= —
分析:完全平方式是形如:a2±2ab+b2即两数 的平方和与这两个数乘积的2倍的和(或差).
∵9x2+kxy+36y2=(3x)2+kxy+(6y)2 ∴±kxy=2·3x·6y=36xy ∴k=±36
8年级上整式乘除与因式分解知识点汇总

第十四章 整式乘法与因式分解(一)幂的运算:1.同底数幂的乘法①n 个相同因式(或因数)a 相乘,记作a n ,读作a 的n 次方(幂),其中a 为底数,n 为指数,a n 的结果叫做幂。
①底数相同的幂叫做同底数幂。
①同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。
即:a m ﹒a n =a m+n 。
注意:底数可以是多项式或单项式。
如:532)()()(b a b a b a +=+•+①此法则也可以逆用,即:a m+n = a m ﹒a n 。
①开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。
2.同底数幂的除法①同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:n m n m a a a -=÷(n m a ,,0≠都是正整数)。
①此法则也可以逆用,即:a m -n = a m ÷a n (a≠0)。
3.零指数与负指数公式:(1)零指数幂:任何不等于0的数的0次幂都等于1,即:a 0=1(a≠0)。
(2)负指数幂:任何不等于零的数的―p 次幂,等于这个数的p 次幂的倒数,即:p p aa 1=-(p a ,0≠是正整数) 注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。
注意:00,0-2无意义;(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5 .绝对值小于1的数可记成n -10a ⨯±的形式,其中10a 1<≤,n 是正整数,n 等于原数中第一个有效数字前面的零的个数(包括小数点前面的一个零)。
4.幂的乘方①幂的乘方是指几个相同的幂相乘。
(a m )n 表示n 个a m 相乘。
①幂的乘方运算法则:幂的乘方,底数不变,指数相乘。
mn n m a a =)(。
(n m ,都是正整数)①此法则也可以逆用,即m n n m mn a a a )()(==。