实验一 真空蒸发和磁控溅射制备薄膜
实验磁控溅射法制备薄膜材料

实验磁控溅射法制备薄膜材料磁控溅射法制备薄膜材料的步骤如下:1.靶材选择:选择可以溅射制备薄膜的材料作为溅射靶材。
这些材料通常是单质金属、合金或化合物,如金、银、铜、铝、氧化物等。
2.基底处理:将制备薄膜的基底进行清洗和表面处理,以保证薄膜的附着力和质量。
3.靶材安装:将靶材安装在溅射器的靶架上。
4.真空抽气:将溅射室进行抽气,以建立良好的真空环境。
这可以防止杂质、气体和水分对薄膜质量的影响。
5.溅射气体调节:调节溅射气体(通常是氩气)的流量和压力,以维持合适的工作气氛。
6.加热基底:通过加热基底,可以提高薄膜附着力和晶体质量。
7.确定溅射条件:根据需要制备的薄膜材料,调节溅射功率、工作气氛和溅射时间等参数,以保持溅射过程的稳定和合适的溅射速率。
8.溅射过程:通过加大靶架上的电流,激发高能粒子与靶材相互作用,使靶材表面的原子蒸发并沉积在基底上。
9.薄膜测量:制备完成后,进行薄膜的物理、化学性质的测试和表征,如薄膜的厚度、表面形貌、晶体结构、成分等。
磁控溅射法制备薄膜材料具有以下优点:1.良好的控制性:可以通过调节溅射参数(如功率、压力等)来控制薄膜的结构和性质。
2.高纯度材料:由于溅射过程中没有反应,制备的薄膜材料具有高度的化学纯度。
3.多种材料选择:不仅可以制备金属薄膜,还可以制备合金、氧化物、硅等其他材料的薄膜。
4.优异的附着性:磁控溅射法制备的薄膜与基底之间具有较好的附着性,可以在多种基底上制备。
5.溅射速率高:与其他制备薄膜的方法相比,磁控溅射的溅射速率较高,制备时间较短。
磁控溅射法制备薄膜材料的应用非常广泛。
例如,浮法玻璃制备中使用的氧化物和金属薄膜、电子器件制造中的金属和半导体薄膜、太阳能电池中的透明导电膜、光学镀膜中的金属和二氧化硅薄膜等。
此外,磁控溅射法还可以用于制备多层薄膜、纳米结构薄膜以及复合薄膜等特殊结构的材料。
总结起来,实验磁控溅射法制备薄膜材料是一种简便、可控性强且应用广泛的方法。
微波ecr磁控溅射制备al2o3薄膜

在现代技术中,微波ECR磁控溅射制备Al2O3薄膜是一项重要的工艺。
这种技术以其高质量、均匀性和良好的薄膜结构而广泛应用于各种工业领域。
本文将就微波ECR磁控溅射制备Al2O3薄膜这一主题展开讨论,并深入探究其工艺原理、应用前景和发展趋势。
一、微波ECR磁控溅射制备Al2O3薄膜的工艺原理微波ECR磁控溅射是一种利用微波功率和磁场共同作用、通过控制溅射材料并将其沉积在衬底上形成薄膜的工艺。
在制备Al2O3薄膜时,首先需要将铝靶材置于真空腔内,然后在腔内加入氧气,并通过微波ECR磁场加热氧气,使其成为等离子体状态。
这样,铝靶材上的铝原子将被氧等离子体击中,产生氧化反应,从而在衬底上形成Al2O3薄膜。
二、微波ECR磁控溅射制备Al2O3薄膜的应用前景由于微波ECR磁控溅射制备的Al2O3薄膜具有高质量、均匀性和良好的薄膜结构,因此在各种工业领域都有广泛的应用前景。
Al2O3薄膜可以用于制备电子器件、光学薄膜、陶瓷材料等,为这些领域的发展提供了重要的技术支持。
Al2O3薄膜还可以在生物医学、能源存储等领域发挥重要作用,有望为这些领域的技术发展带来新的突破。
三、微波ECR磁控溅射制备Al2O3薄膜的发展趋势随着科学技术的不断进步,微波ECR磁控溅射技术也在不断发展和完善。
未来,微波ECR磁控溅射制备Al2O3薄膜的工艺将更加智能化和自动化,可以实现对薄膜厚度、成分和结构的精确控制。
随着对新型材料和新工艺的不断探索,微波ECR磁控溅射制备的Al2O3薄膜也将不断拓展新的应用领域,为人类社会的发展做出更大的贡献。
总结回顾:微波ECR磁控溅射制备Al2O3薄膜是一项具有重要意义的工艺技术,其在各种工业领域都有着广泛的应用前景。
通过深入探讨微波ECR磁控溅射制备Al2O3薄膜的工艺原理、应用前景和发展趋势,我们对这一主题有了更全面、深刻和灵活的理解。
在未来的研究和应用中,我们可以更好地利用这一技术,推动科技的不断进步。
《磁控溅射法制备透明导电氧化物薄膜及其性能研究》

《磁控溅射法制备透明导电氧化物薄膜及其性能研究》一、引言透明导电氧化物(TCO)薄膜作为一种具有优异光学性能和电学性能的材料,广泛应用于光电显示、太阳能电池等领域。
随着科技的发展,对TCO薄膜的性能要求日益提高,制备工艺的优化和性能研究显得尤为重要。
磁控溅射法作为一种常用的制备TCO薄膜的方法,具有制备工艺简单、薄膜质量高等优点。
本文将详细介绍磁控溅射法制备透明导电氧化物薄膜的工艺流程、实验方法及薄膜性能的研究。
二、磁控溅射法制备透明导电氧化物薄膜1. 实验材料与设备实验材料主要包括靶材(如氧化锡(SnO2)或氧化铟(In2O3)等)、基底(如玻璃或石英等)、溅射气体(如氩气等)。
实验设备主要包括磁控溅射镀膜机、真空泵等。
2. 实验方法(1)基底处理:将基底清洗干净,并进行预处理,以提高薄膜与基底的附着力。
(2)靶材制备:将靶材固定在磁控溅射镀膜机的靶位上。
(3)真空环境:将镀膜机腔体抽至高真空状态,以去除腔体内的杂质和气体。
(4)溅射镀膜:在磁控溅射镀膜机中,通过调节溅射功率、气体流量、基底温度等参数,实现TCO薄膜的制备。
三、薄膜性能研究1. 光学性能通过紫外-可见光谱仪测试TCO薄膜的透光率,分析薄膜的光学带隙、光学常数等性能。
同时,还可以通过SEM(扫描电子显微镜)观察薄膜的表面形貌,分析薄膜的光散射性能。
2. 电学性能采用四探针法或霍尔效应测试仪等设备测试TCO薄膜的电阻率、载流子浓度和迁移率等电学性能参数。
通过分析这些参数,可以评估TCO薄膜的导电性能和稳定性。
四、结果与讨论1. 实验结果通过磁控溅射法制备的TCO薄膜具有较高的透光率和较低的电阻率,满足光电显示、太阳能电池等领域的应用需求。
此外,薄膜的表面形貌良好,光散射性能较低。
在实验过程中,通过调整溅射功率、气体流量、基底温度等参数,可以实现对TCO薄膜性能的优化。
2. 结果讨论(1)溅射功率对TCO薄膜性能的影响:随着溅射功率的增加,薄膜的结晶性和致密度提高,从而提高了薄膜的透光率和导电性能。
光学实验技术中的薄膜制备与表征指南

光学实验技术中的薄膜制备与表征指南在现代光学实验中,薄膜是一种广泛应用的材料,它具有许多独特的光学性质。
为了实现特定的光学设计要求,科学家们需要制备和表征各种薄膜。
本文将为您介绍光学实验技术中的薄膜制备与表征指南,帮助您更好地理解和应用薄膜技术。
一、薄膜制备技术1. 真空蒸发法真空蒸发法是一种常见的薄膜制备技术,它通常用于金属或有机材料的蒸发。
蒸发源材料通过加热,使其蒸发并沉积在基底表面上,形成薄膜。
真空蒸发法具有简单、灵活的优点,但由于材料的有机蒸发率不同,容易导致薄膜的成分非均匀性。
2. 磁控溅射法磁控溅射法是一种通过离子碰撞使靶材溅射,并沉积在基底上的技术。
这种方法可以获得高质量和均匀性的薄膜。
磁控溅射法通常用于金属、氧化物和氮化物等无机薄膜的制备。
3. 原子层沉积法原子层沉积法(ALD)是一种逐层生长薄膜的方法,通过交替地注入不同的前驱体分子,使其在基底表面上化学反应并沉积。
这种方法可以实现非常精确的厚度控制和成分均一性。
4. 溶胶凝胶法溶胶凝胶法是一种基于溶胶和凝胶的化学反应制备薄膜的方法。
通过溶胶中的物质分子在凝胶中发生凝胶化反应,形成薄膜。
这种方法适用于复杂的薄膜材料。
二、薄膜表征技术1. 厚度测量薄膜的精确厚度对于光学性能至关重要。
常用的测量方法包括激光干涉法、原位椭圆偏振法和扫描电子显微镜等。
激光干涉法通过测量反射光的相位差来确定薄膜厚度,原位椭圆偏振法则通过测量反射光的椭圆偏振状态来推断厚度。
2. 光学性能表征光学性能包括反射率、透过率、吸收率等。
常用的表征方法有紫外可见近红外分光光度计和激光光谱仪。
通过测量样品在不同波长下的吸收或透过光强度,可以得到其光学性能。
3. 表面形貌观察表面形貌对薄膜的光学性能和功能具有重要影响。
扫描电子显微镜和原子力显微镜是常用的表面形貌观察工具。
扫描电子显微镜可以获得样品表面的高分辨率图像,原子力显微镜则可以实现纳米级表面形貌的观察。
4. 结构分析薄膜的结构分析是了解其晶体结构和晶格形貌的重要手段。
磁控溅射法制备薄膜材料实验报告

实验一磁控溅射法制备薄膜材料一、实验目的1、详细掌握磁控溅射制备薄膜的原理和实验程序;2、制备出一种金属膜,如金属铜膜;3、测量制备金属膜的电学性能和光学性能;4、掌握实验数据处理和分析方法,并能利用 Origin 绘图软件对实验数据进行处理和分析。
二、实验仪器磁控溅射镀膜机一套、万用电表一架、紫外可见分光光度计一台;玻璃基片、金属铜靶、氩气等实验耗材。
三、实验原理1、磁控溅射镀膜原理(1)辉光放电溅射是建立在气体辉光放电的基础上,辉光放电是只在真空度约为几帕的稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。
辉光放电时,两个电极间的电压和电流关系关系不能用简单的欧姆定律来描述,以气压为1.33Pa 的 Ne 为例,其关系如图 5 -1 所示。
图 5-1 气体直流辉光放电的形成当两个电极加上一个直流电压后,由于宇宙射线产生的游离离子和电子有限,开始时只有很小的溅射电流。
随着电压的升高,带电离子和电子获得足够能量,与中性气体分子碰撞产生电离,使电流逐步提高,但是电压受到电源的高输出阻抗限制而为一常数,该区域称为“汤姆森放电”区。
一旦产生了足够多的离子和电子后,放电达到自持,气体开始起辉,出现电压降低。
进一步增加电源功率,电压维持不变,电流平稳增加,该区称为“正常辉光放电”区。
当离子轰击覆盖了整个阴极表面后,继续增加电源功率,可同时提高放电区内的电压和电流密度,形成均匀稳定的“异常辉光放电”,这个放电区就是通常使用的溅射区域。
随后继续增加电压,当电流密度增加到~0.1A/cm 2时,电压开始急剧降低,出现低电压大电流的弧光放电,这在溅射中应力求避免。
(2)溅射通常溅射所用的工作气体是纯氩,辉光放电时,电子在电场的作用下加速飞向基片的过程中与氩原子发生碰撞,电离出大量的氩离子和电子,电子飞向基片。
氩离子在电场的作用下加速轰击靶材,溅射出大量的靶材原子,这些被溅射出来的原子具有一定的动能,并会沿着一定的方向射向衬底,从而被吸附在衬底上沉积成膜。
薄膜制备方法

薄膜制备方法1.物理气相沉积法(PVD):真空蒸镀、离子镀、溅射镀膜2.化学气相沉积法(CVD):热CVD、等离子CVD、有机金属CVD、金属CVD。
一、真空蒸镀即真空蒸发镀膜,是制备薄膜最一般的方法。
这种方法是把装有基片的真空室抽成真空,使气体压强达到10ˉ2Pa以下,然后加热镀料,使其原子或者分子从表面气化逸出,形成蒸汽流,入射到温度较低的基片表面,凝结形成固态薄膜。
其设备主要由真空镀膜室和真空抽气系统两大部分组成。
保证真空环境的原因有✍防止在高温下因空气分子和蒸发源发生反应,生成化合物而使蒸发源劣化。
✍防止因蒸发物质的分子在镀膜室内与空气分子碰撞而阻碍蒸发分子直接到达基片表面,以及在途中生成化合物或由于蒸发分子间的相互碰撞而在到达基片前就凝聚等✍在基片上形成薄膜的过程中,防止空气分子作为杂质混入膜内或者在薄膜中形成化合物。
蒸发镀根据蒸发源的类别有几种:⑴、电阻加热蒸发源。
通常适用于熔点低于1500℃的镀料。
对于蒸发源的要求为a、熔点高b、饱和蒸气压低c、化学性质稳定,在高温下不与蒸发材料发生化学反应d、具有良好的耐热性,功率密度变化小。
⑵、电子束蒸发源。
热电子由灯丝发射后,被电场加速,获得动能轰击处于阳极的蒸发材料上,使蒸发材料加热气化,而实现蒸发镀膜。
特别适合制作高熔点薄膜材料和高纯薄膜材料。
优点有a、电子束轰击热源的束流密度高,能获得远比电阻加热源更大的能量密度,可以使高熔点(可高达3000℃以上)的材料蒸发,并且有较高的蒸发速率。
b、镀料置于冷水铜坩埚内,避免容器材料的蒸发,以及容器材料与镀料之间的反应,这对于提高镀膜的纯度极为重要。
c、热量可直接加到蒸发材料的表面,减少热量损失。
⑶、高频感应蒸发源。
将装有蒸发材料的坩埚放在高频螺旋线圈的中央,使蒸发材料在高频电磁场的感应下产生强大的涡流损失和磁滞损失(铁磁体),从而将镀料金属加热蒸发。
常用于大量蒸发高纯度金属。
分子束外延技术(molecular beam epitaxy,MBE)。
实验三十六 磁控溅射法制备导电薄膜

实验三十六磁控溅射法制备导电薄膜实验名称:磁控溅射法制备导电薄膜实验项目性质:综合训练所涉及课程:薄膜电子材料与元器件,电子信息材料科学基础,真空技术基础计划学时:3学时一、实验目的1.了解真空的获得方法和测量技术;2.了解机械泵、分子泵工作原理和操作方法;3.掌握物理汽相沉积法制备薄膜材料的原理和方法;4.掌握磁控溅射镀膜机的操作方法。
二、实验原理1.真空的获得和测量见(实验一)2.磁控溅射法制备薄膜材料的原理溅射法是物理气相淀积薄膜的方法之一。
溅射法是利用带电离子在电场中加速后具有一定动能的特点,将离子引向欲被溅射的靶电极。
在离子能量合适的情况下,入射离子在与靶表面原子的碰撞过程中使靶原子溅射出来。
这些被溅射出来的原子将带有一定的动能,并沿一定方向射向衬底,从而实现了在衬底上的薄膜沉积。
表征溅射特征得参量主要有溅射阈值,溅射率,溅射原子的速度和能量等。
溅射阈值:采用溅射法制备的薄膜种类很多,所需要的靶材种类也很多。
对于每一种靶材,都存在一个能量阈值,低于这个值就不会发生溅射现象。
不同靶材其溅射阈值不同。
溅射率:它表示正离子轰击作为阴极的靶材时,平均每个正离子能从靶材上打出的原子数目,就是被溅射出来的原子数与入射离子数之比。
溅射率的大小与入射离子的能量、种类、靶材的种类,入射离子的入射角等因素有关。
溅射原子的能量和速度:溅射原子的平均逸出能量,随入射离子能量的增加而增加;在相同轰击能量下,原子逸出能量随入射离子质量线性增加;不同靶材具有不同的原子逸出能量,溅射率高的靶材料,原子平均逸出能通常较低。
具体溅射方式较多,例如直流溅射,射频溅射,磁控溅射,反应溅射,离子束溅射,偏压溅射等。
也可根据实际应用,将上述各种方法结合起来构成某种新方法,如将磁控溅射和反应溅射结合起来就构成磁控反应溅射,磁控射频溅射等。
磁控溅射技术作为一种沉积速率较高,工作气体压强较低的溅射技术具有其独特的优越性。
因为速度为V的电子在电场E和磁感应强度B的磁场中运动时,既受电场力的作用,又受洛仑兹力的作用,则电子的运动轨迹将是沿电场方向加速,同时绕磁场方向螺旋前进电子的运动路径由于磁场的作用而大幅度地增加,提高了与原子的碰撞几率,从而有效地提高了气体的离化效率和薄膜的沉积速率。
薄膜磁控溅射实验报告(3篇)

第1篇一、实验目的本次实验旨在通过磁控溅射技术制备不同材料薄膜,研究其制备过程中的工艺参数对薄膜质量的影响,并对薄膜的表面形貌、晶体结构、成分及性能进行分析。
二、实验原理磁控溅射技术是一种物理气相沉积方法,通过将靶材加热至一定温度,使其表面产生自由电子,然后在电场的作用下,自由电子与气体分子发生碰撞,产生等离子体,等离子体中的离子和电子被加速并轰击靶材表面,使靶材表面原子蒸发并沉积在衬底上形成薄膜。
三、实验设备与材料1. 实验设备:- 磁控溅射系统- 扫描电子显微镜(SEM)- X射线衍射仪(XRD)- X射线光电子能谱仪(XPS)- 红外光谱仪(IR)- 薄膜厚度测量仪2. 实验材料:- 靶材:Al、TiO2、ZnO等- 衬底:玻璃、硅等- 氩气、氮气等惰性气体四、实验步骤1. 清洗衬底:使用丙酮、乙醇、蒸馏水等清洗剂对衬底进行清洗,并在烘箱中干燥。
2. 装置准备:将靶材安装在磁控溅射系统上,设置靶材与衬底的距离、溅射气压、溅射时间等参数。
3. 磁控溅射:启动磁控溅射系统,进行溅射实验,制备薄膜。
4. 薄膜性能测试:使用SEM、XRD、XPS、IR等设备对薄膜的表面形貌、晶体结构、成分及性能进行分析。
五、实验结果与分析1. 薄膜表面形貌:SEM结果表明,Al、TiO2、ZnO等薄膜表面均匀,无明显缺陷。
2. 晶体结构:XRD分析表明,薄膜具有良好的晶体结构,晶粒尺寸较小。
3. 成分分析:XPS结果表明,薄膜中各元素含量符合预期。
4. 薄膜性能:- 硬度:Al、TiO2、ZnO等薄膜的硬度较高,具有良好的耐磨性能。
- 导电性:Al薄膜具有良好的导电性,适用于电子器件。
- 介电性能:TiO2、ZnO等薄膜具有良好的介电性能,适用于电容器等器件。
六、实验讨论1. 溅射气压对薄膜质量的影响:溅射气压越高,薄膜密度越大,晶粒尺寸越小,但溅射气压过高会导致薄膜表面出现缺陷。
2. 溅射时间对薄膜质量的影响:溅射时间越长,薄膜厚度越大,但溅射时间过长会导致薄膜内部应力增大,影响薄膜性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 真空蒸发和磁控溅射制备薄膜姓名:许航 学号:141190093 姓名:王颖婷 学号:141190083 系别:材料科学与工程系 专业:材料物理组号:A9 实验时间:3月16号本实验主要介绍真空蒸发、磁控溅射两种常用而有效的制备薄膜的工艺,以便通过实际操作对典型的薄膜工艺的原理和基本操作过程有初步的了解。
一、 实验目的1、 通过实验掌握磁控溅射、真空蒸发制备薄膜的基本原理,了解磁控溅射、真空蒸发制备薄膜的过程2、 独立动手,学会利用磁控溅射、真空蒸发技术制备薄膜3、 通过本实验对真空系统、镀膜系统以及辉光放电等物理现象有更深层次的了解二、 实验原理薄膜作为一种特殊形状的物质,与块状物质一样,可以是非晶态的,多晶态的和单晶态的。
它既可用单质元素或化合物制作,也可用无机材料和有机材料制作。
近年来随着薄膜工艺的不断进步和完善,复合薄膜和功能材料薄膜也又很大的发展,因此薄膜技术和薄膜产品已在机械、电子、光学、航天、建材、轻工等工业部门得到了广泛的应用,特别是在电子工业中占有极其重要的地位。
例如光电极摄像器件、各种集成电路器件、各种显示器、太阳能电池及磁带、磁头等各种转化器、传感和记录器、电阻器、电容器等都是应用薄膜。
目前,薄膜工艺不仅成为一门独立的应用技术,也是改善材料表面性能和提高某些工艺水品的重要手段。
1、 真空蒸发制备薄膜原理真空蒸发镀膜是把待镀膜的衬底或工件置于高真空室内,通过加热使成膜材料气化(或升华)而淀积到衬底上,从而形成一层薄膜的工艺过程。
因为真空蒸发镀膜的膜层质量与真空室的真空度、膜料蒸发温度和衬底的温度都有很大的关系,因而在实验过程务必严格控制各个环节。
下面讨论一下影响蒸发镀膜质量的主要因素和成膜的原理。
(1)、真空度为了同时保证膜层的质量和生产效率及成本,通常要选择合理的真空度。
在镀膜过程中,抽真空后处在同一温度下的残余气体分子相对于蒸发出的膜料分子(原子)可以视作静止,可以得到膜料分子(原子)在残余分子中运动的平均自由程:'21()n r r λπ=+ p nkT = n 为残余气体分子的密度,r’为残余气体分子半径,r 为蒸发膜料分子的半径,p 为残余气体的压强,k 为玻尔兹曼常数。
若蒸发源到衬底的距离为L (cm ),为使得膜料分子中的大部分不与残余气体分子碰撞而直接到达衬底表面,则一般可以取平均自由程10L λ≥,这样:'210()kT p L r r π≤+(Pa ) (2)、蒸发温度蒸发镀膜时,膜料的加热温度直接影响了成膜的速度和膜层的质量,为了达到迅速蒸镀的目的,通常要把膜料加热到使其平衡蒸气压达到几帕以上,此时的温度称为蒸发温度。
通常材料的蒸气压p 与温度T 之间有如下的近似关系:lg B p A T=- 其中A 、B 是和材料有关的常数,可直接由实验测得或者查阅文献得到。
(3)、蒸发和凝结速率略去复杂的数学推导过程,这里直接给出蒸发速率和蒸汽压以及温度之间的关系:34.37510m u N m N pTυαα-==⨯⋅ N m 为质量蒸发速率,即单位时间从单位面积蒸发的质量;P 为温度为T 时的饱和蒸汽压(Pa );u 为摩尔质量; T 为蒸发温度(K) 由此可见温度的变化将引起蒸发速率的显著变化,因此,要控制蒸发速率就要严格的控制蒸发温度。
(4)、成膜过程典型的薄膜形成的过程为:入射原子-凝结核-结晶核-小岛-网状阶段-膜。
这里所说的凝结核是入射到衬底的原子,以它为核心逐渐增大而成。
从凝结核进一步长大并形成结晶核或微结晶膜时,最初的结晶原子团就是结晶核。
结晶的过程与蒸发物质、入射原子的密度、衬底的温度。
膜的平均厚度等因素有关。
2、 磁控溅射镀膜原理溅射过程的基础是电极间一定气压的气体的辉光放电。
如图1所示,以靶为阴极,衬底为阳极,阴极与阳极距离通常小于10cm ,真空腔体内充入惰性气体,压力维持于0.1Torr 。
在电极间加一高压,低压气体被激发,发生辉光放电,产生等离子体,等离子体内的离子被加速向带负电的阴极运动,轰击表面,释放出二次电子,这些电子被加速,离开阴极。
在从阴极向阳极运动中,电子与中性粒子碰撞,在转移的能量小于气体原子的离化能时,原子被激发至高图1. 简单的溅射系统图2 电子在溅射区的运动轨迹能态,然后发射光子退激发,产生辉光。
若转移的能量足够高,原子被离化,产生离子,并被加速轰击阴极,是阴极表面的原子被从表面发射出来,产生溅射。
这种过程就是最简单的阴极溅射。
为了提高溅射效率,70年代在阴极溅射的基础上发展起来的一种新型的溅射镀膜的方法-磁控溅射镀膜。
它可以有效的克服了阴极溅射速率低和电子使衬底温度升高等致命的弱点。
磁控溅射是在溅射区加了与电场方向垂直的磁场,处于正交电场E 和磁场B 中的电子的运动方程为:式中e 和m 分别为电子的电量和质量。
它的运动轨迹如图2所示,即电子以轮摆线的形式沿着靶材的表面向垂直于E 、B 的方向前进,从而极大的延长了电子的行程,增加了电子和气体分子的碰撞几率,提高了电离的效率。
这使得等离子体的密度增加,因而溅射效率大为增加。
由于电子每碰撞一次就损失一次能量,故经过多次的碰撞后丧失了能量而成为“最终电子”进入离阴极靶面较远的弱电场区,最后打到阳极上,因此衬底的温度大为降低。
而高密度的等离子体被约束在靶面附近,正离子能有效的轰击靶面。
由于工作气压低,减少了溅射原子或分子与气体分子的碰撞,所以提高了淀积率。
平面磁控溅射靶是小型磁控溅射镀膜装置中通常采用的。
如图3所示,一组磁铁放置于靶后面,产生平行于靶表面的磁场。
典型的磁图3 平面磁控溅射靶的结构示意图 图4 一个实际的平面磁控溅射靶 图5 图4所示的磁控溅射靶工作时的辉光照片场强度为几百高斯。
在溅射过程中,等离子体功率的大部分是以热形式耗散于靶上,为避免出现过热,靶通常需用水冷却。
靶通常用机械方法固定。
为防止对靶的边缘或背面材料的溅射,靶边缘用接地挡板遮挡屏蔽。
图4示出了一个实际的平面磁控溅射靶,安装于一个超高真空法兰上。
图5则显示了改靶工作时表面出现的辉光。
三、实验装置本实验所用设备的结构如图6所示。
该设备的主要由真空镀膜室、抽气系统和控制系统组成。
真空镀膜室是镀膜过程发生的主要地方,抽气系统用来提供必要的真空度,控制系统是控制影响镀膜的各因素的操作台。
图6 实验中所采用的的镀膜装置四、实验过程1.打开电源,按升降按钮开启真空腔;2.安装蒸发舟(钽片或钼片制);3.在蒸发舟中加入蒸发原料(本实验所用原料为铬粉);在靶座上安装溅射靶材,并固定屏蔽盖。
4.安装待镀的玻璃衬底;5.关闭真空腔(注意真空密封,观察密封橡胶圈是否完全置于凹槽中);6.开启冷却水,开启或关闭相关的阀门;7.开启机械泵抽粗真空,观察热偶规读数,记录抽速曲线,记录到达1pa真空度所需时间;8.热偶规读数到达1pa量级后开启涡轮分子泵,记录分子泵由加速到达正常转速所需时间、转速到达正常时的电离规读数,记录抽速曲线,;9.观察电离规读数,当真空度进入5×10-3Pa后开始加热蒸发舟;10.调节蒸发舟加热电流使蒸发舟到达预定的温度(可根据蒸发舟的亮度估计),开启挡板开始对衬底进行蒸发,观察并控制蒸发时间;11.结束蒸发后,将加热电流降为零,使蒸发舟冷却;12.蒸发舟温度足够低后,调节挡板位置,开启氩气瓶及减压阀对真空腔充入氩气,控制充气阀及闸板阀、质量流量计,使真空腔中维持1Pa左右的恒定气压;13.通过温控仪维持衬底温度为300 C;14.打开直流溅射电源,调节溅射电流,到达额定功率(电压:~600V, 电流:0.3~0.5A),观察真空腔中起辉状况,开始镀膜;15.溅射预定时间后,将溅射电流调到零,关闭溅射电源,关闭衬底加热电源,衬底温度降到150 C后关闭氩气;16.依次关闭真空计、涡轮分子泵和机械泵,分子泵完全停止后向真空腔放气,打开真空腔,取出样品;17.关闭真空腔、停水、关动力电源。
五、实验要求1、认真预习实验,掌握真空系统基本的构造和原理,熟练掌握各阀门的作用和操作;2、根据真空蒸发和磁控溅射镀膜原理得到合适的实验参数并由实验来验证;3、独立操作完成真空蒸发和磁控溅射镀膜,得到合格样品为后续AFM的检测工作做准备。
六、实验记录数据气压抽至3Pa需要的时间:17分16秒分子泵达到450转速需要的时间:21分30秒-17分16秒= 4分14秒此时电离规读数:2.4 -2七、实验所得膜层的图样对比(右侧为蒸发镀膜样品)八、有关溅射所得膜层的质量分析1.真空蒸发镀膜所得到的膜层从外观上看均匀性更好,更加光滑和平整。
2.磁控溅射镀膜所得到的膜层从外观上看显得凹凸不平,原因可能是因为在镀膜过程结束后,打开腔体时,腔体中充入大量的空气,其中含有大量的氧气和水蒸气的成分,而在镀膜刚刚结束的时候,基底和膜层还处于一个温度较高的状态,这时空气中的氧气和水蒸气的成分与膜层表面发生反应,使得表面变得凹凸不平。
九、思考题1、开启机械泵抽粗真空时,根据热偶规读数,记录到达1pa真空度所需时间的目的?答:达到1pa的真空度时,所需要的时间为503s即8min23s。
在真空度达到1pa是可以开启涡轮分子泵。
因为涡轮分子泵的开启需要达到一定的真空度,否则会对涡轮分子泵造成巨大的伤害。
2.热偶规读数到达1pa量级后开启涡轮分子泵,记录分子泵由加速到达正常转速所需时间及到达正常时的电离规读数的目的?答:记录这些数据可以检测涡轮分子泵是否正常工作以及热偶规是否正常工作,确保后续试验的进行。
3.蒸发舟的加热温度如何确定?答:蒸发舟加热时会发出亮光,通过光亮的程度来确定蒸发舟是否达到了能够满足蒸发条件的预定温度。