导数大题练习带的答案解析
高考数学专题:导数大题专练(含答案)

高考数学专题:导数大题专练(含答案)一、解答题1.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围.2.已知函数1()2ln f x x x x=+-. (1)求函数的单调区间和极值;(2)若12x x ≠且()()12f x f x =,求证:121x x <. 3.已知函数2()ln (2)f x x a x a =+<. (1)若2a =-,求函数()f x 的极小值点;(2)当2(]0,x ∈时,讨论函数()f x 的图象与函数(2)22y a x a =+--的图象公共点的个数,并证明你的结论.4.已知函数()ln 1f x x ax =++,R a ∈,函数()()21e ln 2xg x x x x x x =-++-,)2e ,x -∈+∞⎡⎣.(1)试讨论函数()f x 的单调性;(2)若0x 是函数()g x 的最小值点,且函数()()h x xf x =在0x x =处的切线斜率为2,试求a 的值.5.已知函数()2()2e =+-xf x x a .(1)讨论函数的单调性;(2)若(0,),()x f x a ∈+∞≥-恒成立,求整数a 的最大值. 6.已知函数()e (1)()x f x a x a -=++∈R . (1)当1a =时,求函数()y f x =的极值;(2)若函数()()ln e g x f x x =-+-在[1,)+∞有唯一的零点,求实数a 的取值范围.7.已知函数()()e ln 1xf x a x =+-+,()'f x 是其导函数,其中a R ∈.(1)若()f x 在(,0)-∞上单调递减,求a 的取值范围;(2)若不等式()()f x f x '≤对(,0)x ∀∈-∞恒成立,求a 的取值范围.8.用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若fx 是()f x 的导函数,()f x ''是fx 的导函数,则曲线()y f x =在点()(),x f x 处的曲率()()()3221f x K f x ''='+⎡⎤⎣⎦.(1)若曲线()ln f x x x =+与()g x x ()1,1处的曲率分别为1K ,2K ,比较1K ,2K 大小;(2)求正弦曲线()sin h x x =(x ∈R )曲率的平方2K 的最大值. 9.已知函数()321623f x x ax x =+-+在2x =处取得极值. (1)求()f x 的单调区间;(2)求()f x 在[]4,3-上的最小值和最大值.10.设函数()223ln 1f x a x ax x =+-+,其中0a >.(1)求()f x 的单调区间;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.【参考答案】一、解答题1.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>,①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+; ②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<,所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈, 令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数, 所以()()33min 1h x h e e -==,所以31a e ≤-. 2.(1)减区间()0,1,增区间()1,+∞,极小值3, (2)证明见解析 【解析】 【分析】(1)依据导函数与原函数的关系去求函数的单调区间和极值即可; (2)构造新函数利用函数单调性去证明121x x <即可. (1)1()2ln (0)f x x x x x =+->,则()()2221111()2(0)x x f x x x x x +-'=--=>由()0f x '>得1x >,由()0f x '<得01x <<, 即()f x 减区间为()0,1,增区间为()1,+∞,在1x =时()f x 取得极小值(1)2103f =+-=,无极大值. (2)不妨设12x x <且()()12f x f x a ==,则101x <<,21>x ,3a >,2101x <<令1()()2ln (0)h x f x a x x a x x=-=+-->,则()()120h x h x ==()()2221111()2x x h x x x x +-'=--=, 则当1x >时()0h x '>,()h x 单调递增;当01x <<时()0h x '<,()h x 单调递减 由()222212ln 0x x h x a x +=--=,得22212ln a x x x =+- 则2222222222211ln 2ln 2ln 1x x x x x h x x x x x ⎛⎫++-+-=-+ ⎪⎛⎫=⎪⎝⎝⎭⎭ 令21t x =,则222112ln 2ln (01)x x t t t x t -+=--<< 令()12ln (01)t m t t t t --<=<,则()()22211210t t tt m t -'=+-=> 即()12ln (01)t m t t t t--<=<为增函数,又()11100m =--=,则()12ln 0m t t tt --<=在(0,1)上恒成立.则222212ln 10x x x h x ⎛⎫+ ⎪⎝⎭=-<恒成立,则()211h h x x ⎛⎫⎪< ⎝⎭, 又01x <<时()h x 单调递减,101x <<,2101x <<则211x x >,故121x x <3.(1)详见解析; (2)详见解析; 【解析】 【分析】(1)由2a =-,得到2()2ln f x x x =-,然后求导2()2f x x x'=-求解; (2)令2()ln (2)22=+-+++g x x a x a x a ,求导()()21()--'=x a x g x x,分0a ≤,012a <<,12a =,122a<<讨论求解. (1)解:当2a =-时,2()2ln f x x x =-,所以2()2f x x x'=-,令()0f x '=,得1x =,当01x <<时,()0f x '<,当1x >时,()0f x '>, 所以1x =是函数()f x 的极小值点;(2)当2(]0,x ∈时,令2()ln (2)22=+-+++g x x a x a x a ,则()()2212(2)()2(2)---++'=+-+==x a x a x a x a g x x a x x x, 当0a ≤时,01x <<时,()0g x '<,12x <≤时,()0g x '>, 所以当1x =时,()g x 取得极小值,且0x →,()g x ∞→+,当()110g a =+>,即10a -<≤,函数()f x 的图象与函数(2)22y a x a =+--的图象无公共点;当()110g a =+=,即1a =-时,函数()f x 的图象与函数(2)22y a x a =+--的图象有1个公共点; 当()()11022ln 20g a g a ⎧=+<⎪⎨=+≥⎪⎩,即21ln 2-≤<-a 时,函数()f x 的图象与函数(2)22y a x a =+--的图象有2个公共点;当()()11022ln 20g a g a ⎧=+<⎪⎨=+<⎪⎩,即2ln 2a <-,函数()f x 的图象与函数(2)22y a x a =+--的图象有1个公共点; 当012a <<,即02a <<时,02ax <<或1x >时,()0g x '>,12a x <<时,()0g x '<,所以当2ax =时,()g x 取得极大值,当1x =时,()g x 取得极小值,且0x →,()g x →-∞,因为()110g a =+>恒成立,所以函数()f x 的图象与函数(2)22y a x a =+--的图象只有1个公共点; 当12a =,即2a =时,()0g x '≥恒成立,所以()g x 在(0,2]上递增,所以函数()f x 的图象与函数(2)22y a x a =+--的图象有1个公共点; 当122a <<,即24a <<时,01x <<或22a x <<时,()0g x '>,12ax <<时,()0g x '<,所以当1x =时,()g x 取得极大值,当2ax =时,()g x 取得极小值,且0x →,()g x →-∞,因为()110g a =+>,()22ln 20=+<g a ,2ln 20242⎛⎫=-+++> ⎪⎝⎭a a a g a a 恒成立,所以()f x 的图象与函数(2)22y a x a =+--的图象只有1个公共点.综上: 当10a -<≤时,函数()f x 的图象与函数(2)22y a x a =+--的图象无公共点;当1a =-或 2ln 2a <-或04a <<时,()f x 的图象与函数(2)22y a x a =+--的图象只有1个公共点; 当21ln 2-≤<-a 时,函数()f x 的图象与函数(2)22y a x a =+--的图象有2个公共点.4.(1)答案见解析; (2)12a =. 【解析】 【分析】(1)由题可得()11ax f x a xx+'=+=,讨论0a ≥,0a <即得; (2)由题可得()g x '是一个单调递增的函数,利用零点存在定理可得()2e ,1t -∃∈,使得()0g t '=,进而可得()0000111ln e e 1ln x x x x ⎛⎫+=+ ⎪⎝⎭,利用导数可得001e x x =,结合条件可得00ln 20x ax +=,即求. (1)()11ax f x a x x+'=+=,0x >, 当0a ≥时,函数()f x 在定义域()0,∞+上单调递增; 当0a <时,函数的单调性如表格所示:由题可得()()()22121e 1ln 2e ln 1x xg x x x x x x x x '=-++-++-=++-,0x >,则()g x '是一个单调递增的函数,当2e x -=时,()()2242ee e e e 30g ----'=+-<,当1x =时,()12e 10g '=->,故()2e ,1t -∃∈,使得()0g t '=,且所以0x t =,020000e ln 10x g x x x x '=++-=,整理该式有()02000e 1ln x xx x +=-,()000001111e ln xx x x x +=+, ∴()000111ln ee1ln x x x x ⎛⎫+=+ ⎪⎝⎭令()()21ln ,e m x x x x -=+>,则()2ln 0m x x '=+>,所以函数在()2e ,-+∞上单调递增,故()000111ln ee1ln x x x x ⎛⎫+=+ ⎪⎝⎭的解满足001e xx =;又()2ln h x x x ax x =++,()1ln 21h x x ax '=+++,()0002ln 22h x x ax '=++=,所以00ln 20x ax +=,由01e xx =知,0020x ax -+=,故12a =. 5.(1)答案见解析 (2)4 【解析】【分析】(1)求得()'f x ,对a 进行分类讨论,由此求得()f x 的单调区间.(2)由(0,),()x f xa ∈+∞≥-恒成立分离常数a ,通过构造函数,结合导数求得a 的取值范围,从而求得整数a 的最大值. (1)()'2(22)e x f x x x a =++-①当1a≤时,()0f x '≥恒成立,故()f x 在R 上恒增; ②当1a >时,当(,1x ∈-∞-时()0f x '>,()f x 单调递增,(11x ∈--时()0f x '<,()f x 单调递减, (1)x ∈-+∞时()0f x '>,()f x 单调递增,综上所述:当1a ≤时,()f x 在R 上恒增; 当1a >时,()f x 在(,1-∞-和(1)-++∞上单调递增,在(11--上单调递减.(2)2e (2)(e 1)xxx a +≥-,由于,()0x ∈+∞,2e (2)e 1x x x a +≤-,2e (2)()e 1x x x g x +=-,22e (2e 22)()(e 1)x x x x x x g x ---'=-, 令2()2e 22x h x x x x =---,()(e 1)(22)x h x x '=-+,由于,()0x ∈+∞,则()(e 1)(22)0x h x x '=-+>,故2()2e 22x h x x x x =---单调递增,3334443393338()e 2e 4(e )042162223h =---<-=-<,(1)2e 50h =->, 所以存在03(,1)4x ∈使得0()0h x =,即020002e 22xx x x =++,当00(0,)x x ∈时()0h x <,()g x 单调递减,当00(,)x x ∈+∞时()0h x >,()g x 单调递增; 那么()()00202000e 222e 1x x x a g x xx +≤==++-,03(,1)4x ∈,故034()()(1)54g g x g <<<=,由于a 为整数,则a 的最大值为4. 【点睛】求解含参数不等式恒成立问题,可考虑分离常数法,然后通过构造函数,结合导数来求得参数的取值范围. 6.(1)()f x 的极小值为2,无极大值; (2)(,e 1]-∞+ 【解析】 【分析】(1)当1a =时,求导分析()f x 的单调性,即可得出答案.(2)由题意可得()()ln e e ln e(1)x g x f x x ax a x x =-+-=-++-,求导得()g x ',从而可推出()g x '在(1,)+∞单调递增,(1)e 1g a '=+-,分两种情况讨论:①当e 10a +-,②当e 10a +-<,分析()g x 的单调性,即可得出答案.(1)当1a =时,()(1)xf x e x -=++,1()1x xxe f x e e --+'=-+=,令1e 0x -+>,得0x >, 令1e 0x -+<,得0x <,则()f x 单调递增区间为(0,)+∞,单调递减区间为(,0)-∞, ∴()f x 存在极小值为()02f =,无极大值; (2)()()ln e e (1)ln e e ln e(1)x x g x f x x a x x ax a x x =-+-=+-++-=-++-,则1()xg x e a x'=-+,令1()xh x e a x =-+,则221()x x e h x x -'=,由1x >得,21x >,210x x e ->,则()0h x '>,故()g x '在(1,)+∞单调递增,(1)e 1g a '=+-,①当e 10a +-,即e 1a +时,即(1,)x ∈+∞时,()0g x '>, ∴()g x 在(1,)+∞上单调递增,又(1)0g =, ∴当1x >时,函数()g x 没有零点, ②当e 10a +-<,即e 1a >+时, 由e e (1)x y x x =->,得e e 0x y '=->, ∴e e x x >,∴11()e e xg x a x a x x '=+->+-,e ee 0e e a a g a a a⎛⎫'>⋅+-=> ⎪⎝⎭,又∵e 1e ea >=,∴存在01,e a x ⎛⎫∈ ⎪⎝⎭,使得()00g x '=,当()01,x x ∈时,()0g x '<,()g x 单调递减, 又∵(1)0g =,∴当0(]1,x x ∈时,()0g x <,在()01,x 内,函数()g x 没有零点, 又∵()0,x x ∈+∞时,()0g x '>, ∴()g x 单调递增,又∵22e )e 1(ln e a a g a a a a a +-+>-=-+, 令2()e 1(1)>x k x x x =-+,()()e 2x s x k x x '==-,()e 2e 20x s x '=->->,∴()k x '在(1,)+∞上单调递增, 又∵(1)0k '>,∴1x >时,()0k x '>,()k x 在(1,)+∞上单调递增, ∴()(1)0k a k >>, ∴()0g a >, 又∵0eaa x >>, ∴由零点的存在定理可知存在()()101,,0x x a g x ∈=, ∴在()0,x a 内,函数()g x 有且只有1个零点, 综上所述,实数a 的取值范围是(,e 1]-∞+.7.(1)1,e⎡⎫+∞⎪⎢⎣⎭(2)(],1-∞- 【解析】 【分析】(1)求出导函数()e x a f x x'=+,根据()f x 在(,0)-∞上单调递减,可得()e 0x af x x'=+≤在(,0)-∞上恒成立,分类参数可得e x a x ≥-⋅在(,0)-∞上恒成立,令()()e ,0x g x x x =-⋅<,利用导数求出函数()g x 的最大值即可得解;(2)将已知不等式转化为()ln 10a a x x--+≤对(,0)x ∀∈-∞恒成立,令()()()ln 1,0ah x a x x x=--+<,在对a 分类讨论,求出()h x 的最大值小于等于0,即可求出答案. (1)解:()e xa f x x'=+,因为()f x 在(,0)-∞上单调递减,所以()e 0xa f x x'=+≤在(,0)-∞上恒成立,即e x a x ≥-⋅在(,0)-∞上恒成立,令()()e ,0xg x x x =-⋅<, 则()()e e 1e x x xg x x x '=--=-+,当1x <-时,()0g x '>,当10x -<<时,()0g x '<, 所以函数()g x 在(),1-∞-上递增,在()1,0-上递减, 所以()()max 11eg x g =-=,所以a 的取值范围为1,e ⎡⎫+∞⎪⎢⎣⎭;(2)解:由()()f x f x '≤得()ln 1aa x x-+≤,即()ln 10a a x x--+≤对(,0)x ∀∈-∞恒成立, 令()()()ln 1,0ah x a x x x=--+<,()()()221,0a x a a h x x x x x +'=+=<,当0a =时,()1h x =,不满足()0h x ≤;当0a >时,1x <-时,()0h x '<,10x -<<时,()0h x '>, 所以函数()h x 在(),1-∞-上递减,在()1,0-上递增, 所以()()min 110h x h a =-=+>,不符合题意;当0a <时,1x <-时,()0h x '>,10x -<<时,()0h x '<, 所以函数()h x 在(),1-∞-上递增,在()1,0-上递减, 所以()()max 110h x h a =-=+≤,解得1a ≤-, 综上所述,a 的取值范围(],1-∞-. 【点睛】本题主要考查了利用导数研究函数的单调性和最值,考查了不等式恒成立问题,考查了转化思想和分类讨论思想,考查了学生的计算能力. 8.(1)12K K <; (2)1. 【解析】 【分析】(1)对()f x 、()g x 求导,应用曲率公式求出()1,1处的曲率1K ,2K ,即可比较大小;(2)由题设求出()h x 的曲率平方,利用导数求2K 的最大值即可. (1)由()11f x x '=+,()21f x x ''=,则()()()()13332222211112511f K f ''===+'+⎡⎤⎣⎦,由()g x '=,()3214g x x -''=-,则()()()2333222221124511112g K g ''===⎡⎤'+⎡⎤⎛⎫⎣⎦+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以12K K <; (2)由()cos h x x '=,()sin h x x ''=-,则()322sin 1cos xK x =+,()()2223322sin sin 1cos 2sin xxK x x ==+-,令22sin t x =-,则[]1,2t ∈,故232tK t -=, 设()32t p t t -=,则()()32643226t t t t p t t t----'==,在[]1,2t ∈时()0p t '<,()p t 递减,所以()()max 11p t p ==,2K 最大值为1.9.(1)增区间为(),3-∞-,()2,+∞,减区间为()3,2- (2)()max 312f x =,()min 163f x =- 【解析】 【分析】(1)根据题意得()20f '=,进而得12a =,再根据导数与单调性的关系求解即可;(2)由(1)知[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2-,进而求解()4f -,()3f -,()2f ,()3f 的值即可得答案. (1)解:(1)()226f x x ax '=+-,因为()f x 在2x =处取得极值,所以()24460f a '=+-=,解得12a =. 检验得12a =时,()f x 在2x =处取得极小值,满足条件.所以()26f x x x '=+-,令()0f x '>,解得3x <-或2x >,令()0f x '<,解得32x -<<, 所以()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-; (2)解:令()260f x x x '=+-=,解得3x =-或2x =,由(1)知()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-; 当[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2- 又()()()()321138444642323f -=⨯-+⨯--⨯-+=, ()()()()321131333632322f -=⨯-+⨯--⨯-+=,()321116222622323f =⨯+⨯-⨯+=-,()32115333632322f =⨯+⨯-⨯+=-,所以()max 312f x =,()min 163f x =-. 10.(1)在10,a ⎛⎫⎪⎝⎭上单调递减,在1,a⎛⎫+∞ ⎪⎝⎭上单调递增 (2)1,e⎛⎫+∞ ⎪⎝⎭【解析】 【分析】(1)求导,根据定义域和a 的范围,讨论导数符号可得单调区间; (2)由(1)中单调性可得函数最小值,由最小值大于0可解. (1)函数()f x 的定义域为()0+∞,, ()()()222231323'2ax ax a x ax f x a x a x x x+-+-=+-==由于0a >且()0x ∈+∞,,所以230ax +>,令()'0f x =,解得1x a=, 当10x a ⎛⎫∈ ⎪⎝⎭,,()'0f x <,函数()f x 单调递减, 当1x a ⎛⎫∈+∞ ⎪⎝⎭,,()'0f x >,函数()f x 单调递增, ()f x ∴在10a ⎛⎫ ⎪⎝⎭,上单调递减,在1a ⎛⎫+∞ ⎪⎝⎭,上单调递增. (2)要使()y f x =的图像与x 轴没有公共点,所以只需min ()0f x >即可,由(1)知min 111()113ln 133ln 33ln 0f x f a a a a ⎛⎫==+-+=-=+> ⎪⎝⎭,解得1e >a ,即a 的取值范围为1(,)e+∞。
导数难题(含答案)

一、单选题1.已知可导函数的导函数为, ,若对任意的,都有,()f x ()'f x ()02018f =x R ∈()()'f x f x >则不等式的解集为( )()2018xf x e <A.B. C. D. ()0,+∞21,e ⎛⎫+∞⎪⎝⎭21,e ⎛⎫-∞ ⎪⎝⎭(),0-∞2.定义在上的偶函数的导函数为,且当.则( )R ()f x ()f x '()()0,20x xf x f x +'><A.B.C.D.()()224f e f e >()()931f f >()()239f e f e -<()()224f e f e -<3.已知为定义在上的可导函数,且恒成立,则不等式()f x ()0,+∞()()'f x xf x >()210x f f x x ⎛⎫-> ⎪⎝⎭的解集为( ) A. B. C. D.()1,+∞(),1-∞()2,+∞(),2-∞二、解答题4.已知函数 .()()2ln f x ax x a R =-+∈(1)讨论的单调性;()f x (2)若存在,求的取值范围. ()()1,,x f x a ∈+∞>-a5.设函数. ()()222ln f x x ax x x x =-++-(1)当时,讨论函数的单调性;2a =()f x (2)若时, 恒成立,求整数的最小值. ()0,x ∈+∞()0f x >a6.已知函数. ()()()1ln ,af x x a xg x a R x+=-=-∈若,求函数的极值;1a =()f x 设函数,求函数的单调区间;()()()h x f x g x =-()h x 若在区间上不存在,使得成立,求实数的取值范围. []()1, 2.71828e e =⋯0x ()()00f x g x <a7.已知函数 . ()()ln ,f x x a x a R =-∈(1)当时,求函数 的极小值;0a =()f x (2)若函数在上为增函数,求的取值范围. ()f x ()0,+∞a8.已知函数. ()()2x f x x ax a e =--(1)讨论的单调性;()f x (2)若,对于任意,都有恒成立,求的取值范()0,2a ∈[]12,4,0x x ∈-()()2124a f x f x e me --<+m 围【解析】令()()()()()()0,02018xxf x f x f xg x g x g ee-<'=='=∴因此 ,选A.()2018xf x e <()()()201800xf xg x g x e⇒<⇒⇒点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如构造, 构造()()f x f x '<()()xf xg x e=()()0f x f x '+<, 构造, 构造等()()x g x e f x =()()xf x f x '<()()f x g x x=()()0xf x f x +<'()()g x xf x =2.D【解析】根据题意,设g (x )=x 2f (x ),其导数g′(x )=(x 2)′f (x )+x 2•f (x )=2xf (x )+x 2•f (x )=x[2f (x )+xf'(x )], 又由当x >0时,有2f (x )+xf'(x )<0成立,则数g′(x )=x[2f (x )+xf'(x )]<0, 则函数g (x )在(0,+∞)上为减函数, 若g (x )=x 2f (x ),且f (x )为偶函数,则g (-x )=(-x )2f (-x )=x 2f (x )=g (x ), 即g (x )为偶函数,所以 即因为为偶函数,所以,所()()2g e g <()()224f e f e <()f x ()()2f 2f -=以()()224f e f e-<故选D点睛:本题考查函数的导数与函数单调性的关系,涉及函数的奇偶性与单调性的应用,关键是构造函数g (x )并分析g (x )的单调性与奇偶性. 3.A【解析】令,则()()f x g x x=()()()2xf x f x g x x-=''∵()()f x xf x >'∴,即在上恒成立()()0xf x f x -<'()()()20xf x f x g x x'-='<()0,+∞∴在上单调递减 ()g x ()0,+∞∵ ()210x f f x x ⎛⎫->⎪⎝⎭∴,即 ()11f f x x x ⎛⎫ ⎪⎝⎭>()1g g x x ⎛⎫> ⎪⎝⎭∴,即 1x x<1x >故选A点睛:本题首先需结合已知条件构造函数,然后考查利用导数判断函数的单调性,再由函数的单调性和函数值的大小关系,判断自变量的大小关系.4.(1)在上递增,在上递减.;(2). ()f x ⎛ ⎝⎫+∞⎪⎭1,2⎛⎫-∞ ⎪⎝⎭【解析】试题分析:(1)对函数求导,再根据分类讨论,即可求出的单调性;(2)将()f x a ()f x 化简得,再根据定义域,对分类讨论, 时,满足题意,()f x a >-()21ln 0a x x --<()1,x ∈+∞a 0a ≤时,构造,求出的单调性,可得的最大值,即可求出的取值0a >()()21ln g x a x x =--()g x ()g x a 范围.试题解析:(1),()21122ax f x a x x-='=-+当时, ,所以在上递增, 0a ≤()0f x '>()f x ()0,+∞当 时,令,得, 0a >()0f x '=x =令,得;令,得,()0f x '>x ⎛∈ ⎝()0f x '<x ⎫∈+∞⎪⎭所以在上递增,在上递减. ()f x ⎛ ⎝⎫+∞⎪⎭(2)由,得,因为,所以, ()f x a >-()21ln 0a x x --<()1,x ∈+∞2ln 0,10x x --当时, 满足题意,0a ≤()21ln 0a x x --<当时,设,12a ≥()()()22211ln (1),0ax g x a x x x g x x -'=-->=>所以在上递增,所以,不合题意, ()g x ()1,+∞()()10g x g >=当时,令,得,令,得, 102a <<()0g x '>x ⎫∈+∞⎪⎭()0g x '<⎛ ⎝所以,则, ()()max 10g x g g =<=()()1,0x g x ∃∈+∞<综上, 的取值范围是. a 1,⎛⎫-∞ ⎪理导数大题时,注意分层得分的原则.一般涉及求函数单调性时,比较容易入手,求导后注意分类讨论,对于恒成立问题一般要分离参数,然后利用函数导数求函数的最大值或最小值,对于含有不等式的函数问题,一般要构造函数,利用函数的单调性来解决,但涉及技巧比较多,需要多加体会. 5.(1) f (x )递增区间为(0,),(1,+∞),递减区间为(,1);(2)1. 1212【解析】试题分析:(1)求出函数f (x )的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)问题转化为a>x-2(x-1)lnx 恒成立,令g (x )=x-2(x-1)lnx ,根据函数的单调性求出a 的最小值即可. 试题解析:(1)由题意可得f (x )的定义域为(0,+∞), 当a=2时,f (x )=﹣x 2+2x+2(x 2﹣x )lnx ,所以f′(x )=﹣2x+2+2(2x﹣1)lnx+2(x2﹣x )•=(4x﹣2)lnx ,由f'(x )>0可得:(4x﹣2)lnx >0,所以或,解得x >1或0<x <;由f'(x )<0可得:(4x﹣2)lnx <0,所以或,解得:<x <1.综上可知:f (x )递增区间为(0,),(1,+∞),递减区间为(,1).(2)若x ∈(0,+∞)时,f (x )>0恒成立, 即a >x﹣2(x﹣1)lnx 恒成立,令g (x )=x﹣2(x﹣1)lnx ,则a >g (x )max .因为g′(x )=1﹣2(lnx+)=﹣2lnx﹣1+,所以g'(x )在(0,+∞)上是减函数,且g'(1)>0,g′(2)<0,故存在x 0∈(1,2)使得g (x )在(0,x 0)上为增函数,在(x 0,+∞)上是减函数, ∴x=x 0时,g (x )max =g (x 0)≈0, ∴a >0,又因为a ∈Z ,所以a min =1.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,()0f x >()min 0f x >若恒成立,转化为;()0f x <()max 0f x <(3)若恒成立,可转化为.()()f x g x >()()min max f x g x >6.(1)极小值为;(2)见解析(3)()11f =212e a +-≤≤求导函数零点,讨论与零大小,最后根据导数符号确定函数单调性(3)正难则反,先求存在一点1a +,使得成立时实数的取值范围,由存在性问题转化为对应函数最值问题,结合(2)0x ()()00f x g x <a 单调性可得实数的取值范围,最后取补集得结果a 试题解析:解:(I )当时, ,列极值分布表 1a =()()1ln '01x f x x x f x x x-=-⇒=>⇒>在(0,1)上递减,在上递增,∴的极小值为; ()f x ∴1+∞(,)()f x ()11f =(II ) ()1ln a h x x a x x+=-+()()()211'x x a h x x ⎡⎤+-+⎣⎦∴=①当时, 在上递增;1a ≤-()()'0,h x h x >∴0+∞(,)②当时, ,1a >-()'01h x x a >⇒>+∴在上递减,在上递增; ()h x 0,1a +()()1,a ++∞(III )先解区间上存在一点,使得成立[]1,e 0x ()()00f x g x <在上有解当时,()()()0h x f x g x ⇔=-<[]1,e ⇔[]1,x e ∈()min 0h x <由(II )知①当时, 在上递增, ∴ 1a ≤-()h x []1,e ()min 1202h h a a ∴==+<⇒<-2a <-②当时, 在上递减,在上递增 1a >-()h x 0,1a +()()1,a ++∞当时, 在上递增, 无解 10a -<≤()h x []1,e ()min 1202h h a a ∴==+<⇒<-a ∴当时, 在上递减1a e ≥-()h x []1,e ,∴; ()2min1101a e h h e e a ae e ++∴==-+⇒-211e a e +>-当时, 在上递减,在上递增01a e <<-()h x []1,1a +()1,a e +()()min 12ln 1h h a a a a ∴=+=+-+令,则 ()()()2ln 121ln 1a a a F a a aa +-+==+-+()221'01F a a a=--<+在递减, , 无解, ()F a ∴()0,1e -()()2101F a F e e ∴>-=>-()0F a ∴<即无解;()min 2ln 10h a a a =+-+<综上:存在一点,使得成立,实数的取值范围为: 或.0x ()()00f x g x <a 2a <-21e a +>所以不存在一点,使得成立,实数的取值范围为.0x ()()00f x g x <a 点睛:函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,即转化为方程或不等式解的问题(有解,恒成立,无解等),而不等式有解或恒成立问题,又可通过适当的变量分离转化为对应函数最值问题.7.(1)(2) 1e-21,e ⎛⎤-∞-⎥⎝⎦【解析】试题分析:(1)当时,得出函数的解析式,求导数,令,解出的值,利用导0a =()'0f x =x 数值的正负来求其单调区间进而求得极小值;(2)求出,由于函数在是增函数,转化为对任意恒成立,()'f x ()f x ()0,+∞()'0f x ≥()0,x ∈+∞分类参数,利用导数的最小值,即可求实数的取值范围. ()ln g x x x x =+a 试题解析:(1)定义域为.()0,+∞当时, , . 0a =()ln f x x x =()'ln 1f x x =+令,得. ()'0f x =1x e=当时, , 为减函数;10,x e ⎛⎫∈ ⎪⎝⎭()'0f x <()f x 当时, , 为增函数.1,x e⎛⎫∈+∞ ⎪⎝⎭()'0f x >()f x 所以函数的极小值是. ()f x 11f e e⎛⎫=- ⎪⎝⎭(2)由已知得. ()'ln x af x x x-=+因为函数在是增函数,所以对任意恒成立, ()f x ()0,+∞()'0f x ≥()0,x ∈+∞由得,即对任意的恒成立. ()'0f x ≥ln 0x ax x-+≥ln x x x a +≥()0,x ∈+∞设,要使“对任意恒成立”,只要. ()ln g x x x x =+ln x x x a +≥()0,x ∈+∞()min a g x ≤因为,令,得. ()'ln 2g x x =+()'0g x =21x e=当时, , 为减函数; 210,x e ⎛⎫∈ ⎪⎝⎭()'0g x <()g x 1所以的最小值是. ()g x 2211g e e ⎛⎫=-⎪⎝⎭故函数在是增函数时,实数的取值范围是. ()f x ()0,+∞a 21,e ⎛⎤-∞-⎥⎝⎦点睛:本题主要考查了导数在函数中的综合应用,解答中涉及到利用导数求解函数的单调区间,利用导数求解函数的极值与最值等知识点的综合应用,这属于教学的重点和难点,应熟练掌握,试题有一定的综合性,属于中档试题,解答中把函数在是增函数,所以对任意恒()f x ()0,+∞()'0f x ≥()0,x ∈+∞成立是解答的关键.8.(1)见解析;(2).231e m e +>【解析】试题分析:(1)求出,分三种情况讨论,分别令求得 的范围,可得函数()'f x ()'0f x >x ()f x 增区间, 求得 的范围,可得函数的减区间;(2)由(1)知, ()'0f x <x ()f x 所以,,()()()2max 24f x f a e -=-=+()()()443+160f a e a f --=>-=恒成立,即恒成立,即恒成()()2124a f x f x e me --<+()222144a a e e e me ---++<+()21a a m e e->+立,利用导数研究函数的单调性,求出的最大值,即可得结果. ()21aa e e -+试题解析:(1)()()()2xf x x x a e '=+-①若,则在, 上单调递增,在上单调递减; 2a <-()f x (),a -∞()2,-+∞(),2a -②,则在上单调递增;2a =-(),-∞+∞③若,则在, 上单调递增,在上单调递减; 2a >-()f x (),2-∞-(),a +∞()2,a -(2)由1知,当时, 在上单调递增,在单调递减, ()0,2a ∈()f x ()4,2--()2,0-所以, ,()()()2max 24f x f a e -=-=+()()()443+160f a ea f --=>-=故 ,()()()()12max20f x f x f f -=--=()()222414a e a a e e ---++=++恒成立,()()2124a f x f x e me --<+即恒成立()222144a a e e e me ---++<+即恒成立, ()21aa m e e ->+令,()(),0,2x xg x x e=∈..所以 231e m e +>。
高二数学导数大题练习题(含答案)

高二数学导数大题练习题(含答案)一、解答题1.已知函数()()()211e 2x f x x ax a R =--∈ (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求实数a 的取值范围. 2.已知函数()ln f x x =.(1)当()()sin 1g x x =-,求函数()()()T x f x g x =+在()0,1的单调性; (2)()()12h x f x b x=+-有两个零点1x ,2x ,且12x x <,求证:121x x +>. 3.已知函数()()2e 2e 1e 2e x xf x x =-++.(1)若函数()()g x f x a =-有三个零点,求a 的取值范围. (2)若()()()()123123f x f x f x x x x ==<<,证明:120x x +>.4.已知a R ∈,函数()22e 2xax f x =+. (1)求曲线()y f x =在0x =处的切线方程 (2)若函数()f x 有两个极值点12,x x ,且1201x x ,(ⅰ)求a 的取值范围; (ⅱ)当9a <-时,证明:21x x <-<. (注: 2.71828e =…是自然对数的底数) 5.已知函数()()()1111ln k knk x f x x k-=-⋅-=-∑.(1)分别求n=1和n=2的函数()f x 的单调性; (2)求函数()f x 的零点个数. 6.已知()21e 2x f x k x =-.(1)若函数()f x 有两个极值点,求实数k 的取值范围;(2)证明:当n *∈N 时,()222221123123e 4e 1en n n -+++⋅⋅⋅+<+. 7.已知函数()ln 1f x x ax =++,R a ∈,函数()()21e ln 2xg x x x x x x =-++-,)2e ,x -∈+∞⎡⎣.(1)试讨论函数()f x 的单调性;(2)若0x 是函数()g x 的最小值点,且函数()()h x xf x =在0x x =处的切线斜率为2,试求a 的值.8.求函数()31443f x x x =-+在区间1,33⎡⎤⎢⎥⎣⎦上的最大值与最小值.9.已知函数()ln (1af x x a x =+-为常数),且函数()f x 的图象在2x =处的切线斜率小于1.2-(1)求实数a 的取值范围;(2)试判断(1)ln e a -与(e 1)ln a -的大小,并说明理由. 10.已知函数2()ln f x a x x =+.(1)若1a =,求()f x 在点(1(1))f ,处的切线方程;(2)若对于任意2x ≥,()f x x '≥恒成立,求实数a 的取值范围.【参考答案】一、解答题1.(1)答案见解析 (2)0a < 【解析】 【分析】(1)求出导函数()(e )x f x x a '=-,对a 分0a ≤、01a <<、1a =、1a >四种情况讨论即可求解;(2)由(1)问结论,对a 分0a <、0a =、1a =、01a <<、1a >讨论即可得答案. (1)解:()e (1)e (e )x x x f x x ax x a '=+--=-,若0a ≤,则当(,0)x ∈-∞时,()0f x '<,当()0,x ∈+∞时()0f x '>, 所以()f x 在(,0)-∞上单调递减,在()0,∞+上单调递增; 若0a >,由()0f x '=得0x =或1x na =,①若1a =,则()()e 10xx f x '-=≥,所以()f x 在(),-∞+∞上单调递增;②若01a <<,则ln 0a <,当(,ln )(0,)x a ∈-∞⋃+∞时,()0f x '>;当(ln ,0)x a ∈时,()0f x '<,所以()f x 在(,ln )a -∞和(0,)+∞上单调递增,在(ln ,0)a 上单调递减;③若1a >,则ln 0a >,当(,0)(ln ,)x a ∈-∞⋃+∞时,()0f x '>;当(0,ln )x a ∈时,()0f x '<,所以()f x 在(,0)-∞和(ln ,)a +∞上单调递增,在(0,ln )a 上单调递减; 综上,当0a ≤时,()f x 在(,0)-∞上单调递减,在()0,∞+上单调递增; 当01a <<时,()f x 在(,ln )a -∞和(0,)+∞上单调递增,在(ln ,0)a 上单调递减; 当1a =时,()f x 在(),-∞+∞上单调递增;当1a >时,()f x 在(,0)-∞和(ln ,)a +∞上单调递增,在(0,ln )a 上单调递减; (2)解:当0a <时,由(1)知,()f x 在(,0)-∞上单调递减,在()0,∞+上单调递增, 又()()1010,102f f a =-<=->,取b 满足3b <-且ln(b a <-),则()()()2211122022f b a b ab a b b >---=+->,所以()f x 有两个零点;当0a =时,令()(1)e 0x f x x =-=,解得0x =,所以()f x 只有一个零点; 当1a =时,令()()01x f x e x -==,解得0x =,所以()f x 只有一个零点;当01a <<时,由(1)知,()f x 在(,ln )a -∞和(0,)+∞上单调递增,在(ln ,0)a 上单调递减,又()01f =-,当ln b a =时,()f x 有极大值()()()2211122022f b a b ab a b b =--=--+<,所以()f x 不存在两个零点;当1a >时,由(1)知,()f x 在(,0)-∞和(ln ,)a +∞上单调递增,在(0,ln )a 上单调递减,当0x =时,()f x 有极大值()010f =-<,所以()f x 不存在两个零点; 综上,a 的取值范围为0a <. 【点睛】关键点点睛:本题(2)问解题的关键是,当0a <时,取b 满足3b <-且ln(b a <-),从而可得()()()2211122022f b a b ab a b b >---=+->.2.(1)单调递增 (2)证明见解析 【解析】 【分析】(1)直接求导,判断出导数大于0,即可得到单调性;(2)直接由1x ,2x 是函数()1ln 2h x x b x=+-的两个零点得到1212122ln x x x x x x -=,分别解出1211212ln x x x xx -=,2121212ln x x x x x -=,再换元令12x t x =构造函数()12ln l t t t t=--,求导确定单调性即可求解. (1)由题意,函数()()sin 1ln T x x x =-+,则()()1cos 1T x x x'=--+,又∵()0,1x ∈,∴11x>,()()10,1,cos 11x x -∈-<,∴()0T x '>,∴()T x 在(0,1)上单调递增. (2)根据题意,()()1ln 02h x x b x x =+->, ∵1x ,2x 是函数()1ln 2h x x b x =+-的两个零点,∴111ln 02x b x +-=,221ln 02x b x +-=. 两式相减,可得122111ln22x x x x =-,即112221ln 2x x x x x x -=, ∴1212122ln x x x x x x -=,则1211212ln x xx x x -=,2121212ln xx x x x -=. 令12x t x =,()0,1t ∈,则1211112ln 2ln 2ln t t t t x x t t t---+=+=.记()12ln l t t t t =--,()0,1t ∈,则()()221t l t t-'=. 又∵()0,1t ∈,∴()0l t '>恒成立,∴()l t 在()0,1上单调递增,故()()1l t l <,即12ln 0t t t --<,即12ln t t t-<.因为ln 0t <,可得112ln t t t->,∴121x x +>.【点睛】本题关键点在于对双变量的处理,通过对111ln 02x b x +-=,221ln 02x b x +-=作差,化简得到1212122ln x x x x xx -=, 分别得到12,x x 后,换元令12x t x =,这样就转换为1个变量,再求导确定单调性即可求解. 3.(1)2(e ,2e 1)--- (2)证明见详解 【解析】 【分析】(1)令e x t =换元得函数2()2(e 1)2eln ,0h t t t t t =-++>,然后通过导数求极值,根据y a =与函数图象有三个交点可得;(2)构造函数1()()()m t h t h t=-,通过导数研究在区间(1,e)上的单调性,然后由单调性结合已知可证. (1)令e x t =,则ln x t =,记2()2(e 1)2eln ,0h t t t t t =-++> 令2e 2(1)(e)()22(e 1)0t t h t t t t--'=-++==,得121,e t t == 当01t <<时,()0h t '>,1e t <<时,()0h t '<,t e >时,()0h t '>所以当1t =时,()h t 取得极大值(1)2e 1h =--,e t =时,()h t 取得极大值2(e)e h =-, 因为函数()()g x f x a =-有三个零点⇔()y h t =与y a =有三个交点, 所以2e 2e 1a -<<--,即 a 的取值范围为2(e ,2e 1)---. (2)记221111()()()2(e 1)2eln 2(e 1)2eln m t h t h t t t t t t t=-=-++-++- 2212(e 1)2(e 1)4eln t t t t t+=-++-+ 4323234e 22(e 1)22(e 1)4e 2(e 1)2()22(e 1)t t t t m t t t t t t +-++-++'=-+++-=记432()22(e 1)4e 2(e 1)2n t t t t t =-++-++ 则32()86(e 1)8e 2(e 1)n t t t t '=-++-+ 记32()86(e 1)8e 2(e 1)s t t t t =-++-+ 则2()2412(e 1)8e s t t t '=-++易知()s t '在区间(1,e)上单调递增,所以()(1)124e 0s t s ''>=-> 所以()s t 在区间(1,e)上单调递增,所以()(1)0s t s >= 所以()n t 在区间(1,e)上单调递增,所以()(1)0n t n >=所以()m t 在区间(1,e)上单调递增因为()()()()123123f x f x f x x x x ==<<,记312123e ,e ,e x x xt t t ===所以()()()()123123h t h t h t t t t ==<< 由(1)可知,12301e t t t <<<<<所以2221()()()(1)0m t h t h m t =->=,即221()()h t h t > 又()()12h t h t =,所以121()()h t h t > 因为21e t <<,所以2101t << 由(1)知()h t 在区间(0,1)上单调递增,所以121t t >,即1212e1x xt t +=> 所以120x x +> 【点睛】本题第二问属于极值点偏移问题,关键点在于构造一元差函数,通常构造成00()()()F x f x x f x x =+--或0()()(2)F x f x f x x =--,本题由于采取了换元法转化问题,因此构造函数为1()()()m t h t h t=-. 4.(1)(21y x =-+(2)(ⅰ)22e ,-;(ⅱ)证明见解析【解析】 【分析】(1)由导数的几何意义即可求解;(2)(ⅰ)原问题等价于12,x xa =-的两根,且1201x x ,从而构造函数())0g x x =>,将问题转化为直线y a =-与函数()g x 的图象有两个交点,且交点的横坐标大于0小于1即可求解;(ⅱ)由1e x x +≤,利用放缩法可得()()1112210x ax f x '++-=,即1x 2114x <<,从而可证21x x -<()21e 011x xx x +<<<-,然后利用放缩法可得()()1201,21i i i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,最后构造二次函数()(222m x ax a x =-++++21x x ->而得证原不等式.(1)解:因为()22e x f x ax '=+所以()02f '=()01f =,所以曲线()y f x =在0x =处的切线方程为(21y x =-+; (2)解:(ⅰ)因为函数()f x 有两个极值点12,x x ,所以12,x x 是关于x 的方程()22e 0x f x ax =+'的两根,也是关于x 的方程a =-的两正根,设())0g x x =>,则()g x '=,令())224e 2e 0x x h x x x =->,则()28e xh x x '=,当0x >时,()0h x '>,所以()h x 在()0,∞+上单调递增,又104h ⎛⎫= ⎪⎝⎭,所以,当104x <<时,()0h x <,()0g x '<;当14x >时,()0h x >,()0g x '>, 所以函数()g x 在10,4⎛⎫ ⎪⎝⎭上单调递减,在1,4⎛⎫+∞ ⎪⎝⎭上单调递增,又因为1201x x ,所以()114g a g ⎛⎫<-<⎪⎝⎭,即22e a <-<-所以a 的取值范围是22e ,-;22e 9a <<-,因为1e x x +≤,所以()()1112210x ax f x '++-=,所以()142a x +-,所以1x 2114x <<,所以211x x -<= 下面先证明不等式()21e 011xxx x+<<<-, 设()()2101e 1xx r x x x -=⋅<<+,则()()2222e 1x x r x x '=-+, 所以,当01x <<时,()0r x '<,()r x '在()0,1上单调递减,所以,()()01r x r <=,所以不等式()21e 011xxx x+<<<-成立,因为12,x x ,()1201x x <<<是()22e 0x f x ax '=+=的两个根,所以()()01,2i f x i '==,又()21e 011x xx x+<<<-,所以()()1201,21ii i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,设函数()(222m x ax a x =-++++x t ==因为((()2224261620a a a ∆=+++-=+-+->,且()00m >,()10m >,102t <<, 所以函数()m x 有两个不同的零点,记为α,()βαβ<,且01t αβ<<<<, 因为()22616212e 201t a tf t at at t+++'=+-⋅+-=<-,且()00f '>,()10f '>,所以1201x x ,因为()m x 在()0,t 上单调递减,且()()10m x m α>=,所以10x t α<<<; 因为()m x 在(),1t 上单调递增,且()()20m x m β>=,所以21t x β<<<; 所以1201x x αβ<<<<<,所以21x x βα->-,因为βα-=又()109a -<<<-,所以βα-> 所以21x x-> 综上,21x x <-< 【点睛】关键点点睛:本题(2)问(ii )小题证明的关键是,利用1e x x +≤,进行放缩可得1x 21x x -<;再利用()21e 011xx x x +<<<-,进行放缩可得()()1201,21ii i ixax f x ix +'⋅+->==-,从而构造二次函数()(222mx ax a x =-++++21x x ->5.(1)当1n =时,函数()f x 在()0,1上单调递增,在()1,+∞上单调递减;当2n =时,()f x 在()0,∞+上单调递增; (2)1个. 【解析】 【分析】(1)利用导数求函数的单调区间得解;(2)求出()()1nx f x x-'=,再对n 分奇数和偶数两种情况讨论得解.(1)解:由已知,得()()()()()()2311111ln 123n nx x x f x x x n-⎡⎤----=---+++⎢⎥⎢⎥⎣⎦. ①当1n =时,()()ln 1f x x x =--,()11f x x'=-.由()110f x x '=->,得01x <<;由()110'=-<f x x,得1x >.因此,当1n =时,函数()f x 在()0,1上单调递增,在()1,+∞上单调递减.②当2n =时,()()()21ln 12x f x x x ⎡⎤-=---⎢⎥⎢⎥⎣⎦,()()()21111x f x x x x -'=-+-=.因为()0f x '≥在()0,∞+恒成立,且只有当1x =时,()0f x '=, 所以()f x 在()0,∞+上单调递增. (2)解:由()()()()()()2311111ln 123n nx x x f x x x n-⎡⎤----=---+++⎢⎥⎢⎥⎣⎦, 得()()()()()()()()211111111111111nnn n x x f x x x x x x x x-----⎡⎤'=---+-++--=-=⎣⎦--. 当n 为偶数时,()0f x '≥在()0,∞+恒成立,且只有当1x =时,()0f x '=, 所以()f x 在()0,∞+上单调递增.因为()10f =,所以()f x 有唯一零点1x =. 当n 为奇数时,由()()10nx f x x-'=>,得01x <<;由()()10nx f x x-'=<,得1x >.因此,()f x 在()0,1上单调递增,在()1,+∞上单调递减. 因为()10f =,所以()f x 有唯一零点1x =.综上,函数()f x 有唯一零点1x =,即函数()f x 的零点个数为1. 6.(1)1(0,)e(2)证明见解析 【解析】【分析】(1)求解导函数,再构造新函数,求导,判断单调性,求解极值,分类讨论1e k ≥与10e <<k 两种情况;(2)由(1)知,1e ex x ≤,可证2121(1)e (1)n n n n -++≤,由21111(1)(1)1n n n n n <=-+++,可得2111(1)e 1n n n n n -≤-++,从而利用裂项相消法求和可证明()222221123123e 4e 1en nn -+++⋅⋅⋅+<+. (1)由21()e 2x f x k x =-,得()e e ()e x x xxf x k x k '=-=-. 设()e x xg x =,则1()ex x g x -'=,当1x <时,()0g x '>,()g x 是增函数;当1x >时,()0g x '<,()g x 是减函数.又(1)0g '=,∴max 1()()(1)eg x g x g ===极大.设1e λ≥,当1ln x λ<-时,11111ln ln ()ln e x x g x e λλλλλ--=<=-<-.由于(0)0g =,所以()g x 在区间(,0)-∞上的值域是(,0)-∞.又0x >时,()0>g x ,所以当0k ≤时,直线y k =与曲线()y g x =有且只有一个交点,即()'f x 只有一个零点,不合题意,舍.当1ek ≥时,()0f x '≥,()f x 在R 上是增函数,不合题意,舍.当10e<<k 时,若1x ≤,由(1)可知,直线y k =与曲线()y g x =有一个交点.下面证明若1x >,直线y k =与曲线()y g x =有一个交点.由于()g x 是区间(1,)+∞上的减函数,所以需要证明()g x 在区间(1,)+∞上的值域为1(0,)e ,即对21(0,)eλ∀∈,都存在01x >,使得020()g x λ<<.构造函数2()e x h x x =-,则()e 2x h x x '=-,∴当ln 2x >时,()'()20xh x e =->',()h x '在区间(ln2,)+∞上是增函数,∴当1x >时,()(1)e 20h x h ''>=->,即()h x 是区间[1,)+∞的增函数,∴1x >时,()(1)e 10h x h >=->,此时2e x x >.设210e λ<<,当21x λ>时,0()e x x g x <=<221x x xλ=<,∴当10e<<k 时,直线y k =与曲线()y g x =有两个交点,即()'f x 有两个零点.设这两零点分别为1x ,212()x x x <,则1201x x <<<,不等式()0f x '>的解集为12(,)(,)x x -∞+∞,不等式()0f x '<的解集为12(,)x x .所以1x 为函数()f x 的极大值点,2x 为函数()f x 的极小值点.综上所述,实数k 的取值范围是1(0,)e.(2)证明:由(1)知,1e e x x ≤,∴对*n N ∀∈,2121(1)e (1)n n n n -++≤. ∵211(1)(1)n n n <=++111n n -+, ∴2111(1)1n n n e n n -<-++, ∴22222112311111111(1)()()()123e 4e (1)e 2233411n n n n n n -++++<-+-+-++-=-+++, 所以,222221123123e 4e (1)e n n n -++++<+. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.7.(1)答案见解析;(2)12a =.【解析】 【分析】(1)由题可得()11ax f x a x x +'=+=,讨论0a ≥,0a <即得; (2)由题可得()g x '是一个单调递增的函数,利用零点存在定理可得()2e ,1t -∃∈,使得()0g t '=,进而可得()0000111ln e e 1ln x x x x ⎛⎫+=+ ⎪⎝⎭,利用导数可得001e x x =,结合条件可得00ln 20x ax +=,即求. (1) ()11ax f x a x x +'=+=,0x >, 当0a ≥时,函数()f x 在定义域()0,∞+上单调递增;当0a <时,函数的单调性如表格所示:由题可得()()()22121e 1ln 2e ln 1x x g x x x x x x x x '=-++-++-=++-,0x >,则()g x '是一个单调递增的函数,当2e x -=时,()()2242e e e e e 30g ----'=+-<, 当1x =时,()12e 10g '=->,故()2e ,1t -∃∈,使得()0g t '=,且所以0x t =,00000e ln 10g x x x x '=++-=,整理该式有()02000e 1ln x x x x +=-,()000001111e ln x x x x x +=+, ∴()0000111ln e e 1ln x x x x ⎛⎫+=+ ⎪⎝⎭ 令()()21ln ,e m x x x x -=+>,则()2ln 0m x x '=+>,所以函数在()2e ,-+∞上单调递增,故()0000111ln e e 1ln x x x x ⎛⎫+=+ ⎪⎝⎭的解满足001e x x =; 又()2ln h x x x ax x =++,()1ln 21h x x ax '=+++,()0002ln 22h x x ax '=++=,所以00ln 20x ax +=,由001e x x =知,0020x ax -+=,故12a =.8.最小值为()423f =-,最大值为1217381f ⎛⎫= ⎪⎝⎭ 【解析】【分析】利用导数判断函数的单调性与最值情况.【详解】由()31443f x x x =-+,得()24f x x '=- 令()0f x '=.得2x =± 1,33x ⎡⎤∈⎢⎥⎣⎦,所以2x =-舍去, 列表如下:()f x ∴的极小值为()23f =- 又1217381f ⎛⎫= ⎪⎝⎭,()31f =, 所以,()f x 的最小值为()423f =-,最大值为1217381f ⎛⎫= ⎪⎝⎭. 9.(1)(1,)+∞(2)答案见解析【解析】【分析】(1)求导后根据题意解不等式(2)化为相同形式,构造函数根据单调性判断(1)由22(2)1()(1)x a x f x x x '-++=-,且函数()f x 在2x =处的切线斜率小于12-, 知2222(2)11(2)2(21)2a f -++'=<--,解得 1.a > 故a 的取值范围为(1,)+∞(2)由(1)可知(1)ln e a -与(e 1)ln a -均为正数.要比较(1)ln e a -与(e 1)ln a -的大小,可转化为比较ln e e 1-与ln 1a a -的大小.构造函数ln ()(1)1x x x x ϕ=>-,则211ln ()(1)x x x x ϕ--'=-,再设1()1ln m x x x =--,则21()x m x x -'=, 从而()m x 在(1,)+∞上单调递减,此时()()10m x m <=,故()0x ϕ'<在(1,)+∞上恒成立,则ln ()1x x x ϕ=-在(1,)+∞上单调递减. 综上可得,当(1,e)a ∈时,(1)lne (e 1)ln a a -<-当e a =时,(1)lne (e 1)ln a a -=-当(e,)a ∈+∞时,(1)lne (e 1)ln a a ->-10.(1)320x y --=;(2)[)4,∞-+.【解析】【分析】(1)把1a =代入,求出函数()f x 的导数,利用导数的几何意义结合直线点斜式方程求解作答.(2)根据给定条件,分离参数,借助二次函数的最大值推理作答.(1)当1a =时,2()ln f x x x =+,求导得:1()2f x x x '=+,则(1)3f '=,而(1)1f =,有13(1)y x -=-,即320x y --=,所以所求切线方程为320x y --=.(2)当2x ≥时,()f x x '≥恒成立,即当2x ≥时,2a x x x+≥恒成立,有2≥-a x 在[2,)x ∈+∞上恒成立, 而函数2y x =-在[2,)+∞上单调递减,当2x =时,max 4y =-,于是得4a ≥-, 所以实数a 的取值范围为[)4,∞-+.。
导数的运算专项练习(含答案)

导数的运算一、单选题(共33题;共66分)1.f′(x)是函数f(x)=x3+2x+1的导函数,则f′(-1)的值为()A. 0B. 3C. 4D. -2.函数的导数为()A. B. C. D.3.设函数,若,则等于()A. B. C. D.4.设则等于( )A. B. C. D.5.已知函数的导函数,且满足,则=( )A. B. C. 1 D.6.已知函数的导函数为,且,则()A. 2B. 3C. 4D. 57.下列求导运算的正确是()A. 为常数B.C.D.8.已知函数的值为()A. B. C. D.9.下列求导运算正确的是()A. B. C. D.10.已知函数f(x)=sinx-cosx,则f'()=()A. B. C. D.11.若函数f(x)=2+xcos2x,则f'(x)=()A. cos 2x-xsin 2xB. x-sin 2xC. 1-2sin 2xD. cos2x-2sin2x12.函数的导数为()A. =2B. =C. =2D. =13.设函数的导函数为,且,则=( )A. 0B. -4C. -2D. 214.设,若,则()A. B. C. D.15.已知函数,则其导数()A. B. C. D.16.若函数,则的值为()A. 0B. 2C. 1D. -117.已知函数,且,则的值为()A. B. C. D.18.已知函数,为的导函数,则的值为()A. B. C. D.19.下列求导运算正确的是()A. B. C. D.20.已知函数的导函数为,且满足,则()A. B. C. D.21.若,则函数的导函数()A. B. C. D.22.函数的导数为()A. B. C. D.23.下列导数式子正确的是()A. B. C. D.24.已知,则等于()A. -2B. 0C. 2D. 425.已知函数,则()A. B. C. D.26.已知,则()A. B. C. D.27.设,,则x0=( )A. e2B. eC.D. ln 228.下列求导数运算正确的是()A. B. C. D.29.若f(x)=x2-2x-4ln x,则f′(x)>0的解集为()A. (0,+∞)B. (-1,0)∪(2,+∞)C. (-1,0)D. (2,+∞)30.下列求导运算正确的是( )A. B. C. D.31.已知,则 ( )A. B. C. D. 以上都不正确32.设f(x)=xln x,若f′(x0)=2,则x0等于( )A. e2B. eC.D. ln 233.下列导数运算正确的是()A. B. C. D.二、填空题(共11题;共11分)34.已知函数的导函数为,若,则的值为________.35.若函数,则的值为________.36.已知,则________.37.若函数,则________.38.已知函数,则________.39.已知函数,是的导函数,则________.40.若f(x)=x3,f′(x0)=3,则x0的值为________.41.已知在上可导,,则________.42.已知函数的导函数为,且,则________.43.已知f(x)=2x+3xf′(0),则f′(1)=________.44.已知函数f(x)=2e x﹣x的导数为,则的值是________.三、解答题(共6题;共60分)45.求下列函数的导函数.①②③④⑤⑥46.求下列函数的导函数①②③④⑤⑥47.求下列函数的导数:(1);(2).48.求下列函数的导数:(1);(2);(3);(4).49.求下列函数的导数.(1);(2).50.求下列函数的导数.(1)y=3x2+xcos x;(2)y=lgx-;答案解析部分一、单选题1.【答案】B【考点】导数的运算【解析】【解答】解:因为,则,所以,故答案为:B.【分析】先由函数,求得导函数,再求即可得解.2.【答案】D【考点】导数的运算【解析】【解答】因为,则函数的导函数,故答案为:D.【分析】先根据完全平方公式对展开,再运用常见初等函数的求导公式和求导运算法则可求解.3.【答案】D【考点】导数的运算【解析】【解答】,,,解得,故答案为:D,【分析】对函数求导,再由可求出实数的值.4.【答案】D【考点】导数的运算【解析】【解答】由,得.故答案为:D.【分析】由已知利用导数的运算性质进行计算,即可得结果.5.【答案】B【考点】导数的运算【解析】【解答】对函数进行求导,得把代入得,直接可求得。
高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案一、解答题1.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围. 2.已知函数()ln f x x =.(1)当()()sin 1g x x =-,求函数()()()T x f x g x =+在()0,1的单调性; (2)()()12h x f x b x=+-有两个零点1x ,2x ,且12x x <,求证:121x x +>. 3.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围.4.已知a R ∈,函数()22e 2xax f x =+. (1)求曲线()y f x =在0x =处的切线方程 (2)若函数()f x 有两个极值点12,x x ,且1201x x ,(ⅰ)求a 的取值范围;(ⅱ)当9a <-时,证明:21x x <-<. (注: 2.71828e =…是自然对数的底数) 5.求下列函数的导数: (1)2cos x xy x -=; (2)()e 1cos 2x x y x =+-; (3)()3log 51y x =-.6.已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.7.已知函数()323f x x ax x =-+.(1)若3x =是()f x 的极值点,求()f x 在[]1,a 上的最大值和最小值;(2)若()f x 在[)1,+∞上是单调递增的,求实数a 的取值范围.8.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)9.已知函数()ln 2f x x x ax =++在点()()1,1f 处的切线与直线220x y 相互垂直.(1)求实数a 的值;(2)求()f x 的单调区间和极值.10.已知函数()222(0)e xmx x f x m +-=>. (1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224e f x f x -≤恒成立,求实数m 的取值范围.【参考答案】一、解答题1.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>, ①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+;②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<,所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈, 令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数,所以()()33min 1h x h e e -==,所以31a e ≤-. 2.(1)单调递增 (2)证明见解析 【解析】 【分析】(1)直接求导,判断出导数大于0,即可得到单调性;(2)直接由1x ,2x 是函数()1ln 2h x x b x =+-的两个零点得到1212122ln x xx x x x -=,分别解出1211212ln x xx x x -=,2121212ln xx x x x -=,再换元令12x t x =构造函数()12ln l t t t t=--,求导确定单调性即可求解. (1)由题意,函数()()sin 1ln T x x x =-+,则()()1cos 1T x x x'=--+,又∵()0,1x ∈,∴11x>,()()10,1,cos 11x x -∈-<,∴()0T x '>,∴()T x 在(0,1)上单调递增. (2)根据题意,()()1ln 02h x x b x x =+->, ∵1x ,2x 是函数()1ln 2h x x b x=+-的两个零点,∴111ln 02x b x +-=,221ln 02x b x +-=. 两式相减,可得122111ln22x x x x =-,即112221ln 2x x x x x x -=, ∴1212122ln x x x x x x -=,则1211212ln x x x x x -=,2121212ln xx x x x -=. 令12x t x =,()0,1t ∈,则1211112ln 2ln 2ln t t t t x x t t t---+=+=.记()12ln l t t t t =--,()0,1t ∈,则()()221t l t t-'=. 又∵()0,1t ∈,∴()0l t '>恒成立,∴()l t 在()0,1上单调递增,故()()1l t l <,即12ln 0t t t --<,即12ln t t t-<.因为ln 0t <,可得112ln t t t->,∴121x x +>.【点睛】本题关键点在于对双变量的处理,通过对111ln 02x b x +-=,221ln 02x b x +-=作差,化简得到1212122ln x x x x xx -=, 分别得到12,x x 后,换元令12x t x =,这样就转换为1个变量,再求导确定单调性即可求解. 3.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立,因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==- ⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =. 即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立.所以a 的取值范围为[)1,+∞.4.(1)(21y x =-+(2)(ⅰ)22e ,-;(ⅱ)证明见解析【解析】 【分析】(1)由导数的几何意义即可求解;(2)(ⅰ)原问题等价于12,x xa =-的两根,且1201x x ,从而构造函数())0g x x =>,将问题转化为直线y a =-与函数()g x 的图象有两个交点,且交点的横坐标大于0小于1即可求解;(ⅱ)由1e x x +≤,利用放缩法可得()()1112210x ax f x '++-=,即1x 2114x <<,从而可证21x x -<()21e 011x x x x +<<<-,然后利用放缩法可得()()1201,21i i i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,最后构造二次函数()(222m x ax a x =-++++21x x ->而得证原不等式. (1)解:因为()22e x f x ax '=+所以()02f '=()01f =,所以曲线()y f x =在0x =处的切线方程为(21y x =-+; (2)解:(ⅰ)因为函数()f x 有两个极值点12,x x ,所以12,x x 是关于x 的方程()22e 0x f x ax =+'的两根,也是关于x的方程a =-的两正根, 设())0g x x =>,则()g x '=, 令())224e 2e 0x x h x x x =->,则()28e xh x x '=,当0x >时,()0h x '>,所以()h x 在()0,∞+上单调递增,又104h ⎛⎫= ⎪⎝⎭,所以,当104x <<时,()0h x <,()0g x '<;当14x >时,()0h x >,()0g x '>,所以函数()g x 在10,4⎛⎫⎪⎝⎭上单调递减,在1,4⎛⎫+∞ ⎪⎝⎭上单调递增,又因为1201x x ,所以()114g a g ⎛⎫<-<⎪⎝⎭,即22e a <-<- 所以a的取值范围是22e ,-;22e 9a <<-, 因为1e x x +≤,所以()()1112210x ax f x '++-=,所以()142a x +-,所以1x 2114x <<,所以211x x -<= 下面先证明不等式()21e 011x xx x+<<<-, 设()()2101e 1xx r x x x -=⋅<<+,则()()2222e 1x x r x x '=-+, 所以,当01x <<时,()0r x '<,()r x '在()0,1上单调递减, 所以,()()01r x r <=,所以不等式()21e 011x xx x+<<<-成立, 因为12,x x ,()1201x x <<<是()22e 0x f x ax '=+=的两个根,所以()()01,2i f x i '==,又()21e 011x xx x+<<<-,所以()()1201,21ii i ixax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,设函数()(222m x ax a x =-++++x t ==因为((()2224261620a a a ∆=+++-=+-+->,且()00m >,()10m >,102t <<, 所以函数()m x 有两个不同的零点,记为α,()βαβ<,且01t αβ<<<<,因为()22616212e 201ta tf t at at t+++'=+-⋅+-=<-,且()00f '>,()10f '>,所以1201x x ,因为()m x 在()0,t 上单调递减,且()()10m x m α>=,所以10x t α<<<; 因为()m x 在(),1t 上单调递增,且()()20m x m β>=,所以21t x β<<<; 所以1201x x αβ<<<<<,所以21x x βα->-,因为βα-=又()109a-<<<-,所以βα-> 所以21x x->综上,21x x <-< 【点睛】关键点点睛:本题(2)问(ii)小题证明的关键是,利用1e x x +≤,进行放缩可得1x 21x x -<;再利用()21e 011x xx x +<<<-,进行放缩可得()()1201,21ii i ixax f x i x +'⋅+->==-,从而构造二次函数()(222m x ax ax =-++++21x x ->5.(1)'y ()31sin 2cos x x xx --=;(2)'y ()e 1cos sin 2ln 2x xx x =+--;(3)'y ()551ln 3x =-⋅.【解析】 【分析】根据导数的运算法则,对(1)(2)(3)逐个求导,即可求得结果. (1)因为2cos x x y x -=,故'y ()()()243sin 12cos 1sin 2cos x x x x x x x x x x------==. (2)因为()e 1cos 2x x y x =+-,故'y ()e 1cos sin 2ln 2x xx x =+--.(3)因为()3log 51y x =-,故'y ()()155?51ln 351ln 3x x =⨯=--⋅. 6.(1)()3232f x x x =+-(2)()2,2- 【解析】 【分析】(1)由已知可得()()2013f f ⎧-=⎪⎨-=-''⎪⎩,可得出关于实数a 、b 的方程组,解出这两个未知数的值,即可得出函数()f x 的解析式;(2)分析可知,直线y λ=与函数()f x 的图象有3个交点,利用导数分析函数()f x 的单调性与极值,数形结合可得出实数λ的取值范围.(1)解:因为()322f x x ax bx =++-,则()232f x x ax b '=++,由题意可得()()212401323f a b f a b ⎧-=-+=⎪⎨-=-+=-''⎪⎩,解得30a b =⎧⎨=⎩,所以,()3232f x x x =+-.当3a =,0b =时,()236f x x x '=+,经检验可知,函数()f x 在2x =-处取得极值. 因此,()3232f x x x =+-.(2)解:问题等价于()f x λ=有三个不等的实数根,求λ的范围.由()2360f x x x '=+>,得2x <-或0x >,由()2360f x x x '=+<,得20x -<<,所以()f x 在(),2-∞-、()0,∞+上单调递增,在()2,0-上单调递减, 则函数()f x 的极大值为()22f -=,极小值为()02f =-,如下图所示:由图可知,当22λ-<<时,直线y λ=与函数()f x 的图象有3个交点, 因此,实数λ的取值范围是()2,2-. 7.(1)最大值为15,最小值为9- (2)3a ≤ 【解析】 【分析】(1)由()30f '=可求得实数a 的值,再利用函数的最值与导数的关系可求得函数()f x 在[]1,a 上的最大值和最小值;(2)分析可知()23230f x x ax '=-+≥对任意的1≥x 恒成立,利用参变量分离法结合基本不等式可求得实数a 的取值范围. (1)解:因为()323f x x ax x =-+,则()2323f x x ax =-+',则()33060f a '=-=,解得5a =,所以,()3253f x x x x =-+,则()()()23103313f x x x x x '=-+=--,列表如下:所以,min 39f x f ==-,因为11f =-,515f =,则max 515f x f ==. (2)解:由题意可得()23230f x x ax '=-+≥对任意的1≥x 恒成立,即312a x x⎛⎫≤+ ⎪⎝⎭,由基本不等式可得313322x x ⎛⎫+≥⨯ ⎪⎝⎭,当且仅当1x =时,等号成立,故3a ≤.8.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】 【分析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点; ②利用独立重复试验的期望公式代入可求出答案. (1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯.故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关. (2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元. 9.(1)3a =-;(2)增区间为()2e ,+∞,减区间为()20,e ,极小值22e -,无极大值.【解析】 【分析】(1)根据()1112f '⨯=-,代值计算即可求得参数值;(2)根据(1)中所求参数值,求得()f x ',利用导数的正负即可判断函数单调性和极值. (1)因为()ln 1f x x a '=++,在点()()1,1f 处的切线斜率为()11k f a '==+, 又()f x 在点()()1,1f 处的切线与直线220x y 相互垂直, 所以()1112f '⨯=-,解得3a =-. (2)由(1)得,()ln 2f x x '=-,()0,x ∈+∞,令()0f x '>,得2e x >,令()0f x '<,得20e x <<,即()f x 的增区间为()2e ,+∞,减区间为()20,e . 又()22222e e ln e 3e 22ef =-+=-,所以()f x 在2e x =处取得极小值22e -,无极大值. 【点睛】本题考查导数的几何意义,以及利用导数研究函数的单调性和极值,属综合中档题.10.(1)单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦ (2)20,4e ⎛⎤ ⎥-⎝⎦【解析】 【分析】(1)先对函数求导,然后由导数的正负可求出函数的单调区间, (2)由函数()f x 在[]1,2上为增函数,求出函数的最值,则()()max min 24e 2()()e m g m f x f x -+=-=,然后将问题转化为()224e 24e e m -+≥,从而可求出实数m 的取值范围. (1)()()()()221422(0)e e xxmx m x mx x f x m -+-+-+-=>'=令()0f x '=,解得2x m =-或2x =,且22m-< 当2,x m ∞⎛⎤∈-- ⎥⎝⎦时,()0f x '≤,当2,2x m ⎛⎫∈- ⎪⎝⎭时,()0f x '>,当[)2,x ∞∈+时,()0f x '≤即()f x 的单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦(2)由(1)知,当[]0,1,2m x >∈时,()0f x '>恒成立 所以()f x 在[]1,2上为增函数, 即()()max min242()2,()1e em mf x f f x f +====. ()()12f x f x -的最大值为()()max min 24e 2()()e m g m f x f x -+=-=()()1224e f x f x ⎡⎤≥-⎣⎦恒成立()224e 24e e m -+∴≥ 即24em ≤-, 又0m > 20,4e m ⎛⎤∴∈ ⎥-⎝⎦ 故m 的取值范围20,4e ⎛⎤ ⎥-⎝⎦。
导数大题经典练习及答案

导数大题专题训练1 .已知f(x) = xlnx—ax, g(x)= —x2—2,(I )对一切x€ (0,+ a), f(x) > g恒成立,求实数a的取值范围;(n )当a=—1时,求函数f(x)在[m,m+ 3](m > 0)上的最值;(川)证明:对一切x€ (0, +^),都有1 2 lnx + 1 >=—eex成立.2 _2、已知函数f(x) al nx 2( a 0). (I)若曲线y=f (x)在点P (1, f (1))处的切线与直线x函数y=f (x)的单调区间;(n)若对于x (0,)都有f (x)> 2(a—1)成立,试求a的取值范围; y=x+2垂直,求(出)记g (x)=f(x)+x—b (b € R) •当a=1时,函数g (x)在区间[e—1, e]上有两个零点,求实数b的取值范围3 .设函数f (x)=In x+(x—a)2, a€ R. (I)若a=0,求函数f (x)在[1 , e]上的最小值;1(n)若函数f (x)在[-2]上存在单调递增区间,试求实数a的取值范围;2 '(川)求函数f (x)的极值点.1 24、已知函数f(x) ax (2a 1)x 2ln x (a R).2(i )若曲线y f (x)在x 1和x 3处的切线互相平行,求a的值;(n )求f (x)的单调区间;2g(x) x 2x,若对任意X! (0, 2],均存在X2 (0,2],使得f(xj g(X2),求a的取值范围25、已知函数f x aln x 2(a 0)x(I )若曲线y = f(x)在点P(1, f(1))处的切线与直线y= x+ 2垂直,求函数y= f(x)的单调区间;(n )若对于任意x 0, 都有f x 2(a 1)成立,试求a的取值范围;1(川)记g(x)= f(x) + x- b(b€ R).当a= 1时,函数g(x)在区间e ,e上有两个零点,求实数b的取值范围x1 In x6、已知函数f(x)(1)若函数在区间(a, a )(其中a 0)上存在极值,求实数a的取值范围;⑵如果当x 1时,不等式f(x) 恒成立,求实数k的取值范围.x221.解:(I )对一切 x (0, ), f (x) g(x)恒成立,即 xlnxax x 2恒成立.也就是a ln x xx (0,)恒成立;令F(x)lnx x 2 x,则 F (x)11x 22 x x 2 (x 2)( x 1)~ 2 2 ,x x x在(0,1)上 F (x) 0,在(1, )上 F (x) 0,因此, F(x)在 x 1处取极小值,也是最小值,即 F min (x) F(1) 3,所以 a 3. (n )当 a 1 时,f (x) xln x x , f (x) In x 2 , 由 f (x) ①当0 m —时,在x [m ,2)上f (x) e e (A ,m e3]上 f (x) 1 因此,f (x)在x 2处取得极小值,也是最小值 e f min (x)由于 f (m) 0, f (m 3) (m 3)[l n(m 3) 1] 0因此,max (x)f (m 3) (m 3)[l n(m 3)1]②当m 时,f'(x) e 0 ,因此 f (x)在[m,m 3]上单调递增,所以f min (x) f (m)m(l n m 1),f max (x) f(m 3) (m 3)[ln( m3) 1] (9)分 (川)证明:问题等价于证明 xln x xx 2-(x (0,)) e e 由(n )知 a 1 时,f (x) xlnx x 的最小值是设 G(x) 2 2(x (0, e1 x )),则 G (x) r e 但-2 e2、解: 1 .—,当且仅当x —时取得, e-,易知 G max (X) G (1) 1 —,当且仅当 e x 1时取到, ,从而可知对一切x (0,),都有ln x 1 e2 、 成立• ex (I)直线y=x+2的斜率为1•函数f (x)的定义域为(0,+ m) ,因为 f'(x ) -,所以 x x 2亠 2 •由 f '(x) x 0, 2)2 a121 1,所以 a=1 所以 f(x) - lnx 2. f'(x) x 解得0v xv 2.所以f (x)的单调增区间是(2, +s),单调减区间是( f'(1) 0 解得 x > 0 ;由 f'(x) 0 (n) f '(x)(2a)上单调递增,在区间 ax 2 2 2,由f '(x) 0解得x —;由f '(x) 0解得0 x a2 2(0,—)上单调递减.所以当x —时,函数 a a x —.所以f (x)在区间a(0,)都有 f (x) 2(a 1)成立,所以f(2) 2(a 1)即可.a则 2aln? 2 2(a 1).由 aln- a 解得 02a af (x)取得最小值,ymin(■2).因为对aa ?.所以a 的取值范围是(0,二). e e2x2 x 2x 2 b ,则 g '(x)2 .由 g '(x) 0 解得 x > 1;由 g '(x) 0解得 0V xxg(e 1) 0两个零点,所以g(e) 0 .解得1 beg(1) 0e 1.所以b 的取值范围是(1, e 1]. e1因为f'(x) — 2x 0,所以f (x)在[1 , e ]上是增函数,x当x=1时,f (x)取得最小值f (1)=1.所以f (x)在[1, e ]上的最小值为1.22x 2 2ax 112(x a)设g (x)=2x 2 — 2ax+1,依题意,在区间[㊁,2]上存在子区间V 1•所以函数g(x)在区间(0,1)为减函数, 在区间(1, +8)为增函数.又因为函数g(x)在区间[e 一1, e ]上有(川)依题得g(x) ln x x3•解:(I) f (x)的定义域为(0, +8)1 (n)解法一:f '(x)— x使得不等式g (x)> 0成立. > 0,即 8—4a+1> 0,得 a 所以实数a 的取值范围是(1注意到抛物线g (x)=2x 2— 2ax+1开口向上,所以只要g ⑵>0,或g(-)0即可由g ⑵1 13 9,由 g (―) 0,即 a 10 ,得 a ,所以 a —,2 2 2 44)1解法二:f'(x)— 2(x xa) 2x 22ax 11,依题意得,在区间[护上存在子区间使不等式2x 2— 2ax+1 > 0成立•又因为x >0,所以2a1(2x -).x设 g(x) 112x 一,所以2a 小于函数g (x)在区间[―,2]的最大值.又因为g'(x)x 2 由 g'(x) 2 A 0解得x 上2 ;由g '(x) 2 x 2 2 A 0解得0x所以函数 J 2g (x)在区间(二,2)上递增,在区间2所以函数 1g (x)在 x -, 2或x=2处取得最大值.又 g(2) 2 , g(H2 23,所以 2a所以实数 a 的取值范围是9(,4)(川)因为f '(x) 2x 22 ax 1,令 h (x)=2x 2— 2ax+1①显然,当a < 0时, (0, +8)上 h (x)>0恒成立,f '(x)>0,此时函数f (x)没有极值点;②当a > 0时,2时,在(0, +8)上h (x)>0恒成立,这时f '(X)A0,此时,函数f (x)没有极值点;(ii)当4> 0时,即2时,易知,当aa一2xa a—2时,h (x)v 0,这时f '(x)v 0;2,xx当0 xa ,a 222 或xa 、a 222时,h (x)> 0,这时f '(x)> 0;所以,当.2时, a 、a 22a V O 2~2ax2是函数f (x)的极大值点; x是函数f (x)的极小值点综上,当 a、2时, 函数f (x)没有极值点;2时, a,a 22,亠a ,a 2 2当 ax 一是函数 f (x)的极大值点;x是函数f (x)的极小值点.2 222 4•解:f (x) ax (2a 1) (x 0). (i )f(1) f (3),解得 a .x3(ax 1)(x 2) /(n ) f (x) (x 0).x①当a 0时,x 0 , ax 10,在区间(0,2)上,f (x) 0;在区间(2,)上f (x) 0 ,故f(x)的单调递增区间是(0,2),单调递减区间是(2,).1 11 ②当0 a 时, 2,在区间(0,2)和(一2 aa12,在区间(0,—)和(2,)上,f (x) 0 ;在区间a1 1 故f (x)的单调递增区间是(0,—)和(2,),单调递减区间是(一,2).aa(川)由已知,在(0,2]上有f (x)maxg(X)max ・由已知,g(x)max 0,由(n )可知,1①当 a 时,f(x)在(0,2]上单调递增,故 f(x)maxf (2) 2a 2(2a 1) 2l n2 2a 2 2l n2 ,1所以, 2a 2 2ln2 0,解得 a In 2 1,故 In 2 1 a .2)上,f (x) 0 ;在区间 1(2,-)上 f (x)a故f(x)的单调递增区间是(0,2)和(-a),单调递减区间是(2,丄).a③当a 1时,f (x)(x 2)22x,故f (x)的单调递增区间是(0,).④当a 丄时,21(-,2)上 f (x) a②当a 1时2时,(x)在(0,1]上单调递增,在[丄,2]上单调递减,故f(x)max f(J)a a a2 2a 2Ina.2,xx综上所述,a In 2 1.(I)直线y = x + 2的斜率为1,函数f(x)的定义域为 0, 因为f '(x)2 '所以 a = 1,所以 f x In x 2, f xxg(e 1) 0g(e) 0 g(1)•- f(x)在(0,1)上单调递增;在(1,)上单调递减,1 f (x)在区间(a,a -)(其中a 0)上存在极值,0解得 x > 2由f x 0解得0v xv 2所以f(x)得单调增区间是,单调减区间是0,22(x) —x 2 所以f(x)在区间(2, a x -时,a (n)f 所以当 因为对于任意x ax 2 '2 ,由 f x x20解得x ;由fax 0解得0)上单调递增,在区间函数f(x)取得最小值y min2 (0,—)上单调递减'af (-) a 0, 都有f x 2(a 1)成立,所以f (2) a 2(a 1)即可 2(a21),由aIn — a 解得0a所以 a 得取值范围是 (0,-)e(川)依题意得g(x)In xb ,则 g (x)2x—xx 0解得 x > 1,0解得 0 v xv 1所以函数g(x)在区间e 1,e 上有两个零点,所以 b 得取值范围是 6、解:(1)因为 f (x) (1,2e e1 In x 1]则 f(x)In x ~—, x当 0 x 1时,f (x)0 ;当x 1时, •••函数(2)不等式f(x)上,即为(x1)(1 Inx)kx 1' 记 g(x) (X 1)(1 Inx) • g(x) [(x 1)(1 In x)]x (x 1)(1 Inx)5、解: x 2 2~ x所以 解得1•••函数f (x)在x 1处取得极大值.1令h(x) x In x,则h'(x) 1 - 1 , • h'(x) 0, • h(x)在[1,)上递增,2,xx• ••[h(X)]min h(1) 1 0 ,从而 g (X) 0,故 g(X)在[1,)上也单调递增, •••[g(X)]min g(1) 2 ,••• k 2 •2 1,11, 2。
函数与导数 大题练习(含解析)

函数与导数 大题专练1.已知函数f (x )=2x 2-ax +1+ln x (a ∈R ).(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若a =5,求f (x )的单调区间;(3)若3<a ≤4,证明:f (x )在x ∈[1,e]上有唯一零点.解析:(1)若a =0,则f (x )=2x 2+1+ln x ,f ′(x )=4x +1x ,故f ′(1)=5,即曲线y =f (x )在点(1,f (1))处的切线斜率为5,又f (1)=3,所以所求切线方程为y -3=5(x -1),即5x -y -2=0.(2)当a =5时,f (x )=2x 2-5x +1+ln x ,其定义域为(0,+∞),f (x )=4x -5+1x =(4x -1)(x -1)x, 当x ∈⎝⎛⎭⎫0,14,(1,+∞)时,f ′(x )>0,所以f (x )在⎝⎛⎭⎫0,14和(1,+∞)上单调递增. 当x ∈⎝⎛⎭⎫14,1时,f ′(x )<0,所以f (x )在⎝⎛⎭⎫14,1上单调递减. (3)由f (x )=2x 2-ax +1+ln x 得f ′(x )=1x +4x -a =4x 2-ax +1x. 设h (x )=4x 2-ax +1,Δ=a 2-16,当3<a ≤4时,Δ≤0,有h (x )≥0,即f ′(x )≥0,故f (x )在(0,+∞)上单调递增.又f (1)=3-a <0,f (e)=2e 2-a e +2=e(2e -a )+2>0,所以f (x )在x ∈[1,e]上有唯一零点.2.设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.解析:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x ,所以f ′(x )=[ax 2-(2a +1)x +2]e x .所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1.此时f (1)=3e ≠0.所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝⎛⎭⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0, 所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝⎛⎭⎫12,+∞.3.已知函数f (x )=eln x -ax (a ∈R ).(1)讨论f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0.解析:解法一 (1)f ′(x )=e x-a (x >0), ①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增.②若a >0,则当0<x <e a 时,f ′(x )>0;当x >e a 时,f ′(x )<0.所以f (x )在⎝⎛⎭⎫0,e a 上单调递增,在⎝⎛⎭⎫e a ,+∞上单调递减. (2)证明:因为x >0,所以只需证f (x )≤e x x -2e ,由(1)知,当a =e 时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以f (x )max =f (1)=-e.设g (x )=e x x -2e(x >0),则g ′(x )=(x -1)e x x 2,所以当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e.所以当x >0时,f (x )≤g (x ),即f (x )≤e x x-2e , 即xf (x )-e x +2e x ≤0.解法二 (1)同解法一.(2)证明:由题意知,即证e x ln x -e x 2-e x +2e x ≤0(x >0),从而等价于ln x -x +2≤e xe x. 设函数g (x )=ln x -x +2,则g ′(x )=1x-1. 所以当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0,故g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.从而g (x )在(0,+∞)上的最大值为g (1)=1.设函数h (x )=e xe x ,则h ′(x )=e x (x -1)e x 2.所以当x ∈(0,1)时,h ′(x )<0;当x ∈(1,+∞)时,h ′(x )>0.故h (x )在(0,1)上单调递减,在(1,+∞)上单调递增.从而h (x )在(0,+∞)上的最小值为h (1)=1.综上,当x >0时,g (x )≤h (x ),即xf (x )-e x +2e x ≤0.4.已知函数f (x )=ln(x +1)-ax 2+x (x +1)2,其中a 为常数. (1)当1<a ≤2时,讨论f (x )的单调性;(2)当x >0时,求g (x )=x ln ⎝⎛⎭⎫1+1x +1x ln(1+x )的最大值. 解析:(1)函数f (x )的定义域为(-1,+∞),f ′(x )=x (x -2a +3)(x +1)3,x >-1.①当-1<2a -3<0,即1<a <32时,当-1<x <2a -3或x >0时,f ′(x )>0,f (x )单调递增,当2a -3<x <0时,f ′(x )<0,f (x )单调递减.②当2a -3=0,即a =32时,f ′(x )≥0,则f (x )在(-1,+∞)上单调递增.③当2a -3>0,即a >32时,当-1<x <0或x >2a -3时,f ′(x )>0,则f (x )在(-1,0),(2a -3,+∞)上单调递增, 当0<x <2a -3时,f ′(x )<0,则f (x )在(0,2a -3)上单调递减.综上,当1<a <32时,f (x )在(-1,2a -3),(0,+∞)上单调递增,在(2a -3,0)上单调递减;当a =32时,f (x )在(-1,+∞)上单调递增;当32<a ≤2时,f (x )在(-1,0),(2a -3,+∞)上单调递增,在(0,2a -3)上单调递减.(2)∵g (x )=⎝⎛⎭⎫x +1x ln(1+x )-x ln x =g ⎝⎛⎭⎫1x , ∴g (x )在(0,+∞)上的最大值等价于g (x )在(0,1]上的最大值.令h (x )=g ′(x )=⎝⎛⎭⎫1-1x 2ln(1+x )+⎝⎛⎭⎫x +1x ·11+x -(ln x +1)=⎝⎛⎭⎫1-1x 2ln(1+x )-ln x +1x -21+x , 则h ′(x )=2x 3⎣⎢⎡⎦⎥⎤ln (1+x )-2x 2+x (x +1)2. 由(1)可知当a =2时,f (x )在(0,1]上单调递减,∴f (x )<f (0)=0,∴h ′(x )<0,从而h (x )在(0,1]上单调递减,∴h (x )≥h (1)=0,∴g (x )在(0,1]上单调递增,∴g (x )≤g (1)=2ln2,∴g (x )的最大值为2ln2.5.已知函数f (x )=x ln x -ax +a (a ∈R ).(1)f (x )在点(1,f (1))处的切线方程为y =-x +t ,求a 和t 的值;(2)对任意的x >1,f (x )≥0恒成立,求a 的取值范围.解析:(1)函数定义域为x ∈(0,+∞),f ′(x )=ln x +1-a ,由已知f ′(1)=-1,则1-a =-1,即a =2,所以f (1)=0-2+2=0,将(1,0)代入切线方程有t =1,所以a =2,t =1.(2)对任意x ∈(1,+∞),f (x )≥0恒成立,即ln x +a x-a ≥0恒成立, 令g (x )=ln x +a x -a ,有g ′(x )=x -a x 2,①当a >1时,g (x ),g ′(x )随x 的变化情况为由表可知g (x )min 又因为在函数h (x )=ln x +1-x 中,h ′(x )=1-x x ,所以h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以h (x )≤h (1)=0,所以g (x )min =g (a )=h (a )<h (1)=0,与“对任意x ∈(1,+∞),ln x +a x -a ≥0恒成立”矛盾,故a >1不合题意;②当a ≤1时,g ′(x )=x -a x 2≥0,则g (x )在[1,+∞)上单调递增,所以g (x )≥g (1)=0,即对任意x ∈(1,+∞),ln x +a x-a ≥0恒成立, 故a ≤1满足题意,综上所述,实数a 的取值范围为(-∞,1].6.已知函数f (x )=(x -1)e x -ax 2(e 是自然对数的底数,a ∈R ).(1)判断函数f (x )极值点的个数,并说明理由;(2)若∀x ∈R ,f (x )+e x ≥x 3+x ,求a 的取值范围.解析:(1)f (x )的定义域为R ,f ′(x )=x e x -2ax =x (e x -2a ).当a ≤0时,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,∴f (x )有1个极值点;当0<a <12时,f (x )在(-∞,ln(2a ))上单调递增,在(ln(2a ),0)上单调递减,在(0,+∞)上单调递增, ∴f (x )有2个极值点;当a =12时,f (x )在R 上单调递增,此时f (x )没有极值点;当a >12时,f (x )在(-∞,0)上单调递增, 在(0,ln(2a ))上单调递减,在(ln(2a ),+∞)上单调递增,∴f (x )有2个极值点,综上所述,当a ≤0时,f (x )有1个极值点;当a >0且a ≠12时,f (x )有2个极值点;当a =12时,f (x )没有极值点.(2)由f (x )+e x ≥x 3+x ,得x e x -x 3-ax 2-x ≥0.当x >0时,e x -x 2-ax -1≥0,即a ≤e x -x 2-1x对∀x >0恒成立. 设g (x )=e x -x 2-1x (x >0),则g ′(x )=(x -1)(e x -x -1)x 2. 设h (x )=e x -x -1(x >0),则h ′(x )=e x -1.∵x >0,∴h ′(x )>0,∴h (x )在(0,+∞)上单调递增,∴h (x )>h (0)=0,即e x >x +1,∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴g (x )≥g (1)=e -2,∴a ≤e -2;当x =0时,原不等式恒成立,a ∈R ;当x <0时,e x -x 2-ax -1≤0,设m (x )=e x -x 2-ax -1(x <0),则m ′(x )=e x -2x -a .设φ(x)=e x-2x-a(x<0),则φ′(x)=e x-2<0,∴m′(x)在(-∞,0)上单调递减,∴m′(x)>m′(0)=1-a,若a≤1,则m′(x)>0,∴m(x)在(-∞,0)上单调递增,∴m(x)<m(0)=0;若a>1,∵m′(0)=1-a<0,∴∃x0<0,使得x∈(x0,0)时,m′(x)<0,即m(x)在(x0,0)上单调递减,∴m(x)>m(0)=0,不符合题意,舍去.∴a≤1.综上,a的取值范围是(-∞,e-2].。
导数复习导数大题练习(含详解答案)

1、函数f(*)=(2*2―k*+k)·e -*(Ⅰ)当k 为何值时,)(x f 无极值;(Ⅱ)试确定实数k 的值,使)(x f 的极小值为0 2、函数()ln f x ax x =+()a ∈R .(Ⅰ)假设2a =,求曲线()y f x =在1x =处切线的斜率;(Ⅱ)求()f x 的单调区间;〔Ⅲ〕设2()22g x x x =-+,假设对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值围. 3、设函数()1x f x x ae -=-。
〔I 〕求函数()f x 单调区间; 〔II 〕假设()0R f x x ≤∈对恒成立,求a 的取值围;〔III 〕对任意n 的个正整数1212,,nn a a a a a a A n++⋅⋅⋅⋅⋅⋅=记〔1〕求证:()11,2,i a iAa e i n A-≤=⋅⋅⋅〔2〕求证:A ≥4、函数b x x a x a x f +++-=23213)(,其中,a b ∈R . 〔Ⅰ〕假设曲线)(x f y =在点))2(,2(f P 处的切线方程为45-=x y ,求函数)(x f 的解析式; 〔Ⅱ〕当0>a 时,讨论函数)(x f 的单调性. 5、函数2()(21)(R x f x ax x e a -=-+⋅∈,e 为自然对数的底数).(I)当时,求函数()f x 的极值;(Ⅱ)假设函数()f x 在[-1,1]上单调递减,求a 的取值围. 6、函数2()(33)x f x x x e =-+⋅,设2t >-,(2),()f m f t n -==.〔Ⅰ〕试确定t 的取值围,使得函数()f x 在[]2,t -上为单调函数;〔Ⅱ〕试判断,m n 的大小并说明理由;〔Ⅲ〕求证:对于任意的2t >-,总存在0(2,)x t ∈-,满足0'20()2(1)3x f x t e =-,并确定这样的0x 的个数.7、函数2()ln (2)f x x ax a x =-+-.〔Ⅰ〕假设()f x 在1x =处取得极值,求a 的值;〔Ⅱ〕求函数()y f x =在2[,]a a 上的最大值. 8、函数221()()ln 2f x ax x x ax x =--+.()a ∈R . 〔I 〕当0a =时,求曲线()y f x =在(e,(e))f 处的切线方程〔e 2.718...=〕; 〔II 〕求函数()f x 的单调区间.9、函数()(1)e (0)xa f x x x=->,其中e 为自然对数的底数.〔Ⅰ〕当2a =时,求曲线()y f x =在(1,(1))f 处的切线与坐标轴围成的面积;〔Ⅱ〕假设函数()f x 存在一个极大值点和一个极小值点,且极大值与极小值的积为5e ,求a 的值.10、函数36)2(23)(23-++-=x x a ax x f . 〔1〕当1=a 时,求函数)(x f 的极小值;〔2〕试讨论曲线)(x f y =与x 轴的公共点的个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数大题练习1.已知f (x )=x ln x -ax ,g (x )=-x 2-2,(Ⅰ)对一切x ∈(0,+∞),f (x )≥g (x )恒成立,求实数a 的取值范围;(Ⅱ)当a =-1时,求函数f (x )在[m ,m +3](m >0)上的最值;(Ⅲ)证明:对一切x ∈(0,+∞),都有ln x +1>ex ex21-成立. 2、已知函数2()ln 2(0)f x a x a x=+->.(Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单调区间;(Ⅱ)若对于(0,)x ∀∈+∞都有f (x )>2(a ―1)成立,试求a 的取值范围;(Ⅲ)记g (x )=f (x )+x ―b (b ∈R ).当a =1时,函数g (x )在区间[e ―1,e]上有两个零点,求实数b 的取值范围.3. 设函数f (x )=ln x +(x -a )2,a ∈R .(Ⅰ)若a =0,求函数f (x )在[1,e]上的最小值; (Ⅱ)若函数f (x )在1[,2]2上存在单调递增区间,试求实数a 的取值范围; (Ⅲ)求函数f (x )的极值点.4、已知函数21()(21)2ln ()2f x ax a x x a =-++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得12()()f x g x <,求a 的取值范围.5、已知函数())0(2ln 2>-+=a x a xx f (Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单调区间; (Ⅱ)若对于任意()())1(2,0->+∞∈a x f x 都有成立,试求a 的取值范围;(Ⅲ)记g (x )=f (x )+x -b (b ∈R ).当a =1时,函数g (x )在区间[]e ,e 1-上有两个零点,求实数b 的取值范围.6、已知函数1ln ()xf x x+=. (1)若函数在区间1(,)2a a +(其中0a >)上存在极值,求实数a 的取值范围; (2)如果当1x ≥时,不等式()1kf x x ≥+恒成立,求实数k 的取值范围.1.解:(Ⅰ)对一切)()(),,0(x g x f x ≥+∞∈恒成立,即2ln 2--≥-x ax x x 恒成立.也就是++≤x x a ln x2在),0(+∞∈x 恒成立.………1分 令xx x x F 2ln )(++= , 则F '2222)1)(2(2211)(xx x x x x x x x -+=-+=-+=,……2分 在)10(,上F '0)(<x ,在)1(∞+,上F '0)(>x , 因此,)(x F 在1=x 处取极小值,也是最小值, 即3)1()(min ==F x F ,所以3≤a .……4分(Ⅱ)当时,1-=a x x x x f +=ln )(, f '2ln )(+=x x ,由f '0)(=x 得21ex =. ………6分 ①当210em <<时,在)1,[2e m x ∈上f '0)(<x ,在]3,1(2+∈m e x 上f '0)(>x 因此,)(x f 在21e x =处取得极小值,也是最小值. 2min1)(e x f -=. 由于0]1)3)[ln(3()3(,0)(>+++=+<m m m f m f 因此,]1)3)[ln(3()3()(max +++=+=m m m f x f………8分②当时21e m ≥,0)('≥x f ,因此]3,[)(+m m x f 在上单调递增, 所以)1(ln )()(min +==m m m f x f ,]1)3)[ln(3()3()(max +++=+=m m m f x f ……9分(Ⅲ)证明:问题等价于证明)),0((2ln +∞∈->+x ee x x x x x ,………10分 由(Ⅱ)知1-=a 时,x x x xf +=ln )(的最小值是21e-,当且仅当21e x =时取得,……11分 设)),0((2)(+∞∈-=x e e x x G x ,则G'xe xx -=1)(,易知 eG x G 1)1()(max -==,当且仅当1x =时取到, ………12分但,e e 112->-从而可知对一切(0,)x ∈+∞,都有ex ex x211ln ->+成立. ………13分 2、解:(Ⅰ)直线y =x +2的斜率为1.函数f (x )的定义域为(0,+∞),因为22'()af x x x=-+,所以22'(1)111af =-+=-,所以a =1.所以2()l n 2f x x x =+-. 22'()x f x x -=.由'()0f x >解得x >0;由'()0f x <解得0<x <2. 所以f (x )的单调增区间是(2,+∞),单调减区间是(0,2).…… 4分(Ⅱ)2222'()a ax f x x x x -=-+=, 由'()0f x >解得2x a>;由'()0f x <解得20x a <<.所以f (x )在区间2(,)a +∞上单调递增,在区间2(0,)a 上单调递减.所以当2x a=时,函数f (x )取得最小值,min 2()y f a=. 因为对于(0,)x ∀∈+∞都有()2(1)f x a >-成立,所以2()2(1)f a a >-即可. 则22ln 22(1)2a a a a+->-.由2ln a a a >解得20e a <<.所以a 的取值范围是2(0,)e. ……………… 8分(Ⅲ)依题得2()ln 2g x x x b x=++--,则222'()x x g x x +-=.由'()0g x >解得x >1;由'()0g x <解得0<x <1.所以函数()g x 在区间(0,1)为减函数,在区间(1,+∞)为增函数.又因为函数()g x 在区间[e -1,e]上有两个零点,所以1()0()0(1)0g e g e g -⎧≥⎪≥⎨⎪<⎩.解得21e 1e b <≤+-.所以b 的取值范围是2(1,e 1]e+-. (13)分3.解:(Ⅰ)f (x )的定义域为(0,+∞).……………… 1分因为1'()20f x x x=+>,所以f (x )在[1,e]上是增函数, 当x =1时,f (x )取得最小值f (1)=1. 所以f (x )在[1,e]上的最小值为1.……………… 3分(Ⅱ)解法一:21221'()2()x ax f x x a x x-+=+-=设g (x )=2x 2―2ax +1,……………… 4分依题意,在区间1[,2]2上存在子区间使得不等式g (x )>0成立.…… 5分注意到抛物线g (x )=2x 2―2ax +1开口向上,所以只要g (2)>0,或1()02g >即可……………… 6分由g (2)>0,即8―4a +1>0,得94a <, 由1()02g >,即1102a -+>,得32a <,所以94a <,所以实数a 的取值范围是9(,)4-∞.……………… 8分解法二:21221'()2()x ax f x x a x x-+=+-=,……………… 4分依题意得,在区间1[,2]2上存在子区间使不等式2x 2―2ax +1>0成立. 又因为x >0,所以12(2)a x x<+. ……………… 5分设1()2g x x x =+,所以2a 小于函数g (x )在区间1[,2]2的最大值. 又因为1'()2g x x=-,由21'()20g x x=->解得2x >;由21'()20g x x =-<解得0x <<所以函数g (x )在区间2)2上递增,在区间1(,22上递减. 所以函数g (x )在12x =,或x =2处取得最大值.又9(2)2g =,1()32g =,所以922a <,94a < 所以实数a 的取值范围是9(,)4-∞.……………… 8分(Ⅲ)因为2221'()x ax f x x-+=,令h (x )=2x 2―2ax +1①显然,当a ≤0时,在(0,+∞)上h (x )>0恒成立,f '(x )>0,此时函数f (x )没有极值点; ……………… 9分 ②当a >0时,(i )当Δ≤0,即0a <≤时,在(0,+∞)上h (x )≥0恒成立,这时f '(x )≥0,此时,函数f (x )没有极值点;……………… 10分(ii )当Δ>0时,即a >x <<h (x )<0,这时f '(x )<0;当0x <<x >时,h (x )>0,这时f '(x )>0;所以,当a >x =是函数f (x )的极大值点;x =是函数f (x )的极小值点.……………… 12分综上,当a ≤f (x )没有极值点;当a >2a x =是函数f (x )的极大值点;2a x =是函数f (x )的极小值点.4.解:2()(21)f x ax a x '=-++(0)x >. ………1分 (Ⅰ)(1)(3)f f ''=,解得23a =. ………3分(Ⅱ)(1)(2)()ax x f x x--'=(0)x >. ………4分 ①当0a ≤时,0x >,10ax -<,在区间(0,2)上,()0f x '>;在区间(2,)+∞上()0f x '<,故()f x 的单调递增区间是(0,2),单调递减区间是(2,)+∞. ………5分 ②当102a <<时,12a>,在区间(0,2)和1(,)a +∞上,()0f x '>;在区间1(2,)a上()0f x '<, 故()f x 的单调递增区间是(0,2)和1(,)a +∞,单调递减区间是1(2,)a. ………6分③当12a =时,2(2)()2x f x x -'=,故()f x 的单调递增区间是(0,)+∞. ………7分 ④当12a >时,102a <<, 在区间1(0,)a 和(2,)+∞上,()0f x '>;在区间1(,2)a上()0f x '<,故()f x 的单调递增区间是1(0,)a和(2,)+∞,单调递减区间是1(,2)a. ………8分 (Ⅲ)由已知,在(0,2]上有max max ()()f x g x <. ………9分由已知,max ()0g x =,由(Ⅱ)可知, ①当12a ≤时,()f x 在(0,2]上单调递增, 故max ()(2)22(21)2ln 2222ln 2f x f a a a ==-++=--+, 所以,222ln 20a --+<,解得ln 21a >-,故1ln 212a -<≤.……10分 ②当12a >时,()f x 在1(0,]a 上单调递增,在1[,2]a上单调递减, 故max 11()()22ln 2f x f a a a==---. 由12a >可知11ln ln ln 12ea >>=-,2ln 2a >-,2ln 2a -<,所以,22ln 0a --<,max ()0f x <, 综上所述,ln 21a >-. ………12分5、(Ⅰ)直线y =x +2的斜率为1, 函数f (x )的定义域为 ()+∞,0因为x a x x f +-=2'2)(,所以()111212'-=+-=a f ,所以a =1 所以()()2'2,2ln 2xx x f x x x f -=-+=由()0'>x f解得x >2 ; 由()0'<x f 解得0<x <2所以f (x )得单调增区间是()+∞,2,单调减区间是()2,0 ………4分 (Ⅱ)22'22)(xax x a x x f -=+-= 由()0'>x f 解得;2a x >由()0'<x f 解得a x 20<<所以f (x )在区间),2(+∞a 上单调递增,在区间)2,0(a 上单调递减所以当a x 2=时,函数f (x )取得最小值)2(min af y =因为对于任意()())1(2,0->+∞∈a x f x 都有成立, 所以)1(2)2(->a af 即可则)1(222ln 22->-+a a a a,由a a a >2ln 解得e a 20<< 所以a 得取值范围是)2,0(e……… 8分(Ⅲ)依题意得b x xx g --+=2ln 2)(,则22'2)(x x x x g -+=由()0'>x g 解得x >1,由()0'<x g 解得0<x <1所以函数g (x )在区间[]e ,e 1-上有两个零点,所以⎪⎩⎪⎨⎧<≥≥-0)1(0)(0)(1g e g e g 解得121-+≤<e e b所以b 得取值范围是]12,1(-+e e……… 12分 6、解:(1)因为1ln ()x f x x +=,0x >,则2ln ()xf x x'=-, …1分 当01x <<时,()0f x '>;当1x >时,()0f x '<. ∴()f x 在(0,1)上单调递增;在(1,)+∞上单调递减, ∴函数()f x 在1x =处取得极大值.………3分∵函数()f x 在区间1(,)2a a +(其中0a >)上存在极值,∴1,11,2a a <⎧⎪⎨+>⎪⎩解得112a <<.……….5分(2)不等式()1k f x x ≥+,即为(1)(1ln )x x k x ++≥, ………7分 记(1)(1ln )()x x g x x ++=∴22[(1)(1ln )](1)(1ln )ln ()x x x x x x xg x x x '++-++-'==,…9分 令()ln h x x x =-,则1'()1h x x=-,∵1x ≥,∴'()0h x ≥,∴()h x 在[1,)+∞上递增, ∴min [()](1)10h x h ==>,从而()0g x '>,故()g x 在[1,)+∞上也单调递增, ∴min [()](1)2g x g ==,∴2k ≤.………12分。