有理数综合练习题
有理数综合练习题

有理数综合练习题1. 将-2/3和1.75分别写成分数形式。
-2/3 的分数形式为 -\frac{2}{3}1.75 的分数形式为 \frac{7}{4}2. 计算下列各题。
a) (-3) + \left(-\frac{5}{6}\right) + \frac{2}{3}将这些有理数转化为相同的分母:(-3) + \left(-\frac{5}{6}\right) + \frac{2}{3} = -\frac{18}{6} - \frac{5}{6} + \frac{4}{6}然后进行相加:-\frac{18}{6} - \frac{5}{6} + \frac{4}{6} = -\frac{19}{6}所以答案为 -\frac{19}{6}b) -2.3 + (-1.8) - (-3.9)将这些有理数相加和相减:-2.3 + (-1.8) - (-3.9) = -2.3 - 1.8 + 3.9进行计算得:-2.3 - 1.8 + 3.9 = -3.2所以答案为 -3.2c) \left(-\frac{7}{8}\right) \times \frac{4}{5}将这两个有理数相乘:\left(-\frac{7}{8}\right) \times \frac{4}{5} = -\frac{7}{8} \times\frac{4}{5}进行计算得:-\frac{7}{8} \times \frac{4}{5} = -\frac{28}{40}简化分数得:-\frac{28}{40} = -\frac{7}{10}所以答案为 -\frac{7}{10}d) \frac{6}{7} \div \left(-\frac{2}{3}\right)将这两个有理数相除:\frac{6}{7} \div \left(-\frac{2}{3}\right) = \frac{6}{7} \div \frac{-2}{3}将除法转化为乘法并取倒数:\frac{6}{7} \times \frac{3}{-2} = \frac{18}{-14}简化分数得:\frac{18}{-14} = -\frac{9}{7}所以答案为 -\frac{9}{7}3. 在数轴上表示下列各有理数。
有理数的混合运算练习题(含答案)(大综合17套)(同名2059)

有理数的混合运算练习题(含答案)(大综合17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2; (5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>cbb a ,那么ac 0;如果0,0<<cbb a ,那么ac 0;(2)若042=-++++c c b a ,则abc=; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.9 2.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31; (2)-8;2719(3)224【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______. 2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______. 3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)]ob a(3)[124÷(-114)]×(-56)÷(-316)-0.25÷14◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)8 3.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的.课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2 (2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( )A.1000B.-1000C.30D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( ) A.-2 B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。
有理数混合运算练习题(含答案)(大综合17套)

有理数的混合运算同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43; (2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125); (4)(-48) ÷82-(-25) ÷(-6)2;(5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′) (1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3]; (3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>cbb a ,那么ac 0;如果0,0<<cbb a ,那么ac 0;(2)若042=-++++c c b a ,则abc= ; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.9 2.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31; (2)-8;2719 (3)224【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______. 2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______. 3.当||a a =1,则a____0;若||a a =-1,则a______0. 4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .a b>1 5.下列各数互为倒数的是( ) A .-0.13和-13100 B .-525和-275 C .-111和-11 D .-414和4116.(体验探究题)完成下列计算过程: (-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)](3)[124÷(-114)]×(-56)÷(-316)-0.25÷14ob a◆Updating12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)8 3.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的.课后测控7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2 (2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( )A.1000B.-1000C.30D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<-B. 342(2)2(2)-<-<-C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( ) A.-2 B.-3 C.-4 D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。
有理数综合训练题一

综合训练题一一.选择题(共9小题)1.已知|x|=3,y=2,且x>y,则x+y的值为()A.﹣5 B.﹣1 C.5或﹣1 D.52.如果两个数的和为负数,那么这两个数一定是()A.正数B.负数C.一正一负D.至少一个为负数3.若x的相反数是5,|y|=8,且x+y<0,那么x﹣y的值是()A.3 B.3或﹣13 C.﹣3或﹣13 D.﹣134.已知|x|=5,|y|=2,且x<y,则x+y的值()A.7 B.3 C.﹣3或3 D.﹣3或﹣75.计算﹣1+2﹣3+4﹣5+6…﹣97+98﹣99的结果为()A.﹣50 B.﹣49 C.49 D.506.绝对值大于2且不大于5的所有的整数的和是()A.7 B.﹣7 C.0 D.57.如果|x﹣3|=x﹣3,那么x的取值范围是()A.x<3 B.x≤3 C.x>3 D.x≥38.若a为有理数,则|a|﹣a一定是()A.正数B.负数C.零D.非负数9.当|a|=﹣a时,则a是()A.a≤0 B.a<0 C.a≥0 D.a>0二.填空题(共8小题)10.如果|2x+5|=3,则x=.11.当y满足时,|y﹣3|=3﹣y成立.12.已知整数x1,x2,x3,x4,…满足下列条件,x1=0,x2=﹣|x1+1|,x3=﹣|x2+2|,x4=﹣|x3+3|,x5=﹣|x4+4|,依此类推,则x2017的值为.13.若|x﹣3|+x﹣3=0,则|x﹣4|+x的值为.14.已知|a|=3,|b|=8,且|a﹣b|=a﹣b,则a+b的值为.15.若7<x<8,化简|x﹣7|+|x﹣8|=.16.如果a,b两数互为相反数,则a﹣3+b=.17.绝对值大于3而不大于6的整数有个,它们分别是.三.解答题(共12小题)18.如果|a|=5,|b|=5,且|a+b|=﹣(a+b),求a﹣b的值.19.已知|a﹣1|=9,|b+2|=6,且a+b<0,求a﹣b的值.20.若ab>0,求++的值.21.把下列各数填入它所属的集合内:5.2,0,,,+(﹣4),﹣2,﹣(﹣3 ),0.25555…,﹣0.030030003…(1)分数集合:{ …}(2)非负整数集合:{ …}(3)有理数集合:{ …}.22.若|a|=7,|b|=3,(1)若ab>0,求a+b的值.(2)若|a+b|=a+b,求a﹣b的值.23.已知|a|=6,|b|=4,且a、b异号,求|a+b|﹣(a﹣b)的值.24.计算:1+2﹣3﹣4+5+6﹣7﹣8+9+10﹣11﹣12+…+2005+2006﹣2007﹣2008.25.阅读:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|=|a﹣b|.理解:(1)数轴上表示2和﹣4的两点之间的距离是;(2)数轴上表示x和﹣6的两点A和B之间的距离是;应用:(1)当代数式|x﹣1|+|x+2|取最小值时,相应的x的取值范围,最小值为;.26.已知0≤a≤5,求|2﹣a|+|a﹣4|的最大值.27.某检修站,甲小组乘一辆汽车,约定向东为正,从A地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6.同时,乙小组也从A地出发,沿南北方向的公路检修线路,约定向北为正,行走记录为:﹣17,+9,﹣2,+8,+6,+9,﹣5,﹣1,+4,﹣7,﹣8.(1)分别计算收工时,甲、乙两组各在A地的哪一边,分别距A地多远?(2)若每千米汽车耗油a升,求出发到收工时两组各耗油多少升?28.阅读下列解题过程,然后答题:已知如果两个数互为相反数,则这两个数的和为0,例如,若x和y互为相反数,则必有x+y=0.(1)已知:|a|+a=0,求a的取值范围.(2)已知:|a﹣1|+(a﹣1)=0,求a的取值范围.29.先阅读第(1)小题,仿照其解法再计算第(2)小题:(1)计算:解:原式=====15+=13;(2)计算.。
有理数综合练习题

有理数综合练习题一、选择题(每题3分,共30分)1. 下列哪个数不是有理数?A. πB. -2C. 0.5D. √42. 若a是有理数,且a < 0,下列哪个表达式的结果大于0?A. a + 1B. a - 1C. -aD. a × a3. 两个有理数相除,结果为负数的条件是:A. 两个数都是正数B. 两个数都是负数C. 一个正数除以一个负数D. 一个负数除以一个正数4. 有理数a和b,若a + b = 0,则a和b的关系是:A. 互为相反数B. 互为倒数C. 互为倍数D. 互为补数5. 下列哪个数的绝对值最小?A. 2B. -3C. 0D. -16. 有理数的四则运算中,哪个运算没有分配律?A. 加法B. 减法C. 乘法D. 除法7. 如果一个有理数的平方是正数,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数也可以是负数D. 既不是正数也不是负数8. 有理数a和b,若a × b < 0,则a和b:A. 都是正数B. 都是负数C. 一个正数一个负数D. 至少有一个是09. 下列哪个表达式的结果不是有理数?A. √9B. 2 - √2C. 2/3D. 2 + √210. 有理数a和b,若a × b = 1,则a和b:A. 都是正数B. 都是负数C. 互为倒数D. 互为相反数二、填空题(每题3分,共15分)11. 有理数-5的绝对值是_________。
12. 两个互为相反数的有理数之和是_________。
13. 如果一个有理数的立方是-27,则这个数是_________。
14. 有理数3和-2相乘的结果是_________。
15. 有理数-4的倒数是_________。
三、简答题(每题5分,共20分)16. 请解释什么是有理数,并给出两个有理数的例子。
17. 请说明有理数的加法规则。
18. 请说明有理数的除法规则。
19. 如果一个有理数的平方是25,那么这个数可能是什么?四、计算题(每题10分,共35分)20. 计算下列表达式的值:(-2) × 3 + 4 × √4 - 5。
有理数综合练习题

有理数综合练习题一、选择题:1.两个有理数在数轴上的对应点位于原点的两旁,那么这两个数的商是( )A.正数B.负数C.零D.以上情况都有可能2.一个数与它的相反数相乘,得原数,这个数一定是( )A.-1B.0C.1D.0或-13.下列说法错误的是( )A.有理数m 的倒数是m1 B.两个数互为倒数,则这两个数的积是1 C.倒数等于本身的是1和-1 D.0乘以任何数都等于04.已知,2,3==y x 且x+y=1,则xy 的值为( )A.6B.-6C.6±D.不能确定5.若123x y z -++=--,则)3)(2)(1(+-+z y x 的值为( )A.48B.-48C.0D.xyz6.两个不同的有理数a 、b 在数轴上的对应点到原点的距离相等,则下列结论错误的是( )A. 0=+b aB.1-=abC.1-=b a D. b a = 7.当0<a 时,化简:a aa -=( )A.-2B.0C.1D.28.如果a 、b 满足:0,0<>+ab b a ,则下列式子正确的是( ) A.b a > B.b a < C.当a<0,b<0时,b a > D. 当a>0,b<0时,b a >9.若a 、b 、c 在数轴上的位置如图所示,则必有( )A. 0>abcB.0>-ac abC.0>+c b a )(D.0->c b a )(10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则!98!100的值为( ) A.4950 B.99! C.9900 D.2! 二、填空题:11.计算:)()()(14-141-14-141⨯÷⨯的结果是_______ 12.若zx z y y x 那么,0,0>< 0. 13.在等式3215⨯-⨯=的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立。
有理数的四则运算综合练习

有理数的四则运算综合练习有理数是由整数和分数组成的数,可以进行加减乘除等四则运算。
在学习有理数的四则运算中,需要掌握正确的计算方法和技巧。
本文将为大家提供有理数的综合练习,帮助大家巩固和提高有理数的四则运算能力。
一、加法运算练习1. 23 + 17 =2. (-14) + (-8) =3. -1.5 + 2.7 =4. 0.3 + (-0.2) =5. -3 + 5 + (-4) =二、减法运算练习1. 65 - 32 =2. (-12) - (-5) =3. 7.5 - (-3.2) =4. 0.8 - 0.3 =5. -2 - 5 - (-3) =三、乘法运算练习1. 8 × 4 =2. (-5) × (-3) =3. 0.6 × (-2) =4. -1.2 × 0.5 =5. -3 × 4 × (-2) =四、除法运算练习1. 48 ÷ 8 =2. (-30) ÷ (-6) =3. 12.6 ÷ (-3) =4. 0.9 ÷ 0.3 =5. -16 ÷ (-2) ÷ 4 =五、综合运算练习1. 15 + 8 - 6 =2. (-7) - 3 + 5 =3. 4 × 3 + 2 ÷ (-2) =4. (-5) × (-4) + (-2) ÷ 0.5 =5. 10 ÷ 2 + (-3) - 5 × (-2) =通过以上的练习,相信大家对有理数的四则运算有了更深入的理解和掌握。
在进行有理数的计算时,首先要根据运算规则确定正负号,然后按照运算优先级进行计算。
在加减乘除的过程中,注意对小数和分数的处理,保持结果的精确性。
总结:1. 有理数的加法运算:同号相加,异号作差,结果的符号取决于绝对值较大的数的符号。
2. 有理数的减法运算:减去一个数等于加上这个数的相反数。
有理数的混合运算练习题(含答案)(大综合17套)

有理数的混合运算练习题(含答案)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2; (5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>cbb a ,那么ac 0;如果0,0<<cbb a ,那么ac 0;(2)若042=-++++c c b a ,则abc=; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.9 2.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2]. 2.(1)-31;(2)-8;2719(3)224 【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______. 2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______. 3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)]ob a(3)[124÷(-114)]×(-56)÷(-316)-0.25÷14◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)8 3.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的.课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2 (2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( )A.1000B.-1000C.30D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( ) A.-2 B.-3 C.-4 D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数综合练习题
一、选择题:
1.两个有理数在数轴上的对应点位于原点的两旁,那么这两个数的商是( )
A.正数
B.负数
C.零
D.以上情况都有可能
2.一个数与它的相反数相乘,得原数,这个数一定是( )
A.-1
B.0
C.1
D.0或-1
3.下列说法错误的是( )
A.有理数m 的倒数是m 1
B.两个数互为倒数,则这两个数的积是1
C.倒数等于本身的是1和-1
D.0乘以任何数都等于0 4.已知,2,3==y x 且x+y=1,则xy 的值为( )
A.6
B.-6
C.6±
D.不能确定
5.若123x y z -++=--,则)3)(2)(1(+-+z y x 的值为( )
A.48
B.-48
C.0
D.xyz
6.两个不同的有理数a 、b 在数轴上的对应点到原点的距离相等,则下列结论错误的是( )
A. 0=+b a
B.1-=ab
C.
1-=b a D. b a = 7.当0<a 时,化简:a a
a -=( ) A.-2 B.0 C.1 D.2
8.如果a 、b 满足:0,0<>+ab b a ,则下列式子正确的是( )
A.b a >
B.b a <
C.当a<0,b<0时,b a >
D. 当a>0,b<0时,b a >
9.若a 、b 、c 在数轴上的位置如图所示,则必有( )
A. 0>abc
B.0>-ac ab
C.0>+c b a )(
D.0->c b a )(
10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2
×1,…,则!
98!100的值为( ) A.49
50 B.99! C.9900 D.2! 二、填空题:
11.计算:
)()()(14-141-14-141⨯÷⨯的结果是_______ 12.若z
x z y y x 那么,0,0>< 0. 13.在等式3215⨯
-⨯=的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立。
则第一个方格内的数是_______
15.观察下列的排列规律,其中(●是实心球, ○是空心球)
●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2011个球上,共有实心球 个.
16.分别输入-1,-2,按图所示的程序运算,则输出的结果依次是 、 .
17.
18.已知:1010......,434434323323212212+=⨯+=⨯+=⨯+=⨯b
a b a 若,,,(a 、b 都是正整数),则b-a 的值是
三、综合题:
19.计算下列各题:
(1))7
221711()4.1113()1134.1(⨯÷-⨯-÷-
(2)25.0)431(218)522(52--⨯--÷
(3))6()7624(-÷- (4))5(]24)4
36183(-2411[-÷⨯-+
20.画一条数轴,并在数轴上表示:3.5和它的相反数,-4和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来。
21).
(1)
(2) 小兵现在想给远在巴黎的爸爸打电话,你认为合适吗?
22.如果规定符号“*”的意义是a *b=b a b a +⋅,求2*(-3)*4的值。
23.表示数a 、b 、c 、d 的点在数轴上的位置,如图所示:
化简│b-c │-│a-2c │-│d+b │+│d │.
24、已知n m ,互为相反数,b a ,互为倒数,x 的绝对值等于3,
求()()()220011x m n ab x m n x ab --++++++-的值
25.已知022=-+-a ab ,求
()()()()()()
1111112220092009ab a b a b a b +++⋅⋅⋅+++++++
26.已知||||||a b c a b c ++=1,求||()||||||
abc bc ac ab abc ab bc ac ÷⨯⨯的值.
27.读一读:式子“1+2+3+4+5+…+100”表示1开始的100个连续自然数的和.•由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+ …+100”表示为100
1n n =∑,
这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为501n =∑(2n-1);又如13+23+33+43+53+63+73+83+93+103可表示为10
1
n =∑n 3.通过对上以材料的阅读,请解答下列问题.
(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为_________________;
(2)计算5
1
n =∑(1- n 2)=________________.(填写最后的计算结果)
28.请先阅读下列一组内容,然后解答问题: 因为:111111111111,,12223233434910910
=-=-=-⋯=-⨯⨯⨯⨯ 所以:1111122334910
+++⋯+⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋯+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
1111111122334910
=-+-+-+⋯+- 1911010
=-= 问题:计算:①111112233420042005
+++⋯+⨯⨯⨯⨯; ② 11113153755149
+++⋯+⨯⨯⨯⨯。