大学物理C知识点

合集下载

大学物理C基本概念和规律总结

大学物理C基本概念和规律总结

热学基本概念和规律物理常数考试会给,玻尔兹曼常数k =1.38×10-23 J/K 气体摩尔常数R =8.31 J/(mol•K ) 摄氏温标和热力学温标的换算273+=t T ,热学所有公式都必须使用热力学温标。

一、理想气体状态方程:(平衡态下)二、压强、温度的统计意义:三、能量均分定理:四 五、等体摩尔热容六、热力学第一定律因为理想气体内能只随温度变化,所以任何过程理想气体的内能改变都可以使用 等体过程等压过程等温过程 +系统吸热 系统放热内能增加 内能减少系统对外界做功 外界对系统做功QWE∆22211 T VP T V P RT pV ==是摩尔数νν平均平动动能是分子数密度理想气体的压强---=k kn n p εε32是分子速率是单个分子的质量,v m kT v m k 23212==ε5 3 21==i i i kT 双原子分子常温下单原子分子为理想气体的自由度,的能量一个自由度均分到单个理想气体分子的每是摩尔数理想气体的内能ννRT i E 2=)(2212T T R iT R i E -=∆=∆νν理想气体内能的改变R i C V 2=R R iC p +=2等压摩尔热容R C R C R C R C P V P V 2725 2523 ====理想气体双原子分子理想气体单原子分子E Q T C E W V ∆=∆=∆=ν0)(12V V p W -=T C p ∆=νW E Q +∆=TC E V ∆=∆ν12ln 0V VRT W Q E ν===∆E W Q ∆+=TC E V ∆=∆ν根据理想气体状态方程可得到解题的一个常用变换112212)(V P V P T T R -=-ν七、循环过程和效率卡诺热机效率八、三种统计速率方均根速率 最概然速率 平均速率,M 表示摩尔质量表示总放热。

表示总吸热,。

也等于总吸热减总放热图里的面积净功,它等于循环表示循环过程中所做的,热机效率21121211,1Q Q W Q Q Q Q Q Q W -=-==η表示低温热源的温度。

大学物理C

大学物理C

大学物理C 复习参考一、力学选择题1一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ ] 2 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t = d /d v , (2) v =t r d /d , (3) v =t S d /d , (4) t a t =d /d v .(A) 只有(1)、(4)是对的.(B) 只有(2)、(4)是对的.(C) 只有(2)是对的.(D) 只有(3)是对的. [ ]3某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是 (A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ ] 4质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)(A) td d v . (B) . (C) R t 2d d v v +. (D) 2/1242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R t v v . [ ] 5水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F 如图所示.欲使物体A 有最大加速度,则恒力F 与水平方向夹角θ 应满足(A) sin θ =μ. (B) cos θ =μ.(C) tg θ =μ. (D) ctg θ =μ. [ ] 6 质量为m 的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k ,k 为正值常量.该下落物体的收尾速度(即最后物体作匀速运动时的速度)将是 (A)k mg . (B) kg 2 . (C) gk . (D) gk . [ ] 7一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍和原来一样远. (D) 条件不足,不能判定. [ ]8质量分别为m 和4m 的两个质点分别以动能E 和4E 沿一直线相向运动,它们的总动量大小为 (A) 2mE 2 (B) mE 23.(C) mE 25. (D) mE 2)122(- [ ]9 一个作直线运动的物体,其速度v 与时间t 的关系曲线如图所示.设时刻t 1至t 2间外力作功为W 1 ;时刻t 2至t 3间外力作功为W 2 ;时刻t 3至t 4间外力作功为W 3 ,则(A) W 1>0,W 2<0,W 3<0.(B) W 1>0,W 2<0,W 3>0.(C) W 1=0,W 2<0,W 3>0. (D) W 1=0,W 2<0,W 3<0 [ ]10 质量为m =0.5 kg 的质点,在Oxy 坐标平面内运动,其运动方程为x =5t ,y =0.5t 2(SI ),从t =2 s 到t =4 s 这段时间内,外力对质点作的功为(A) 1.5 J . (B) 3 J .(C) 4.5 J .(D) -1.5 J . [ ]11 质量为m 的质点在外力作用下,其运动方程为 j t B i t A r ωωsin cos +=式中A 、B 、ω都是正的常量.由此可知外力在t =0到t =π/(2ω)这段时间内所作的功为(A) )(21222B A m +ω (B) )(222B A m +ω (C) )(21222B A m -ω(D) )(21222A B m -ω [ ] 12 已知两个物体A 和B 的质量以及它们的速率都不相同,若物体A 的动量在数值上比物体B 的大,则A 的动能E KA 与B 的动能E KB 之间(A) E KB 一定大于E KA . (B) E KB 一定小于E KA .(C) E KB =E KA . (D) 不能判定谁大谁小. [ ]13 A 、B 两物体的动量相等,而m A <m B ,则A 、B 两物体的动能(A) E KA <E K B . (B) E KA >E KB .(C) E KA =E K B . (D) 孰大孰小无法确定. [ ]14 一质点在力F = 5m (5 - 2t ) (SI)的作用下,t =0时从静止开始作直线运动,式中m 为质点的质量,t 为时间,则当t = 5 s 时,质点的速率为(A) 50 m ·s -1. . (B) 25 m ·s -1.(C) 0.(D) -50 m ·s -1. [ ]15 一质量为60 kg 的人起初站在一条质量为300 kg ,且正以2 m/s 的速率向湖岸驶近的小木船上,湖水是静止的,其阻力不计.现在人相对于船以一水平速率v 沿船的前进方向向河岸跳去,该人起跳后,船速减为原来的一半,v 应为(A) 2 m/s . (B) 3 m/s .(C) 5 m/s . (D) 6 m/s . [ ]16 在由两个物体组成的系统不受外力作用而发生非弹性碰撞的过程中,系统的(A) 动能和动量都守恒. (B) 动能和动量都不守恒. t(C) 动能不守恒,动量守恒. (D) 动能守恒,动量不守恒. [ ]17 一子弹以水平速度v 0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加. [ ]18 假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的(A) 角动量守恒,动能也守恒.(B) 角动量守恒,动能不守恒.(C) 角动量不守恒,动能守恒.(D) 角动量不守恒,动量也不守恒.(E) 角动量守恒,动量也守恒. [ ]19 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]20一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. [ ] 21 一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A) 不变. (B) 变小.(C) 变大. (D) 如何变化无法判断. [ ]22 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为 (A) 31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. [ ] 23 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒.(B) 机械能守恒.(C) 对转轴的角动量守恒.(D) 动量、机械能和角动量都守恒.(E) 动量、机械能和角动量都不守恒. [ ]24 质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为19 20(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针. [ ] 25 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]一.答案:1-5 DDCDC6-10 AABCB11-15 CDBCD16-20 CBAAC21-25 CDCAC二.波1.机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播.2.一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则(A) O 点的振幅为-0.1 m .(B) 波长为3 m . (C) a 、b 两点间相位差为π21 . (D) 波速为9 m/s .3. 已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则(A) 波的频率为a . (B) 波的传播速度为 b/a .(C) 波长为 π / b . (D) 波的周期为2π / a .4. 横波以波速u 沿x 轴负方向传播.t 时刻波形曲线如图.则该时刻 (A) A 点振动速度大于零. (B) B 点静止不动.(C) C 点向下运动. (D) D 点振动速度小于零.5. 若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则(A) 波速为C . (B) 周期为1/B .(C) 波长为 2π /C . (D) 角频率为2π /B .6. 在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定 (A) 大小相同,而方向相反. (B) 大小和方向均相同.(C) 大小不同,方向相同. (D) 大小不同,而方向相反.7. 一横波沿绳子传播时, 波的表达式为 )104cos(05.0t x y π-π= (SI),则(A) 其波长为0.5 m . (B) 波速为5 m/s .(C) 波速为25 m/s . (D) 频率为2 Hz .8.频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为π31,则此两点相距(A) 2.86 m . (B) 2.19 m .(C) 0.5 m . (D) 0.25 m .9. 如图所示,一平面简谐波沿x 轴正向传播,已知P 点的振动方程为)cos(0φω+=t A y ,则波的表达式为(A) }]/)([cos{0φω+--=u l x t A y . (B) })]/([cos{0φω+-=u x t A y . (C) )/(cos u x t A y -=ω. (D) }]/)([cos{0φω+-+=u l x t A y .10. 图示一简谐波在t = 0时刻的波形图,波速 u = 200m/s ,则P 处质点的振动速度表达式为 (A) )2cos(2.0π-ππ-=t v (SI).(B) )cos(2.0π-ππ-=t v (SI). (C) )2/2cos(2.0π-ππ=t v (SI). (D) )2/3cos(2.0π-ππ=t v (SI).11. 一平面简谐波的表达式为 )/(2cos λνx t A y -π=.在t = 1 /ν 时刻,x 1 = 3λ /4与x 2= λ /4二点处质元速度之比是(A) -1. (B) 31. (C) 1. (D) 312.一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是(A) 动能为零,势能最大. (B) 动能为零,势能为零.(C) 动能最大,势能最大. (D) 动能最大,势能为零.13. 一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处,则它的能量是(A) 动能为零,势能最大. (B) 动能为零,势能为零.(C) 动能最大,势能最大. (D) 动能最大,势能为零.14. 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A) 它的动能转换成势能.(B) 它的势能转换成动能.(C) 它从相邻的一段质元获得能量其能量逐渐增大.(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小.15. 图示一平面简谐机械波在t 时刻的波形曲线.若此时A 点处媒质质元的振动动能在增大,则(A) A 点处质元的弹性势能在减小. (B) 波沿x 轴负方向传播.(C) B 点处质元的振动动能在减小.(D) 各点的波的能量密度都不随时间变化.16. 如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12. (B) π=-k 212φφ. (C) π=-π+-k r r 2/)(21212λφφ.(D) π=-π+-k r r 2/)(22112λφφ.17. 在波长为λ 的驻波中两个相邻波节之间的距离为(A) λ . (B) 3λ /4.(C) λ /2. (D) λ /4.二.答案1B 2C 3D 4D 5C 6A 7A 8C 9A 10A11A 12C 13B 14D 15B 16D 17C三、电场和磁场1. 在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为:(A) 2012a Q επ. (B) 206a Q επ. (C) 203a Q επ. (D) 20aQ επ.2. 一电场强度为E 的均匀电场,E 的方向与沿x 轴正向,如图所示.则通过图中一半径为R 的半球面的电场强度通量为(A) πR 2E . (B) πR 2E / 2.(C) 2πR 2E .(D) 0.3. 有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A) 03εq . (B)4επq(C) 03επq . (D) 06εq4. 半径为R 的均匀带电球面的静电场中各点的电场强度的大小E 与距球心的距离r 之间的关系曲线为:5. 静电场中某点电势的数值等于(A)试验电荷q 0置于该点时具有的电势能.(B)单位试验电荷置于该点时具有的电势能.(C)单位正电荷置于该点时具有的电势能.(B) 把单位正电荷从该点移到电势零点外力所作的功6. 在点电荷+q 的电场中,若取图中P 点处为电势零点 ,则M 点的电势为(A) a q 04επ. (B) aq 08επ. (C) a q 04επ-. (D) a q 08επ-.7. 如图所示,边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O 处的场强值和电势值都等于零,则:(A) 顶点a 、b 、c 、d 处都是正电荷. (B) 顶点a 、b 处是正电荷,c 、d 处是负电荷. (C) 顶点a 、c 处是正电荷,b 、d 处是负电荷. (D) 顶点a 、b 、c 、d 处都是负电荷.8. 如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E =0,rQ U 04επ=. (B) E =0,R Q U 04επ=. q E O r (D) E ∝1/r 2b a(C) 204r Q E επ=,rQ U 04επ= . (D) 204r Q E επ=,R Q U 04επ=.9. 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出: (A) E A >E B >E C ,U A >U B >U C . (B) E A <E B <E C ,U A <U B <U C .(C) E A >E B >E C ,U A <U B <U C .(D) E A <E B <E C ,U A >U B >U C .10. 一带正电荷的物体M ,靠近一原不带电的金属导体N ,N 的左端感生出负电荷,右端感生出正电荷.若将N 的左端接地,如图所示,则(A) N 上有负电荷入地.(B) N 上有正电荷入地.(C ) N 上的电荷不动.(D) N 上所有电荷都入地.11. 图示一均匀带电球体,总电荷为+Q ,其外部同心地罩一内、外半径分别为r 1、r 2的金属球壳.设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为:(A) 204r Q E επ=,rQ U 04επ=. (B) 0=E , 104r Q U επ= (C) 0=E ,rQ U 04επ=. (D) 0=E ,204r Q U επ=.12. 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大.(C) 两球电容值相等. (D) 大小关系无法确定.13. 一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U 12、电场强度的大小E 、电场能量W 将发生如下变化:(A) U 12减小,E 减小,W 减小.(B) U 12增大,E 增大,W 增大.(C) U 12增大,E 不变,W 增大.(D) U 12减小,E 不变,W 不变.14. 真空中有“孤立的”均匀带电球体和一均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是(A) 球体的静电能等于球面的静电能.(B) 球体的静电能大于球面的静电能.(C) 球体的静电能小于球面的静电能.(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能.15. 如图,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为(A) B1 = B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2. (D) B 1= B 2 /4.16. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为(A)l I π420μ. (B) l I π220μ. (C) l I π02μ. (D) 以上均不对.17. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:(A) B P > B Q >B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P .18. 在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为(A) R 140πμ. (B) R120πμ.(C) 0. (D) R 140μ.19. 如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的? (A) I l H L 2d 1=⎰⋅ . (B)I l H L =⎰⋅2d (C) I l H L -=⎰⋅3d . (D)I l H L -=⎰⋅4d .20. 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2.(C) 正比于B ,反比于v . (D) 反比于B ,反比于v . C q421. 四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为 (A) I a B π=02μ. (B) I aB 2π=02μ. (C) B = 0. (D) I a B π=0μ.22. 无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于(A) R Iπ20μ. (B) RI 40μ. (C) 0. (D) )11(20π-R I μ. (E) )11(40π+R I μ.23. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R = 2r ,则两螺线管中的磁感强度大小B R 和B r 应满足:(A) B R = 2 B r . (B) B R = B r .(C) 2B R = B r . (D) B R = 4 B r .三.答案1. C2. D3. D4. B5. C6. D7. C8. B9. D 10. B11. D 12. C 13. C 14. B 15. C 16. A 17. D 18. D 19. D 20. B 21 C 22. D 23. B四、电磁感应I1. 如图所示,一矩形金属线框,以速度v 从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)2. 两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则:(A) 线圈中无感应电流. (B) 线圈中感应电流为顺时针方向.(C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定.3. 一块铜板垂直于磁场方向放在磁感强度正在增大的磁场中时,铜板中出现的涡流(感应电流)将(A) 加速铜板中磁场的增加. (B) 减缓铜板中磁场的增加.(C) 对磁场不起作用. (D) 使铜板中磁场反向.4. 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是(A) 线圈绕自身直径轴转动,轴与磁场方向平行.(B) 线圈绕自身直径轴转动,轴与磁场方向垂直.(C) 线圈平面垂直于磁场并沿垂直磁场方向平移.(D) 线圈平面平行于磁场并沿垂直磁场方向平移.5. 半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与B 的夹角 =60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是(A) 与线圈面积成正比,与时间无关.(B) 与线圈面积成正比,与时间成正比.(C) 与线圈面积成反比,与时间成正比.(D) 与线圈面积成反比,与时间无关.6. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势.(B) 铜环中感应电动势大,木环中感应电动势小.(C) 铜环中感应电动势小,木环中感应电动势大.(D) 两环中感应电动势相等.B I O(D)IO(C)O (B)II7. 在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流 (A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大.(C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. [ ]8. 在两个永久磁极中间放置一圆形线圈,线圈的大小和磁极大小约相等,线圈平面和磁场方向垂直.今欲使线圈中产生逆时针方向(俯视)的瞬时感应电流i (如图),可选择下列哪一个方法?(A) 把线圈在自身平面内绕圆心旋转一个小角度. (B) 把线圈绕通过其直径的OO ′轴转一个小角度. (C) 把线圈向上平移.(D) 把线圈向右平移.9. 一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B 中,另一半位于磁场之外,如图所示.磁场B 的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使 (A) 线环向右平移. (B) 线环向上平移.(C) 线环向左平移. (D) 磁场强度减弱.10. 如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到?(A) 载流螺线管向线圈靠近.(B) 载流螺线管离开线圈.(C) 载流螺线管中电流增大. (D) 载流螺线管中插入铁芯.11. 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度ω旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为(A) 2abB | cos ω t |. (B) ω abB(C)t abB ωωcos 21. (D) ω abB | cos ω t |. (E) ω abB | sin ω t |.12. 如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω 与B 同方向),BC 的长度为棒长的31,则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等.(B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点.b c d b c d bc d v v v ⅠⅢⅡ I O ′S N O iBi I O B a b ωO O ′ B B A C13. 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v移动,直导线ab 中的电动势为(A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. 14. 如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势E 和a 、c 两点间的电势差U a – U c 为 (A) E =0,U a – U c =221l B ω. (B) E =0,U a – U c =221l B ω-. (C) E =2l B ω,U a – U c =221l B ω. (D) E =2l B ω,U a – U c =221l B ω-. 15.圆铜盘水平放置在均匀磁场中,B 的方向垂直盘面向上.当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时,(A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动.(B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动.(C) 铜盘上产生涡流.(D) 铜盘上有感应电动势产生,铜盘边缘处电势最高.(E) 铜盘上有感应电动势产生,铜盘中心处电势最高.16. 一根长度为L 的铜棒,在均匀磁场 B 中以匀角速度ω绕通过其一端O 的定轴旋转着,B 的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是: (A) )cos(2θωω+t B L . (B) t B L ωωcos 212. (C) )cos(22θωω+t B L . (D) B L 2ω.(F) B L 221ω.17. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向使(A) 两线圈平面都平行于两圆心连线.(B) 两线圈平面都垂直于两圆心连线.(C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线.(C) 两线圈中电流方向相反.18. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向使(A) 两线圈平面都平行于两圆心连线.l b a v α B a bc l ω BOB ω L O θ b(B) 两线圈平面都垂直于两圆心连线.(C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线.(D) 两线圈中电流方向相反.19. 用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m = (A) 只适用于无限长密绕螺线管.(B) 只适用于单匝圆线圈.(C) 只适用于一个匝数很多,且密绕的螺绕环.(E) 适用于自感系数L一定的任意线圈.20. 两根很长的平行直导线,其间距离d 、与电源组成回路如图.已知导线上的电流为I ,两根导线的横截面的半径均为r 0.设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间内的总磁能W m 为(A)221LI . (B) 221LI ⎰∞+π-+0d π2])(2π2[2002r r r r d I r I I μμ (C) ∞.(D) 221LI 020ln 2r d I π+μ21. 真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 200)2(21aI πμμ (B) 200)2(21a I πμμ (C) 20)2(21Ia μπ (D) 200)2(21a I μμ四.答案1C 2B 3B4B5A 6D7B8C9C10B11D12 A13D14 B15 D16 E17C 18C19D 20A21B五、波动光学1. 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为(A) 1.5 λ. (B) 1.5 λ/ n .(C) 1.5 n λ. (D) 3 λ.2. 单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如图所示,若薄膜的厚度为e ,且n 1<n 2>n 3,λ1为入射光在n 1中的波长,则两束反射光的光程差为 (A) 2n 2e . (B) 2n 2 e - λ1 / (2n 1). (C) 2n 2 e - n 1 λ1 / 2. (D) 2n 2 e - n 2 λ1 / 2.n 1n 23入射光反射光1反射光2eI I d 2r 03. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等.(B) 传播的路程相等,走过的光程不相等.(C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等.4. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处(A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹.5. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.6. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝S 2盖住,并在S 1 S 2连线的垂直平分面处放一高折射率介质反射面M ,如图所示,则此时 (A) P 点处仍为明条纹. (B) P 点处为暗条纹.(C) 不能确定P 点处是明条纹还是暗条纹.(D) 无干涉条纹.7. 在双缝干涉实验中,光的波长为600 nm (1 nm =10-9 m ),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm . (B) 0.9 mm .(C) 1.2 mm (D) 3.1 mm .8. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处(A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹.9. 在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为 (A) 全明. (B) 全暗. (C) 右半部明,左半部暗. (D) 右半部暗,左半部明.10. 一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ).图中数字为各处的折射11. 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹(A) 中心暗斑变成亮斑. (B) 变疏.(C) 变密. (D) 间距不变.12. 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分(A) 凸起,且高度为λ / 4.(B) 凸起,且高度为λ / 2. (C) 凹陷,且深度为λ / 2. (D) 凹陷,且深度为λ / 4.13. 如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A) 向右平移. (B) 向中心收缩.(C) 向外扩张. (D) 静止不动. (E) 向左平移.14. 在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n -1 ) d . (B) 2nd .(C) 2 ( n -1 ) d +λ / 2. (D) nd .(F) ( n -1 ) d .15. 在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2 个. (B) 4 个.(C) 6 个. (D) 8 个.16. 一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 (A) λ / 2.(B) λ.(C) 3λ / 2 . (D) 2λ .17. 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A) 振动振幅之和. (B) 光强之和.(C) 振动振幅之和的平方. (D) 振动的相干叠加.18. 波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为θ=±π / 6,则缝宽的大小为(A) λ / 2. (B) λ.。

《大学物理C》考试大纲(整理)

《大学物理C》考试大纲(整理)

《大学物理C》考试大纲第1部分力学第1章力学基本定律1.掌握运用运动方程确定质点的位置、位移、速度和加速度的方法,以及已知质点运动的加速度和初始条件求速度、运动方程的方法。

2.综合运用动量守恒和能量守恒处理物理问题(包括变力作功的计算,动能定理应用、功能原理的应用,势能、机械能的概念,动量定理和动量守恒定律的应用)。

3.掌握刚体的定轴转动中角量与线量的关系及转动定律。

4.综合运用角动量守恒及能量守恒分析问题。

第2章振动和波5.掌握简谐振动的描述、三个特征量的确定;掌握用解析法、旋转矢量法及图形法分析物体的谐振动状态。

6.掌握同方向同频率简谐振动的合成。

7.掌握平面简谐波的波动方程(波函数的的建立、各物理量的确定和物理意义)。

8.掌握波的叠加原理,波的干涉,理解波的干涉的相位差和波程差条件。

第2部分热学第4章气体动理论9.理解理想气体压强的统计意义,温度的本质和统计意义。

10.理解能量按自由度均分定理,理想气体内能。

第5章热力学12.熟练掌握热力学第一定律在等容过程、等压过程、等温过程及绝热过程中的应用。

13.理解循环过程,掌握热机效率的计算。

14.理解热力学过程的方向性,热力学第二定律的表述。

第3部分电磁学第6章静电场16.掌握电场强度的计算(主要是点电荷系电场强度的计算及简单连续带电体场强的计算)。

17.掌握高斯定理及应用(理解电通量的概念,能用高斯定理求解特殊面的电通量,能记住高斯定理分析几种特殊带电体的场强结果,不要求掌握求解过程)18.理解电势能、电势、电势差的概念,掌握静电场的环路定理,熟练掌握点电荷系电势的计算,能理解电场力作功与电势差的关系。

第7章恒定磁场20. 理解毕奥-沙伐定律、磁场中的高斯定理;熟练掌握用毕奥-沙伐定律定律和叠加原理计算一些特殊电流的磁感应强度。

21.掌握安培环路定律及应用(掌握思想,记住几种特殊电流的磁感应强度,不考虑计算磁感应强度)。

22.掌握安培力的计算;了解霍尔效应。

大学物理C练习题

大学物理C练习题

大学物理C练习题(.)————————————————————————————————作者: ————————————————————————————————日期:ﻩ大学物理C练习题电磁学——静电场部分一、基本内容:1. 静电场的概念;电场强度的定义,点电荷的场强公式及其叠加原理。

2. 静电场的高斯定理及环路定理的意义(分别表明静电场属于有源场和保守场)。

3. 应用高斯定理求场强分布。

(注意应用条件) 4. 电场线概念及其性质。

5. 静电势能的概念。

6. 电势的定义;点电荷的电势公式及其叠加原理。

7. 利用定义式求带电体的电势、电势差。

8. 等势面概念及其性质;场强与电势的关系。

二、练习题:1. 若静电场E 由电荷Q 所产生,试验电荷为0q 。

当用电场强度的定义式0q FE=确定E时,对电荷Q和0q 的要求是 ( C )A 、Q 和0q 都必须是点电荷;B 、Q为任意电荷,0q 必须是正点电荷;C 、Q 为任意电荷,0q 必须是点电荷;D 、Q 为任意电荷,0q 必须是单位正电荷。

2. 关于电场强度定义式0q F E=,下列说法中错误的是 ( D )A 、电场强度E的大小可由0q F确定;B 、电场中某一点试验电荷受到的电场力F与试验电荷量0q 的比值和0q 无关;C 、F是作用在0q 的电场力;D 、若电场中不存在试验电荷,则电场力0=F ,从而电场强度0=E。

3. 有一电荷面密度为σ的均匀带电球面,若面内电场强度处处为零,则球面上的某一带电量dS σ的面元在球面内产生的电场强度 ( B )A、处处为零; B、一定不为零; C 、不一定为零; D、是常数。

4. 关于静电场的高斯定理0ε∑⎰=⋅i Sq S d E,下列说法中哪个是正确的?( A )A 、积分式中的E是由高斯面内、外所有电荷共同激发的;B 、积分式中的E是由高斯面内电荷所激发的; C 、式中∑iq 是空间所有电荷的代数和;D 、该定理仅适用于具有对称性的某种静电场。

大学物理c知识点总结大一

大学物理c知识点总结大一

大学物理c知识点总结大一大学物理是大一学生所学习的一门重要的必修课程,对于培养学生的科学思维和理论基础具有重要意义。

下面将对大学物理C 课程的知识点进行总结,帮助大家更好地理解和掌握这门课程。

1. 运动学运动学是物理学的基础,它主要研究物体的位置、速度和加速度之间的关系。

大一学生在学习运动学时需要掌握以下几个重要的知识点:- 位移、速度、加速度的概念及其相互关系;- 直线运动和曲线运动的区别和特点;- 平均速度和瞬时速度的概念及其计算方法;- 匀速直线运动和加速直线运动的表示方法和运动规律。

2. 牛顿运动定律牛顿运动定律是描述物体运动状态的基本定律,它包括三个基本定律:- 牛顿第一定律:惯性定律,物体在没有外力作用下保持匀速直线运动或静止的状态;- 牛顿第二定律:物体的加速度与物体所受合外力成正比,与物体的质量成反比;- 牛顿第三定律:作用力与反作用力,大小相等、方向相反、作用在不同的物体上。

3. 力学力学是研究物体力和运动的学科,主要包括静力学和动力学两个部分。

- 静力学:研究物体在静止状态下受力平衡的情况,重点掌握平衡条件的判断和应用;- 动力学:研究物体在运动状态下受力情况,包括匀速直线运动、斜抛运动、圆周运动等,需要深入理解受力分析和运动规律。

4. 动能和功动能和功是描述物体运动和相互作用的重要概念。

- 动能:物体由于运动而具有的能量,包括动能定理和动能公式;- 功:力对位移所做的功,可以是正功也可以是负功,功率是描述功率变化率的指标。

5. 质点系和刚体质点系和刚体是研究多个物体之间相互作用的理论模型。

- 质点系:由多个质点组成的物体系统,研究质点之间的运动和相互作用;- 刚体:形状和大小不随外力变化的物体,研究刚体的平衡、运动和相互作用。

6. 弹性和弹性力弹性和弹性力是研究物体形变和恢复过程的重要概念。

- 弹性:物体在受到外力作用时能够发生形变,一旦外力消失,则恢复到原来的形状;- 弹性力:恢复物体形变的力,包括胡克定律和应变能的计算。

大学物理c 复习题

大学物理c 复习题

大 学 物 理 C 复 习 题一、选择题:1、以下四种运动形式中,a 保持不变的运动为[ D ] (A) 单摆的运动 (B) 匀速圆周运动 (C) 变加直线运动 (D) 抛体运动2、在经典力学中,下列哪个说法是错误的[ D ](A) 质点的位置、速度、加速度都是矢量 (B) 刚体定轴转动的转动惯量是标量 (C) 质点运动的总机械能是标量 (D) 刚体转动的角速度是标量3、一均匀的细圆环质量为m ,半径为R ,对过环中心且与环面垂直的轴转动的惯量为[ A ] (A) 2/2mR (B) 4/2mR (C) 2mR (D) 必须用实验才能测定 4、当质点以频率ν,作简谐振动时,它的动能变化频率为 [ B ] (A) ν (B) 2ν (C) 4ν (D)ν215、如图一所示,一简谐振动曲线如图所示,则振动周期试[B ] (A) 2.62s (B) 2.40s (C) 2.20s (D) 2.00s6、弹簧振子做简谐振动时如果振幅增为原来的两倍,而频率减少为原来的一半,他的总能量[ B ](A) 减少为原来的一半; (B) 不变;(C) 增为原来的两倍; (D) 增为原来的四倍; 7、根据电场强度的定义式 E =F /q 可知:[ C ] (A) E 正比于F ,反比于q 。

(B) 如果电场中某一点处没有试验电荷,则该点的电场强度就等于零。

(C) 和试验电荷的有无没有任何关系。

8、静电场的环路定理0=⋅⎰Ll d E 说明静电场的性质 [ B ](A) 电场线不是闭合曲线 (B) 电场力是保守力 (C) 静电场是有源场9、当机械振动在弹性介质中传播时,组成弹性介质的每一个质点:[ B ] (A) 和振动状态的传播一起流动。

(B) 只在各自的平衡位置附近作振动。

(C) 边流动边振动10、利用惠更斯原理可以确定: [ A ](A) 任意时刻波的传播方向。

(B) 沿任意方向传播的光的强度。

(C) 沿任意方向传播的光的能量。

大学物理-第十一章静磁学C

大学物理-第十一章静磁学C
34
例11-24 图示为三种不同的磁介
质的B~H关系曲线,其中虚线表示 B
a
的是B=oH的关系。a、b、c各代
表哪一类磁介质的B~H关系曲线:
b
a代表铁磁质 的B~H关系曲线。
c
b代表顺磁质 的B~H关系曲线。
H
c代表抗磁质 的B~H关系曲线。
抗磁质和顺磁质的B和H间是线性关系, 相对磁导率r
与1相差不大。在一般性(精度要求不高)的问题中,可
χmH
其中m叫磁介质的磁化率。
由:
H
B
M
μo
得: B 0 (H M ) 0 (1 m )H
可证明1+m=r相对磁导率, or= 磁导率, 则
B μ0 μr H μH
21
磁场强度
真正有物理意义的, 对磁场中的运动电荷或 电流有力的作用的是B而不是H, 磁学中H仅 是一个辅助量, 相当于电学中的D,由于历史
M
dL
I
dt
dL Mdt
dL垂直于磁矩和磁场构成的平面,在虚线的圆周上, 绕磁场转动。
7
因此抗磁质中
B
B0
B
B0
这是抗磁性的重要表现。
(2)顺磁质:
pm Δpm pm 0 称为取向磁化。
分子的固有磁矩pm产生的附加磁场B´的方向总是 与外磁场Bo的方向相同, 因此顺磁质中
求解思路
选高斯面
(2)由
求 (3)由
(2)由
D dS
s
q0
(S内)

D E
D
(3)由
0 r
H dl l
I o内
H
B 0rH 求 B
求E
24

大学物理C复习

大学物理C复习

《大学物理》自习练习题流体力学一、选择题1、关于粘滞系数,下列说法正确的是 [ D ] (A)对于液体,温度越低,粘滞系数越小,内摩擦力越小 (B)对于液体,温度越高,粘滞系数越大,内摩擦力越小 (C)对于气体,温度越高,粘滞系数越大,内摩擦力越小 (D)对于气体,温度越高,粘滞系数越大,内摩擦力越大2、如图所示,金属框架的A 、B 间系一个棉线圈,先使布满肥皂膜,然后将P 和Q 两部分肥皂膜刺破后,线的形状将如图(b)中的 [ C ]3、两根材料相同的毛细管插入同一液体中,液面上升高度比为H 1:H 2= 1﹕2,两毛细管半径比为 [ B ] (A) 1:2 (B) 2:1 (C) 1:4 (D) 4:14、用两根细绳将两轻球吊在同一高度,使两球间距离比较靠近,然后用一细管向中间吹气,使气流从两球中间通过,则两球 [ B ](A) 将分开 (B) 将靠拢 (C) 保持不动 (D)以上结论都不对 二、简答题1、两只船在平行前进时,若靠得较近,极易发生碰撞,为什么?答案: 因为当两条木船朝同一方向并进时,两船之间水的流速增加(1分),根据伯努利方程可知,它们间的压强会减小,每一条船受到外侧水的压力大,因此两船会彼此靠拢甚至导致船体相撞。

2、如图所示,打开2、3阀 B 将缩小,A 将增大。

请解释一下“大泡吃小泡”现象的物理原因?答案:气泡内外的压强差为:AA R P P α40=-,BB R P P α40=-;R A > R B , p B >p A , 所以打开2、3阀 B 将缩小,A 将增大。

三、填空题1、为测试某种杀虫剂的表面张力系数,如图在金属框架中形成一液膜,金属丝AB 长为5cm,可以自由滑动,拉此杀虫剂液膜平衡时,所需的平衡力F=3×10-3N ,则杀虫剂药水的表面张力系数大小为12103--⋅⨯m N 。

2、有一直径为5mm 的水银滴,温度在020C 时的表面张力系数为3147010N m --⨯⋅,则水银滴的附加压强为 376pa 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理C(1)知识点(*号部分为了解)
第一章质点运动学
1. 质点运动的描述
(1) 掌握位置矢量、运动方程和轨道方程的概念及计算方法;
(2) 明确位移和路程、速度和速率的区别;
(3) 掌握位移、速度和加速度的意义和计算方法;
教材:P22 1-5、1-7;
指导:P7例1-1(1)(2)(3)(5),P18 1(平均速率除外)、5;
(4) 掌握圆周运动的角量描述和计算方法;
(5) 掌握法向加速度和切向加速度的概念和计算方法。

教材:P23 1-13、1-14;
指导:P18 6、7(1)(3),P21 2。

选择题:P16 1、2,P17 4、6、7,P19 1、2、4;
填空题:P17 1、5、6、7。

第二章质点动力学
1. 牛顿运动定律及其运用、变力作用下的质点动力学基本问题
教材:P63 2-1
指导:P45 1
2. 变力的功、动能定理、保守力的功、势能、机械能守恒定律
教材:P43例2-10,P65 2-8,P66 2-18
指导:P45 5、9,P49 4、
3. 质点与质点系的动量定理和动量守恒定律
指导:P38例2-10、2-11,P45 6、8,P48 2,P49 10。

选择题:P43 2、5、6,P44 7,P46 1、2、3,
填空题:P44 5、6,P47 1、3,
第三章刚体力学基础
1. 刚体定轴转动定律、转动惯量
教材:P102 3-3、3-6、3-7
指导:P66 1、3;
2. 刚体转动中的功和能
3. 质点、刚体的角动量、角动量守恒定律
教材:P105 3-14、3-15、3-16;
指导:P66 2、P67 7、10。

选择题:P 64 2、3、4,P 65 9,
填空题:P 65 1、2、3,P 66 7。

第五章 狭义相对论
1. 狭义相对论的两个基本假设
2. 洛仑兹变换;速度变换(*)
3. 同时的相对性、时间延缓和尺度变短,
4. 相对论动力学基础。

教材:P 148 5-3,P 149 5-7、5-15、5-17;
指导:P 82 3、4、P 83 选择题:6、7、8,填空题: 6、7、8。

第六章 电荷与电场
1. 库仑定律、电场强度、电场强度叠加原理及其应用
教材:P 220 6-5,P 221 6-8,
指导:P 106 2、3、4、
2. 静电场的高斯定理
教材:P 221 6-12、6-13,
指导:P 106 5,
3. 电势、电势叠加原理
4. 电场强度和电势的关系、静电场的环路定理
教材:P 222 6-19、6-20,
指导:P 106 6,
5. 导体的静电平衡
教材:P 223 6-23、6-27、6-28,
指导:P 109 3、4。

6. 有电介质存在时的电场;(电介质的极化*,); 介质中的高斯定理及0r D E εε=
7. 电容
教材:P 224 6-30、6-32,
指导:P 110 8。

选择题:P 103 2、3、4,P 104 5、6、7、9,P 107 1、3,P 108 10, 填空题:P 105 2、3、4、5,P 106 10,P 109 5。

第七章 电流与磁场
1. 恒定电流、电流密度和电动势
2. 磁感应强度:比奥—萨伐尔定律、磁感应强度叠加原理
教材:P 295 7-2、7-3,P 296 7-5,7-6
3. 恒定磁场的高斯定理和安培环路定理
教材:P 297 7-12,P 297 7-16、7-17,
指导:P 130 7,
4. 安培定律
5. 洛仑兹力
教材:P 298 7-19,P 299 7-25、7-27
指导:P 130 5、6,P 133 2、5。

6. 有磁介质存在时的磁场;介质中的安培环路定理及0r B H μμ=(磁介质的磁化*)
选择题:P 127 1、2、4、5,P 128 6、7、8,P 131 1、3; 填空题:P 129 1、2、4、5,P 130 6,P 132 1、2、4。

第八章 电磁场与麦克斯韦电磁场方程组
1. 法拉第电磁感应定律
2. 动生电动势
教材:P 349 8-2、8-3、
指导:P 158 2、P 158 3,
3. 感生电动势,(涡旋电场*)
教材:P 349 8-4、8-5,P 351 8-12;
4. 自感和互感
教材:P 351 8-14、8-15、8-19。

指导:P 159 7、8、
5. 电场和磁场的能量
6. 位移电流(全电流环路定理*)
7. (麦克斯韦方程组的积分形式*)
8. (电磁波的产生及基本性质*)
选择题:P 154 1、2,P 155 4、5、7、8,P 156 12; 填空题:P 157 5、7、9,P 158 10、11。

相关文档
最新文档