新湘教版九年级数学上册第一次月考试题
湘教版九年级数学上册第一次月考试卷及答案【新版】

湘教版九年级数学上册第一次月考试卷及答案【新版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-3.若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x =-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<4.已知一个多边形的内角和等于900º,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形5.若关于x 的不等式mx - n >0的解集是15x <,则关于x 的不等式()m n x n m >-+的解集是( )A .23x >-B .23x <-C .23x <D .23x > 6.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .77.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°8.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.12B.1 C.33D.39.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣110.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3)二、填空题(本大题共6小题,每小题3分,共18分)116 __________.2.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_______.3.若实数a,b满足(4a+4b)(4a+4b-2)-8=0,则a+b=__________.41.如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°,则此圆锥高 OC 的长度是__________.5.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________.6.在平面直角坐标系中,点A 的坐标为(a ,3),点B 的坐标是(4,b ),若点A 与点B 关于原点O 对称,则ab=__________.三、解答题(本大题共6小题,共72分)1.解分式方程(1)232x x =+ (2)21124x x x -=--2.已知抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.3.如图,在口ABCD 中,分别以边BC ,CD 作等腰△BCF ,△CDE ,使BC=BF ,CD=DE ,∠CBF =∠CDE ,连接AF ,AE.(1)求证:△ABF ≌△EDA ;(2)延长AB 与CF 相交于G ,若AF ⊥AE ,求证BF ⊥BC .4.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.5.为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了名学生,两幅统计图中的m=,n=.(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.6.某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为;(2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、C5、B6、C7、C8、B9、D10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、22、(y ﹣1)2(x ﹣1)2.3、-12或14、5、x ≤1.6、12三、解答题(本大题共6小题,共72分)1、(1)4x =;(2)32x =-2、(1)2y x 2x 3=-++(2)(1,4)3、(1)略;(2)略.4、(1)略(2)菱形5、(1)200 , 8415m n ==,;(2)1224人;(3)见解析,23. 6、(1)12;(2)概率P=16。
湘教版九年级上册数学第一次月考试卷及答案

湘教版九年级上册数学第一次月考试题一、选择题。
(每小题只有一个正确答案)1.如图所示是三个反比例函数11k y x =,22ky x =,33k y x=在y 轴右边的图象,由此观察得到1k 、2k 、3k 的大小关系是()A .123k k k >>B .132k k k >>C .231k k k >>D .321k k k >>2.如图,一次函数y 1=ax+b 图象和反比例函数y 2=kx图象交于A(1,2),B(﹣2,﹣1)两点,若y 1<y 2,则x 的取值范围是()A .x <﹣2B .x <﹣2或0<x <1C .x <1D .﹣2<x <0或x >13.如图所示,点P (3a ,a )是反比例函数y=kx(k >0)与⊙O 的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A .y=3xB .y=5xC .y=10xD .y=12x4.方程230x x -=的根是()A .x =0B .x =3C .10x =,23x =-D .10x =,23x =5.为了预防“流感”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量()y mg 与时间()min x 成正比例,药物燃烧完后,y 与x 成反比例(如图所示).现测得药物8min 燃毕,此时室内空气中每立方米的含药量为6mg .研究表明,当空气中每立方米的含药量不低于3mg 才有效,那么此次消毒的有效时间是()A .10分钟B .12分钟C .14分钟D .16分钟6.已知反比例函数1k y x-=的图象在其每个象限内,y 的值随x 的值的增大而减小,则k 的值可以是()A .1B .2C .4-D .07.若222(5)25a b +-=,则22( a b +=)A .8或2-B .2-C .8D .0或108.若关于x 的方程x 2+3x+a=0有一个根为-1,则另一个根为()A .-2B .2C .4D .-49.下列函数中,图象经过原点的有()①y =2x -2②y =5x 2-4x③y =-x 2④y =6xA .1个B .2个C .3个D .4个二、填空题10.已知反比例函数的图象经过点(),2m 和()1,4--,则m 的值为________.11.若关于x 的一元二次方程x 2﹣4x +m =0有实数根,则实数m 满足_____.12.利用一面墙(墙的长度足够用),用30m 长的篱笆,怎样围成一个面积为60㎡的矩形场地?设矩形场地的长(长与墙平行)为x ,则可列方程为________.13.已知12y y y =-,1y 与x 成反比例,2y 与()2x -成正比例,并且当3x =时,5y =;当1x =时,1y =-.则y 与x 的函数关系为________.14.若关于x 的方程220x x k ++=的一个根是0,则方程的另一个根是________.15.方程2(1)4x -=的解是________;方程2x x =的解是________.16.如图,己知直线y ax b =+过()1,6A -与m y x =交于A 点、B 点,与ky x=交于E 点,直线y ax b =+与x 轴交于C 点,且2AB BC BE ==,则k =________.17.若梯形的下底长为x ,上底长为下底长的13,高为y ,面积为60,则y 与x 的函数关系式为y=_________(不考虑x 的取值范围).18.对于函数y =1m x-,当m ___时,y 是x 的反比例函数,且比例系数是3.19.反比例函数y=ax (a >0,a 为常数)和y=2x在第一象限内的图象如图所示,点M 在y=ax 的图象上,MC ⊥x 轴于点C ,交y=2x 图象于点A ;MD ⊥y 轴于点D ,交y=2x的图象于点B ,当点M 在y=ax的图象上运动时,以下结论:①S △ODB=S △OCA ;②四边形OAMB的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论的序号是___________;三、解答题20.解下列方程:()21450x x +-=()()22(23)5236x x ---=-()()()31270x x -+=()244(3)250x +-=21.已知,2l y y y =+,1y 与x 成正比例,2y 与x 成反比例,并且当1x =-时,1y =-,当2x =时,5y =.()1求y 关于x 的函数关系式;()2当5y =-时,求x 的值.22.如图,已知一次函数y=mx 的图象经过点A (﹣2,4),点A 关于y 轴的对称点B 在反比例函数y=kx的图象上.(1)点B 的坐标是;(2)求一次函数与反比例函数的解析式.23.阅读:一元二次方程()200ax bx c a ++=≠的根1x ,2x 与系数存在下列关系:12b x x a +=-,12c x x a=;理解并完成下列各题:若关于x 的方程220x x --=的两根为1x 、2x .()1求12x x +和12x x ;()2求1211xx +.24.如图,已知直线3y x =与双曲线k y x =交于A 、B 两点,且点A.(1)求k的值;(2)若双曲线kyx=上点C的纵坐标为3,求△AOC的面积;(3)在y轴上有一点M,在直线AB上有一点P,在双曲线kyx=上有一点N,若四边形OPNM是有一组对角为60°的菱形,请写出所有满足条件的点P的坐标.25.某宾馆有客房200间供游客居住,当每间客房的定价为每天180元时,客房恰好全部住满;如果每间客房每天的定价每增加10元,就会减少4间客房出租.设每间客房每天的定价增加x元,宾馆出租的客房为y间.求:()1y关于x的函数关系式;()2如果某天宾馆客房收入38400元,那么这天每间客房的价格是多少元?参考答案1.A2.B3.D 4.D 5.B 6.B 7.D 8.A 9.B 10.211.4m ≤12.2301200x x -+=13.348y x x=+-14.-215.13x =,21x =-10x =,21x =16.1017.y=90x18.419.①②③20.()111x =,25x =-;()12 2.5x =,23x =;()138x =,29x =;()14 5.5x =-,20.5x =-.21.()123y x x =-;()2113x =,22x =-.22.(1)()2,4;(2)一次函数解析式为2y x =-,反比例函数解析式为8y x=.23.()1121x x +=,122x x =-;()122-.24.(1)k =(2)AOC 43=3S △;(3)P 点坐标为31,3⎛⎫ ⎪ ⎪⎝⎭或31,3⎛⎫-- ⎪ ⎪⎝⎭.25.(1)y=-25x+200;(2)这天的每间客房的价格是200元或480元.。
湘教版九年级数学上册第一次月考考试卷及完整答案

湘教版九年级数学上册第一次月考考试卷及完整答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的相反数是( )A .13-B .13C .3-D .32.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣53.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直4.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯6.若3x >﹣3y ,则下列不等式中一定成立的是( )A .0x y +>B .0x y ->C .0x y +<D .0x y -<7.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2> B .x 3> C .3x 2< D .x 3<8.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°9.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5B.2 C.52D.2510.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°二、填空题(本大题共6小题,每小题3分,共18分)1368______________.2.分解因式:29a-=__________.3.若a、b为实数,且b2211a a-+-+4,则a+b=__________.4.把长方形纸片ABCD沿对角线AC折叠,得到如图所示的图形,AD平分∠B′AC,则∠B′CD=__________.5.如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数1yx=和9yx=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交1yx=的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是_________.6.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=23+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为__________.三、解答题(本大题共6小题,共72分)1.解方程:12133xx x -+=--2.先化简,再求值:822224x xxx x+⎛⎫-+÷⎪--⎝⎭,其中12x=-.3.如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P 的坐标.4.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G(1)求证:EF BC=;(2)若65ABC∠=︒,28ACB∠=︒,求FGC∠的度数.105阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.6.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天. (1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、C4、C5、C6、A7、C8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)12、()()33a a +-3、5或34、30°5、k =或5.6、43三、解答题(本大题共6小题,共72分)1、1x =2、3.3、(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0) 4、(1)略;(2)78°.5、(1)5,20,80;(2)图见解析;(3)35.6、(1)100,50;(2)10.。
湘教版九年级数学上册第一次月考考试及答案【完美版】

湘教版九年级数学上册第一次月考考试及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2的相反数是( )A .12-B .12C .2D .2-2.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .323.如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-14.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠36.下列运算正确的是( )A .(﹣2a 3)2=4a 6B .a 2•a 3=a 6C .3a +a 2=3a 3D .(a ﹣b )2=a 2﹣b 27.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B=∠CB .AD=AEC .BD=CED .BE=CD8.如图,A ,B 是反比例函数y=4x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A.4 B.3 C.2 D.19.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC 边上的点F处.若AB=3,BC=5,则tan∠DAE的值为()A.12B.920C.25D.13二、填空题(本大题共6小题,每小题3分,共18分)116__________.2.分解因式:2218x-=______.3.若实数a,b满足(4a+4b)(4a+4b-2)-8=0,则a+b=__________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为__________.5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=__________度.6.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:24 1x-+1=11xx-+2.先化简,再求值:2443(1)11m mmm m-+÷----,其中22m=.3.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如图所示.请根据相关测量信息,求河宽AB .5.央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、D5、C6、A7、D8、B9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、2(3)(3)x x +-3、-12或14、﹣2<x <25、360°.6三、解答题(本大题共6小题,共72分)1、无解.2、22m m-+ 1. 3、(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)2()1,M -;(3)P 的坐标为(1,2)--或(1,4)-或3(1,2+-或3(1,2--. 4、河宽为17米5、(1)200;(2)补图见解析;(3)12;(4)300人.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。
湘教版九年级数学上册第一次月考测试卷及答案【新版】

湘教版九年级数学上册第一次月考测试卷及答案【新版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2的倒数是()A.2 B.12C.12D.-22.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.100993.如果a与1互为相反数,则|a+2|等于()A.2 B.-2 C.1 D.-14.在平面直角坐标中,点M(-2,3)在()A.第一象限 B.第二象限C.第三象限D.第四象限5.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个B.2个C.3个D.4个6.要反映台州市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布统计图7.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD8.下列图形中,是中心对称图形的是( )A .B .C .D .9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F 处.若AB =3,BC =5,则tan ∠DAE 的值为( )A .12B .920C .25D .13二、填空题(本大题共6小题,每小题3分,共18分)116__________.2.分解因式:x 3﹣16x =_____________.3.若代数式1x x 有意义,则x 的取值范围为__________. 4.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为__________.5.如图,矩形ABCD 中,4BC =,2CD =,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为__________.(结果保留)π6.如图所示,在四边形ABCD 中,90B ∠=︒,2AB =,8CD =.连接AC ,AC CD ⊥,若1sin 3ACB ∠=,则AD 长度是_________.三、解答题(本大题共6小题,共72分)1.解方程:24111x x x -=--2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m =2+1.3.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B(1)求证:△ADF ∽△DEC ;(2)若AB=8,AD=63,AF=43,求AE的长.4.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB 上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=23,BF=2,求阴影部分的面积(结果保留π).5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.61.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、B5、A6、C7、D8、D9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、x (x +4)(x –4).3、0x ≥且1x ≠.4、5、π.6、10三、解答题(本大题共6小题,共72分)1、3x =2、11m m +-,原式=.3、(1)略(2)64、(1)直线BC 与⊙O 相切,略;(2)23π 5、(1)50;(2)见解析;(3)16. 6、(1)y=﹣5x 2+800x ﹣27500(50≤x ≤100);(2)当x=80时,y 最大值=4500;(3)70≤x ≤90.。
湘教版九年级数学上册月考测试卷及答案精选全文完整版

可编辑修改精选全文完整版湘教版九年级数学上册月考测试卷及答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣8的相反数是( ) A .8B .18C .18-D .-82.下列分解因式正确的是( ) A .24(4)x x x x -+=-+ B .2()x xy x x x y ++=+ C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.若正多边形的一个外角是60︒,则该正多边形的内角和为( ) A .360︒B .540︒C .720︒D .900︒4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( )A .9B .12C .18D .245.实数a 在数轴上的对应点的位置如图所示.若实数b 满足a b a -<<,则b 的值可以是( )A .2B .-1C .-2D .-36.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是( ) A .m ≥2B .m >2C .m <2D .m ≤27.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=,则1∠的大小为( )A.14B.16C.90α-D.44α-8.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<19.如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D,若⊙P的半径为5,点A的坐标是(0,8),则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)10.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.分解因式:3x-x=__________.3.若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于__________.4.(2017启正单元考)如图,在△ABC 中,ED ∥BC ,∠ABC 和∠ACB 的平分线分别交ED 于点G 、F ,若FG =4,ED =8,求EB +DC =________.5.如图,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0)和B (3,2),不等式x 2+bx +c >x +m 的解集为__________.6.如图,在ABC ∆中,AB AC =,点A 在反比例函数ky x=(0k >,0x >)的图象上,点B ,C 在x 轴上,15OC OB =,延长AC 交y 轴于点D ,连接BD ,若BCD ∆的面积等于1,则k 的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:23121x x =+-2.已知关于x 的一元二次方程:x 2﹣2x ﹣k ﹣2=0有两个不相等的实数根. (1)求k 的取值范围;(2)给k 取一个负整数值,解这个方程.3.如图,一次函数1y k x b =+的图象与反比例函数2k y x=的图象相交于A 、B 两点,其中点A 的坐标为()1,4-,点B 的坐标为()4,n .(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如图所示.请根据相关测量信息,求河宽AB .5.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a= ,b= ,c= ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.6.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、C5、B6、C7、A8、C9、A 10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、x (x+1)(x -1)3、20284、125、x <1或x >36、3三、解答题(本大题共6小题,共72分)1、x =52、(1)k >﹣3;(2)取k=﹣2, x 1=0,x 2=2.3、(1)1x <-或04x <<;(2)4y x =-,3y x =-+;(3)27,33P ⎛⎫ ⎪⎝⎭4、河宽为17米5、(1)2、45、20;(2)72;(3)166、(1)W 1=-2x ²+60x+8000,W 2=-19x+950;(2)当x=10时,W 总最大为9160元.。
湘教版九年级数学上册第一次月考试卷(新版)

湘教版九年级数学上册第一次月考试卷(新版)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2的倒数是( )A .2B .12C .12-D .-22.已知两个有理数a ,b ,如果ab <0且a+b >0,那么( )A .a >0,b >0B .a <0,b >0C .a 、b 同号D .a 、b 异号,且正数的绝对值较大3.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030xx -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x --=2 4.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根6.用配方法解方程2x 2x 10--=时,配方后所得的方程为( )A .2x 10+=()B .2x 10-=()C .2x 12+=()D .2x 12-=()7.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b ≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤8.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a 9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm二、填空题(本大题共6小题,每小题3分,共18分)1.计算:124503⨯+=_____. 2.因式分解:x 3﹣4x=_______.3.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是__________.4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.如图,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0)和B (3,2),不等式x 2+bx +c >x +m 的解集为__________.6.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作P.当P 与正方形ABCD 的边相切时,BP 的长为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:241x -+1=11x x -+2.先化简再求值:(a﹣22ab ba-)÷22a ba-,其中a=1+2,b=1﹣2.3.如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.4.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、A4、B5、A6、D7、A8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2、x (x+2)(x ﹣2)3、k <44、85、x <1或x >36、3或三、解答题(本大题共6小题,共72分)1、无解.2、原式=a b a b -=+3、(1)抛物线的解析式为y=﹣13x 2+23x+1;(2)点P 的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)(m ,2m ﹣5);(2)S △ABC =﹣82a a +;(3)m 的值为72或.5、(1)50、30%.(2)补图见解析;(3)35. 6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。
湘教版九年级数学上册第一次月考测试卷及答案【完美版】

湘教版九年级数学上册第一次月考测试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.用配方法将二次函数y=x 2﹣8x ﹣9化为y=a (x ﹣h )2+k 的形式为( )A .y=(x ﹣4)2+7B .y=(x+4)2+7C .y=(x ﹣4)2﹣25D .y=(x+4)2﹣253.若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x =-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<4.若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( ) A .2m ≤ B .2m < C .2m ≥ D .2m >5.如图,二次函数2y ax bx c =++的图象经过点1,0A ,()5,0B ,下列说法正确的是( )A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x =6.已知x 1,x 2是方程x 2﹣3x ﹣2=0的两根,则x 12+x 22的值为( )A .5B .10C .11D .137.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.如图,AB 、是函数12y x =上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④9.扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯ B .()()130********x x --=⨯⨯ C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 10.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是__________.2.因式分解:(x+2)x ﹣x ﹣2=_______.3.若二次根式x 2-有意义,则x 的取值范围是__________.4.如图,已知△ABC 的两边AB=5,AC=8,BO 、CO 分别平分∠ABC 、∠ACB ,过点O 作DE ∥BC ,则△ADE 的周长等于__________.5.如图,C 为半圆内一点,O 为圆心,直径AB 长为2 cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B ′OC ′,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 2.6.如图,在ABC ∆中,AB AC =,点A 在反比例函数k y x=(0k >,0x >)的图象上,点B ,C 在x 轴上,15OC OB =,延长AC 交y 轴于点D ,连接BD ,若BCD ∆的面积等于1,则k 的值为_________.三、解答题(本大题共6小题,共72分)1.解分式方程:214111x x x ++=--2.已知关于x 的一元二次方程x 2+x +m ﹣1=0.(1)当m =0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m 的取值范围.3.如图,以D 为顶点的抛物线y=﹣x 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C ,直线BC 的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC 上有一点P ,使PO+PA 的值最小,求点P 的坐标;(3)在x 轴上是否存在一点Q ,使得以A 、C 、Q 为顶点的三角形与△BCD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.4.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.5.某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.6.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天. (1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、A5、D6、D7、D8、B9、D10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、2.2、(x+2)(x ﹣1)3、x 2≥4、135、4π6、3三、解答题(本大题共6小题,共72分)1、3x =-2、(1)x 1x 2(2)m <543、(1)y=﹣x 2+2x+3;(2)P (97 ,127);(3)当Q 的坐标为(0,0)或(9,0)时,以A 、C 、Q 为顶点的三角形与△BCD 相似.4、(1)略(2)菱形5、(1)答案见解析;(2)13. 6、(1)100,50;(2)10.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学上册第一次月考试题
总分:120分 姓名:_________
一、选择题(每小题3分,共8小题,总分24分)
1.、关于x 的一元二次方程()
22120a x x -+-=是一元二次方程,则a 满足( ) A. 1a ≠ B. 1a ≠- C. 1a ≠± D.为任意实数
2、配方法解方程2420x x -+=,下列配方正确的是( )
A .2(2)2x -=
B .2(2)2x +=
C .2(2)2x -=-
D .2(2)6x -= 3、解方程()()251351x x -=-的适当方法是( )
A .开平方法
B .配方法
C .公式法
D .因式分解法
4、下列函数中,y 关于x 的反比例函数是:( )
A. 1)2(=+y x
B. 11+=
x y C. 21x y = D.x y 21-= 5、反比例函数x
k y =和一次函数k kx y -=在同一坐标系中的图象大致是:( ) 6.
点A (-2,1y )与B (-1,2y )都在反比例函数x
y 2-=的图象上,则1y 与2y 的大小关系为:( )
A. 21y y <
B. 21y y >
C. 21y y =
D. 无法确定
7. 关于x 的一元二次方程x 2+kx -1=0的根的情况是( )
A 、有两个不相等的同号实数根
B 、有两个不相等的异号实数根
C 、有两个相等的实数根
D 、没有实数根 8.等腰三角形的底和腰分别是方程2680x x -+=的两个根,则这个三角形的周长是( ) A .8 B .10 C .8或10 D . 不能确定
二、填空题(每小题3分,共10小题,总分30分)
9、方程(3x-1)(2x+1)=1化为一元二次方程的一般形式是________________,它的一次项系数是______.
10、方程26x x =解是______________.
11、 已知一元二次方程032=++px x 的一个根为3-,则_____=p 。
12、若反比例函数m x m y --=)1(的图象经过第二、四象限,则m= .
13、已知反比例函数x
k y =的图象经过(-1,3),若点(2,m )在这个图象上,则m = .
14、若X 1与X 2是方程X 2-5X+7=0的两个根,则X 12X 2+X 1X 22
的值为___________。
15、已知关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则实数k 的取值范围是 ____
16、已知代数式532++x x 的值是7,则代数式2932-+x x 的值是___________
17、某经济开发区1月份工业产值达50亿元,3月份工业产值达72亿,设平均每月增长率为 x ,则可列方程为__________________________ 。
18、如图,点P 为反比例函数x
y 2-=上的任意一点, 作PC ⊥x 轴于C ,则△POC 的面积为 ____ .
三、解答题(66分)
19、解方程(每小题5分,共20分)
(1)(X-3)2=10 (2)2450x
x +-=
(3)9(X+1)2-4(X-1)
2=0 (4)23740x x -+=
20、已知,反比例函数k y x
=与一次函数y=x+b 的图象都经过点A (1,2). (1)求一次函数和反比例函数的解析式.
(2)求一次函数图象与两坐标轴的点坐标。
(8分)
21、若m 是非负整数,且关于x 的方程2
(1)220m x mx m --++=有两个实数根,求m 的值及其对应方程的根。
(8分)
22、某农场要建一个矩形的养鸡场,鸡场的一边靠墙(墙长25m ),另外三边用木栏围成,木栏长40m 。
若养鸡场面积为200m 2,求鸡场靠墙的一边长?(8分)
23.如图△ABC中,∠B=90°BC=12cm,AB=6cm,点P从点A开始沿AB边向B以
1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动。
若P、Q分别同时从A、B出发,几秒后是△PBQ的面积等于8CM2。
(10分)
24、某商场销售一批衬衫,平均每天可销售出20件,每件盈利40元,为扩大销售盈利,商场决定采取适当的降价措施,但要求每件盈利不少于20元,经调查发现。
若每件衬衫每降价1 元,则商场每天可多销售2件。
(12分)
(1)若每件衬衫降价4元,则每天可盈利多少元?
(2)若商场平均每天盈利1200元。
则每件衬衫应降价多少元?
(3)降价多少元时,平均每天盈利最大?。