4-3交流绕组的磁势
合集下载
交流绕组的磁势

选用高磁导率材料
采用高磁导率的材料制作绕组,提高磁势的效率。
优化磁路设计
合理设计电机磁路,降低磁阻,提高磁势的利用 率。
3
提高绕组利用率
优化绕组排布,提高绕组的填充系数,从而提高 磁势效率。
减小磁势损耗的方法
采用低损耗材料
01
选用低损耗的磁性材料和绝缘材料,降低磁势过程中的能量损
失。
优化冷却系统
02
转。
磁势波形
交流绕组的磁势波形是正弦波, 其频率与电源频率一致。磁势的 幅值和相位角取决于绕组的匝数
和电流的相位。
磁势平衡
在电动机运行过程中,磁势在空 间中旋转并保持平衡,以减少磁 场能量的损失和减小电动机的振
动。
发电机的工作原理
01
发电机的磁势
发电机中的磁势是由直流励磁电流产生的,该电流通过励磁绕组产生磁
磁势的波形
正弦波
在理想情况下,交流绕组的磁势波形 应为正弦波。正弦波具有连续、平滑 的特性,能够减少谐波干扰和能量损 失。
畸变波形
实际应用中,由于各种因素的影响, 交流绕组的磁势波形可能会出现畸变, 如波形失真、脉冲等。畸变的磁势波 形可能导致电机性能下降、振动和噪 声等问题。
磁势的频率与相位
频率
磁势大小
三相绕组的磁势大小取决于各相绕组 的匝数、电流有效值以及磁场频率。
多相绕组的磁势
磁势波形
多相绕组产生的磁势波形为多相正弦波。
磁势大小
多相绕组的磁势大小取决于各相绕组的匝数、电 流有效值以及磁场频率。
磁势特点
多相绕组的磁势具有更高的对称性和稳定性,适 用于大型电机和变压器的设计。
03
交流绕组磁势的特性
场。发电机的磁势与发电机转子的转速和励磁电流的频率有关。
第4章 交流绕组—磁动势讲解

在空间的任何一点,磁动势的大小随时间按正弦规律变化 。这种空间位置固定不动,但波幅的大小和正负随时间变 化的磁动势称为脉振磁动势 。
5
基波磁动势表达式
f y1(t, ) Fy1 cos 幅值 Fy1 0.9NcIc sin t
基波磁动势沿气隙圆周有p个完整的正弦波,极对数为p 例如Z=12,p=2的三相单层绕组。q=1,每相有2个整距线圈。
3
将气隙圆周展开,得到磁动势沿圆周的空间分布波形如图所 示。气隙圆周某点的磁动势表示由该定子磁动势所产生的气 隙磁通通过该点气隙的磁压降。
磁动势波形为矩形波。当 线圈电流i随时间按正弦规
律交变时,矩形波的高度 为
Fy
Nci 2
2 2
NcIc
sin
t
矩形波的高度和正负随时 间变化,变化的快慢取决 于电流的频率。
fA3 Fm3 sin t cos 3 fB3 Fm3 sin( t 120 ) cos 3( 120 ) fC3 Fm3 sin( t 240 ) cos 3( 240 )
f3 fA3 fB3 fC3
Fm3[sin t sin( t 120) sin( t 240)]cos3 0
② 合成磁动势基波的转速与三相电流的频率和绕组的极对 数有关;
③ 当某相电流达到最大值时,合成磁动势的波幅刚好转到 该相绕组的轴线上;
④ 电流在时间上经过多少角度,合成磁动势在空间上转过 相同的电角度;
⑤ 旋转磁动势由超前相电流所在的相绕组轴线转向滞后相 电流所在的相绕组轴线。改变电流的相序,则旋转磁动 势改变转向。
13
两个单层分布绕组产生的磁动势如上述分析,均为阶梯波。
5
基波磁动势表达式
f y1(t, ) Fy1 cos 幅值 Fy1 0.9NcIc sin t
基波磁动势沿气隙圆周有p个完整的正弦波,极对数为p 例如Z=12,p=2的三相单层绕组。q=1,每相有2个整距线圈。
3
将气隙圆周展开,得到磁动势沿圆周的空间分布波形如图所 示。气隙圆周某点的磁动势表示由该定子磁动势所产生的气 隙磁通通过该点气隙的磁压降。
磁动势波形为矩形波。当 线圈电流i随时间按正弦规
律交变时,矩形波的高度 为
Fy
Nci 2
2 2
NcIc
sin
t
矩形波的高度和正负随时 间变化,变化的快慢取决 于电流的频率。
fA3 Fm3 sin t cos 3 fB3 Fm3 sin( t 120 ) cos 3( 120 ) fC3 Fm3 sin( t 240 ) cos 3( 240 )
f3 fA3 fB3 fC3
Fm3[sin t sin( t 120) sin( t 240)]cos3 0
② 合成磁动势基波的转速与三相电流的频率和绕组的极对 数有关;
③ 当某相电流达到最大值时,合成磁动势的波幅刚好转到 该相绕组的轴线上;
④ 电流在时间上经过多少角度,合成磁动势在空间上转过 相同的电角度;
⑤ 旋转磁动势由超前相电流所在的相绕组轴线转向滞后相 电流所在的相绕组轴线。改变电流的相序,则旋转磁动 势改变转向。
13
两个单层分布绕组产生的磁动势如上述分析,均为阶梯波。
第4章 交流电动机的磁动势、绕组和感应电动势

60 f p
三相笼形异步电机和三相绕线式异步电动机
4.1 交流电机绕组产生的磁动势
定子绕组: 安放在定子铁心
槽里的交流电
枢绕组。
线圈
交流绕组的一些基本量
(1)电角度与机械角度 • 电机圆周在几何上分成 360°,这个角度称为机
械角度 • 若电机磁场在空间按正弦规律分布 • 当有导体经过 N、S 一对磁极时 • 导体中所感应(正弦)电动势的变化为一个周期,
1t
)
121NNy 2
y
2I cos1t 2I cos1t
2
2
3
2
2
4.1 交流电机绕组产生的磁动势
4.1.1 单相集中整距绕组的磁动势
4. 磁动势的幅值随时间变化
• 时间不同,磁动势的幅值大小也不同,磁动势的 幅值在随时间交变。(P74 图4-2)
• 或者可以把这种交变称为脉振。 • 这种不能移动只能脉振的磁动势,叫脉振磁动势。
磁动势以傅氏级数展开后的表示式为:
f ( ,1t) f1 f3 f5...
41
2
2
I1N1 p
c os1t
cos
1 3
4
1 2
2
I1N1 p
c os1t
cos3
1 4 1
5 2
2
I1N1 p
c os1t
cos5
...
公式中只列出了基波、3次和5次谐波,还有7次、9 次等高次谐波。
图4.4 矩形波磁动势的基波及谐波分量
fy
X
A2
X
O
1
2 iN y
a
A
X
2
4.1 交流电机绕组产生的磁动势
交流电机的绕组、电动势和磁动势

N极面
S极面
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
N
NS
S
N
S
A
X
单层绕组的特点: (1)最大并联支路数等于极对数; (2)不能利用短距绕组消除高次谐电势和磁势; (3)线圈数少,绕线和嵌线的工时少; (4)无层间绝缘,下线方便,槽利用率高;
YA Z B
C
X
例 3:Q=36,2P=4,绘制 a=1的三相单层交叉式 绕组展开图。
1、计算绕组参数; 2、画槽电动势星形图,划分相带; 3、连接A相绕组,画A相绕组展开图; 4、画B、C相绕组展开图。
例 4 :Q=24;2P=2;要求绘制三相单层同心式绕组。
18槽2极单层同心式绕组(a=1)
A
B
C
X
Y
Z
24 槽 4 极单层整距绕组
绕组结构参数? y=?τ=? q=? α=?
24槽4极单层整距绕组
三相4极24槽单层整距绕组
两个图的区别? 三相4极24槽单层链式绕组
判断:绕组的结构型式及绕组结构参数
τ
τ
τ
τ
1 2 3 4 5 6 7 8 9 101112131415161718192021222324
同步电机
异步电机
同步电机:多用作发电机,也用作电动机,可改 变电网功率因数。
异步电机:主要用作电动机,只有特殊场合才用 作发电机。
两种类型的交流电机涉及三个共同部分:
◆交流绕组的基本结构 ◆交流绕组中感应的电动势 ◆交流绕组产生的磁动势
5.1 交流电机的基本工作原理
一、同步发电机的基本工作原理
二、异步电动机的基本工作原理
第七章 交流绕组的磁动势

•磁势的v次谐波振幅:
F m 2 F q k p 0 .9 2 qc N k p k d I c 0 .9 2 qc N k N I c
单相脉振磁势的幅值表达式
• 为了统一表示相绕组的磁势,引入每相电 流I1,每相串联匝数N1等概念。
Iy
I1 a
Fp10.9(2qNy)Iykqky
对双层绕组:
2.振幅 合成磁势的振幅为每相脉动磁势振幅的3/2倍。
3.转速 角速度ω=2πf(电弧度/s)
n1=f/p(r/s)=60f/p (r/min)同步转速,基波转速。 4.幅值位置合成磁势的振幅的位置随时间而变化,出现在
ωt-x=0处。当某相电流达到最大值时,旋转磁势的波 幅刚好转到该线绕组的轴线上
5.旋转方向 由超前电流的相转向பைடு நூலகம்后电流的相
之间相差电角度
也相当于分布
sin q
kd1
q sin
2
2
•相当于单层绕组的分布情况
kp1 cos 2
分析:
• 双层绕组磁势的基波振幅:
F m 1 2 F q 1 k p 1 0 . 9 2 q c k p 1 k N d 1 I c 0 . 9 2 q c k N 1 N I c
脉动磁势分解成两个旋转磁势
脉动磁势波的节点和幅值的位置是固定不变的。
基波分量
F m 1 s t s i x n 1 2 i F m 1 c n t o x 1 2 F m 1 c s t o x s
• 在空间按正弦规律分布随时间按正弦规律变化的 脉动磁势可以分解为两个旋转磁势分量
改变旋转磁场转向的方法:调换任意两相电源线(改变 相序)
问题:
1、若额定负载的星形旋转电机突然断了一相,电机会发生什么变化?
F m 2 F q k p 0 .9 2 qc N k p k d I c 0 .9 2 qc N k N I c
单相脉振磁势的幅值表达式
• 为了统一表示相绕组的磁势,引入每相电 流I1,每相串联匝数N1等概念。
Iy
I1 a
Fp10.9(2qNy)Iykqky
对双层绕组:
2.振幅 合成磁势的振幅为每相脉动磁势振幅的3/2倍。
3.转速 角速度ω=2πf(电弧度/s)
n1=f/p(r/s)=60f/p (r/min)同步转速,基波转速。 4.幅值位置合成磁势的振幅的位置随时间而变化,出现在
ωt-x=0处。当某相电流达到最大值时,旋转磁势的波 幅刚好转到该线绕组的轴线上
5.旋转方向 由超前电流的相转向பைடு நூலகம்后电流的相
之间相差电角度
也相当于分布
sin q
kd1
q sin
2
2
•相当于单层绕组的分布情况
kp1 cos 2
分析:
• 双层绕组磁势的基波振幅:
F m 1 2 F q 1 k p 1 0 . 9 2 q c k p 1 k N d 1 I c 0 . 9 2 q c k N 1 N I c
脉动磁势分解成两个旋转磁势
脉动磁势波的节点和幅值的位置是固定不变的。
基波分量
F m 1 s t s i x n 1 2 i F m 1 c n t o x 1 2 F m 1 c s t o x s
• 在空间按正弦规律分布随时间按正弦规律变化的 脉动磁势可以分解为两个旋转磁势分量
改变旋转磁场转向的方法:调换任意两相电源线(改变 相序)
问题:
1、若额定负载的星形旋转电机突然断了一相,电机会发生什么变化?
第六篇 电动势及磁通势

f A1 = F 1 cos φ
• 三相共六个旋转磁势: 三相共六个旋转磁势: 六个旋转磁势
1 1 π π f A1 = F 1 cos(ωt − x) + F 1 cos(ωt + x) φ φ 2 2 τ τ 1 1 π π fB1 = F 1 cos(ωt − x) + F 1 cos(ωt + x −240°) φ φ 2 2 τ τ 1 π 1 π fC1 = F 1 cos(ωt − x) + F 1 cos(ωt + x −120°) φ φ 2 τ 2 τ 2012-1-4
2012-1-4
2
一 交流绕组
三相对称绕组: 三相对称绕组: 对三相电机来说, 对三相电机来说,为了保持电 气上的对称, 气上的对称,每相绕组所占槽数应 该相等、且均匀分布, 该相等、且均匀分布,空间互差 1200电角度,各相绕组参数一样。 电角度,各相绕组参数一样。 作用: 作用: * 通入电流 磁场(电动机) 通入电流→磁场 电动机) 磁场( * 磁场与定子绕组切割 电势 电 磁场与定子绕组切割→电势 电势→电 发电机) 流(发电机)
2012-1-4 4
交流绕组的基本术语 空间电角度与机械角度 机械角度:电机圆周在几何上分 机械角度 电机圆周在几何上分 成360° ° 空间电角度:电机里一对主磁极 空间电角度 电机里一对主磁极 表面所占的空间距离为360°。 表面所占的空间距离为 ° 有: 电角度= × 电角度=p×机械角度 元件: 元件:构成绕组的线圈为绕组的 元件(单匝和多匝) 元件(单匝和多匝)
2012-1-4 5
交流绕组的基本述语 线圈:为单匝或多匝串联, 线圈:为单匝或多匝串联,每个 线圈一个首端、 线圈一个首端、一个末端两个引 出线 相带: 相带:每极面下每相绕组所占范 围(60度) 度 Z • 每极每相槽数: q = 每极每相槽数:
• 三相共六个旋转磁势: 三相共六个旋转磁势: 六个旋转磁势
1 1 π π f A1 = F 1 cos(ωt − x) + F 1 cos(ωt + x) φ φ 2 2 τ τ 1 1 π π fB1 = F 1 cos(ωt − x) + F 1 cos(ωt + x −240°) φ φ 2 2 τ τ 1 π 1 π fC1 = F 1 cos(ωt − x) + F 1 cos(ωt + x −120°) φ φ 2 τ 2 τ 2012-1-4
2012-1-4
2
一 交流绕组
三相对称绕组: 三相对称绕组: 对三相电机来说, 对三相电机来说,为了保持电 气上的对称, 气上的对称,每相绕组所占槽数应 该相等、且均匀分布, 该相等、且均匀分布,空间互差 1200电角度,各相绕组参数一样。 电角度,各相绕组参数一样。 作用: 作用: * 通入电流 磁场(电动机) 通入电流→磁场 电动机) 磁场( * 磁场与定子绕组切割 电势 电 磁场与定子绕组切割→电势 电势→电 发电机) 流(发电机)
2012-1-4 4
交流绕组的基本术语 空间电角度与机械角度 机械角度:电机圆周在几何上分 机械角度 电机圆周在几何上分 成360° ° 空间电角度:电机里一对主磁极 空间电角度 电机里一对主磁极 表面所占的空间距离为360°。 表面所占的空间距离为 ° 有: 电角度= × 电角度=p×机械角度 元件: 元件:构成绕组的线圈为绕组的 元件(单匝和多匝) 元件(单匝和多匝)
2012-1-4 5
交流绕组的基本述语 线圈:为单匝或多匝串联, 线圈:为单匝或多匝串联,每个 线圈一个首端、 线圈一个首端、一个末端两个引 出线 相带: 相带:每极面下每相绕组所占范 围(60度) 度 Z • 每极每相槽数: q = 每极每相槽数:
交流绕组的磁动势

定、转子旋转磁场:
A Z
旋转方向相同
X
转速相等
定、转子旋转磁场在空间保 持相对静止——同步
B
• 3、在产生一定大小的电动势和磁动势,且 保证绝缘性能和机械强度可靠的条件下,尽 量减少用铜量。
• 4、制造工艺简单、检修方便。
C X
B
转子绕组又称励磁绕组,
Y
C
A
X
起励电源
图1.18 自并励系统原理电路图
Z
B
励磁绕组中流过直流电流,产生的磁场称励磁磁场或主极磁场,
相对于转子静止,随转子一起转动,相对于定子转速为转子转速n,
在随转子一起转动的过程中,定子三相绕组感应对称的电动势, 电动势的相序由转子的转向决定, 频率由转速决定, f pn
60
• 1、导体电动势
• 2 、整距线匝电动势 y1= τ
Ec1 2.22 f 1 Et1 4.44 f 1
3、短距线匝电动势有效值y1< τ Et1( y1 ) 4.44k y1 f 1
对于三相绕组,当流过对称的三相电流,将产生一个旋转磁动势
Y A
Z
C X
B
定、转子磁动势之间的关系
转子磁场旋转,
定子三相绕组感应对称的电动势, 电动势的相序由转子的转向决定,
定子三相合成旋转磁场
Y
C
频率由转速决定,
f
pn 60
转向由三相电流的相序和绕组的空
间排列决定,
转速由频率决定,
n
60 f p
对于单相绕组,将产生一个脉振磁动势,
因为采用了短距和分布绕组,其各高 次谐波已被极大的削弱,
该脉振磁动势为,在时间上随电
流同频率脉振,在空间上每一时
交流绕组及其电动势和磁动势

•4.2三相双层绕组
•一、基本概念
•1.线圈(绕组元件):是构成绕组的基本单元。绕组就是线圈 按一定规律的排列和联结。线圈可以区分为多匝线圈和单匝线 圈。与线圈相关的概念包括:有效边;端部;线圈节距等(看 图)
•4.2三相双层绕组 •一、基本概念
•2.极距τ :沿定子铁心内圆每个磁极所占的范围
•3.线圈节距y:一个线圈两个有效边之间所跨过的槽数称为线 圈的节距。用y表示。(看图) •y<τ时,线圈称为短距线圈;y=τ时,线圈称为整距线圈; •y>τ时,线圈称为长距线圈。
4.谐波的弊害
⑴使电动势波形变坏,发电机本身能耗增加 ,η↑,从而影响用电设备的运行性能
• ⑵干扰临近的通讯线路
二、消除谐波电动势的方法
因为EΦv=4.44fυNRwvΦv所以通过减小KWr 或Φr可降低EΦr
1.采用短距绕组 2.采用分布绕组,降低。 3.改善主磁场分布 4.斜曹或斜极
4.5通有正弦交流电时单相绕组的磁动势
• 二、交流绕组的分类 • 按相数分为:单相、三相、多相
• 按槽内层数分为:单层(同心式、链式、交叉 式)、双层(叠绕组、波绕组)、单双层
• 每极每相槽数q:整数槽、分数槽
•4.2三相双层绕组 •双层绕组的主要优点(P113)
•一、基本概念
:
•1.线圈(绕组元件):是构成绕组的基本单元。绕组就是线圈
⑶谐波磁场的槽距角:dγ =γd
⑷谐波磁场的转速:nr = ns主磁极的转速( 同步转速)
⑸谐波感应电动势的频率:fv= pv* nv/60 = vp ns/60=vf1
⑹谐波感应电动势的节距因数kpv ⑺谐波感应电动势的分布因数kdv ⑻谐波感应电动势的绕组因数kwv= kpv kdv ⑼谐波电动势(相值)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2 f c N ci N c I c sin t Fcm sin t 2 2
矩形波磁动势可能分解为基波和一系列高次谐波: 3 f c ( x , t ) Fc1 sin t cos x Fc 3 sin t cos x ... Fc sin t cos x ...
一、单相绕组的脉振磁势
1、整距线圈的磁势
一台两极气隙均匀的交流电机,一个整距 绕组通入交流电流,线圈磁动势在某瞬间的分 布如图,由全电流定律得:
Hdl i N
c
i
忽略铁心磁阻,磁动势完全降落在两 个气隙上.每个气隙的磁动势为:
空间分布为矩形波,随时间按正弦规律变 化.变化频率为电流频率。 空间位置不变而幅值和方向随时间变化的磁动势称为脉动磁 动势。
(2)短距线圈组磁势
图中,给出了一个 q 3, 9, y 8 的双层短距绕组 在一对极下的属于同一相两个线圈组。可见,上下层导 体移开一个距离 ,即节距缩短而对应的电角度。
由于绕组所建立的 磁势的大小和波形 只取决于导体的分 布情况和导体中电 流的方向,而与导 体间的连接次序无 关。因此可将上层 绕组边等效的看成 一个单层整距分布 线圈组;下层绕组 边等效的看成另一 个单层整距分布线 圈组,而上下两个 线圈组在空间上相 差 电角度。
(3)单相绕组脉振磁势
每个极下的磁动势和磁阻构成一条分支磁路。若电机有p 对磁极,就有p条并联的对称分支磁路,所以一相绕组的基波 磁动势就是该绕组在一对磁极下线圈所产生的基波磁动势,若 每相电流为Ip:
Nkw 1 f p1 (x,t) Fp1 sin t cos x 0.9 I p sin t cos x p
不难看出,求整距线圈组合成磁势的方法与求线圈组电 势的方法相同,同样要引入一个基波分布系数kq1,相当 于由于线圈分布而造成的基波磁势的折扣系数。于是得 到整距线圈组基波磁势的最大幅值为:
Fqm1 qFcm1kq1 0.9(qNC I C )Kq1
式中基波分布系数:
k q1 q个线圈磁势矢量和 Fq1 2 2 q个线圈磁势代数和 qFC1 q 2 R sin q sin 2 2 2 R sin q sin q
每个线圈组是由若干个节距相等,匝数相同,依次 沿定子圆周错开同一角度(通常为一槽距角)的线 圈串联而成,下面按整距线圈组和短距线圈组两种 情况分别分析线圈组的磁势。
(1)整距线圈组磁势
以q=3的整距线圈组为 例。 每个线圈磁势大小相 等,不同的仅是各个 线圈在空间相隔 电 角度。所以q个线圈组 成线圈组时,把q个线 圈的基波磁势逐点相 加,可得合成磁势, 如图(a)。可见合成 磁势并不等于每个线 圈磁势的q倍,而是等 于个线圈磁势的矢量 和,如图(b)。
Fp1 2 Fq1k y1 0.9( 2 qNc ) k y1kq1 Ic
综合以上分析,绕组采用短距和分布后,其磁势 较整距和集中放置有所改变。 ①分布系数可理解为绕组分布排列后所形成的磁势 较集中排列时应打的折扣; ②短距系数表示线圈采用短距后所形成的磁势较整 距时应打的折扣; ③采用分布和短距后,可大大削弱谐波的影响,从 而改善磁势波形。
f c1 ( x , t ) Fc1 sin t cos x 基波磁动势最大值为:
Fc1 4
基波磁动势为:
2 N c I c 0.9 N c I c 2
整距绕组基波磁动势在空间按余弦分布,幅值位于绕组轴线, 空间每一点的磁动势大小按正弦规律变化——仍然为脉动磁动势。
2、线圈组的磁势
如图(a),每个线圈组都可用求整距线圈组磁势的方法求得其 基波磁势。如图(b)(c),短距分布线圈组的磁势,可如同求 电势一样引入短距系数来计入由于线圈短距对基波磁势的影响。
பைடு நூலகம்
于是,双层短距分布线圈组基波磁势的最大幅值为:
Fm1 2Fqm1k y1 2(0.9qNC IC )Kq1k y1 0.9(2qNC )KW1IC
即一个脉动磁动势可以分解成两个幅值大小相等的磁动势。
1 先分析 f ( x , t ) F p1 sin( t x ) 2
p1
取幅值点分析 t x 2 t 0时 , x ; 2 2 t 时 , x 0 ; 2 t 时 , x ; 2 2
第三节 交流绕组的磁势
在对称三相交流绕组中通入对称三相交流 电流时,会建立旋转磁场,旋转磁场对电 机的能量转换和运行性能都有很大的影响。 本节讨论三相旋转磁势的性质、大小和分 布情况。 为了分析三相绕组的旋转磁势,首先分析 单相绕组的磁势。
一、单相绕组的脉振磁势 二、三相绕组的基波合成磁势
单相绕组的基波磁动势是在空间按余弦规律分布, 幅值大小随时间按正弦规律变化的脉动磁动势。
单相脉动磁势分解:
1 1 f p1 (x,t) Fp1 sin t cos x Fp1 sin( t x) Fp1 sin( t x) 2 2 = f p+1 (x,t)+ f p-1 (x,t)
y1 0 K sin 90 其中: y1
(短距系数)
KW 1 K y1 K q1
(绕组系数 )
总结:
整距分布绕组的磁动势:
每个绕组由q 个线圈串联构成,依次在定子圆周空间错开 槽距角α,绕组的基波磁动势为q个线圈基波磁动势的空间矢量 和: Fq1 qFc1kq1
一组双层短距分布绕组的基波磁动势: 双层短距分布绕组的基波磁动势为两个等效绕组基波磁动 势的相量和,用短距系数计及绕组短距的影响:
f p1(x,t)
2
2
x
动画显示
综上分析
( 1 )随 着 时 间 推 移 f p1 ( x , t )朝x轴 正 方 向 移 动 , 故f p1 ( x , t )称 为 正 向旋转磁动势 。