福建高考理科数学试题含答案(Word版)
2019年福建省高考理科数学试卷及答案【word版】

2019年福建高考数学试题(理)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数(32)z i i =-的共轭复数z 等于( ).23A i -- .23B i -+ .23C i - .23D i +2.某空间几何体的正视图是三角形,则该几何体不可能是( ).A 圆柱 .B 圆锥 .C 四面体 .D 三棱柱3.等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ).8A .10B .12C .14D4.若函数log (0,1)a y x a a =>≠且的图像如右图所示,则下列函数图像正确的是( )5.阅读右图所示的程序框图,运行相应的程序,输出的S 得值等于( ).18A .20B .21C .40D6.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“ABC ∆的面积为12”的() .A 充分而不必要条件 .B 必要而不充分条件.C 充分必要条件 .D 既不充分又不必要条件7.已知函数()⎩⎨⎧≤>+=0,cos 0,12x x x x x f 则下列结论正确的是( )A.()x f 是偶函数B. ()x f 是增函数C.()x f 是周期函数D.()x f 的值域为[)+∞-,18.在下列向量组中,可以把向量()2,3=a 表示出来的是( )A.)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e eC.)10,6(),5,3(21==e eD.)3,2(),3,2(21-=-=e e9.设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是( ) A.25 B.246+ C.27+ D.26 10.用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个篮球中取出若干个球的所有取法可由()()b a ++11的展开式ab b a +++1表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球,面“ab ”用表示把红球和篮球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个有区别的黑球中取出若干个球,且所有的篮球都取出或都不取出的所有取法的是A. ()()()555432111c b a a a a a +++++++B.()()()554325111c b b b b b a +++++++ C. ()()()554325111c b b b b b a +++++++ D.()()()543255111c c c c c b a +++++++ 二、填空题11、若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤-+≤+-008201x y x y x 则y x z +=3的最小值为________12、在ABC ∆中,3,2,60==︒=BC AC A ,则ABC ∆等于_________13、要制作一个容器为43m ,高为m 1的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元)14.如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.15.若集合},4,3,2,1{},,,{=d c b a 且下列四个关系:①1=a ;②1≠b ;③2=c ;④4≠d 有且只有一个是正确的,则符合条件的有序数组),,,(d c b a 的个数是_________.三.解答题:本大题共6小题,共80分.16.(本小题满分13分)已知函数1()cos (sin cos )2f x x x x =+-. (1)若02πα<<,且2sin 2α=,求()f α的值; (2)求函数()f x 的最小正周期及单调递增区间.17.(本小题满分12分)在平行四边形ABCD 中,1AB BD CD ===,,AB BCD CD BD ⊥⊥.将ABD ∆沿BD 折起,使得平面ABD ⊥平面BCD ,如图.(1)求证:CD ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.18.(本小题满分13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求①顾客所获的奖励额为60元的概率②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.19.(本小题满分13分)已知双曲线)0,0(1:2222>>=-b a by a x E 的两条渐近线分别为x y l x y l 2:,2:21-==. (1)求双曲线E 的离心率;(2)如图,O 为坐标原点,动直线l 分别交直线21,l l 于B A ,两点(B A ,分别在第一,四象限),且OAB ∆的面积恒为8,试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由。
(完整word版)2019年福建省高考理科数学试卷及答案【word版】

2019年福建高考数学试题(理)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数(32)z i i =-的共轭复数z 等于( ).23A i -- .23B i -+ .23C i - .23D i +2.某空间几何体的正视图是三角形,则该几何体不可能是( ).A 圆柱 .B 圆锥 .C 四面体 .D 三棱柱3.等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ).8A .10B .12C .14D4.若函数log (0,1)a y x a a =>≠且的图像如右图所示,则下列函数图像正确的是( )5.阅读右图所示的程序框图,运行相应的程序,输出的S 得值等于( ).18A .20B .21C .40D6.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“ABC ∆的面积为12”的() .A 充分而不必要条件 .B 必要而不充分条件.C 充分必要条件 .D 既不充分又不必要条件7.已知函数()⎩⎨⎧≤>+=0,cos 0,12x x x x x f 则下列结论正确的是( )A.()x f 是偶函数B. ()x f 是增函数C.()x f 是周期函数D.()x f 的值域为[)+∞-,18.在下列向量组中,可以把向量()2,3=表示出来的是( )A.)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e eC.)10,6(),5,3(21==e eD.)3,2(),3,2(21-=-=e e9.设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是( ) A.25 B.246+ C.27+ D.26 10.用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个篮球中取出若干个球的所有取法可由()()b a ++11的展开式ab b a +++1表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球,面“ab ”用表示把红球和篮球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个有区别的黑球中取出若干个球,且所有的篮球都取出或都不取出的所有取法的是A. ()()()555432111c b a a a a a +++++++B.()()()554325111c b b b b b a +++++++ C. ()()()554325111c b b b b b a +++++++ D.()()()543255111c c c c c b a +++++++ 二、填空题11、若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤-+≤+-008201x y x y x 则y x z +=3的最小值为________12、在ABC ∆中,3,2,60==︒=BC AC A ,则ABC ∆等于_________13、要制作一个容器为43m ,高为m 1的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元)14.如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.15.若集合},4,3,2,1{},,,{=d c b a 且下列四个关系:①1=a ;②1≠b ;③2=c ;④4≠d 有且只有一个是正确的,则符合条件的有序数组),,,(d c b a 的个数是_________.三.解答题:本大题共6小题,共80分.16.(本小题满分13分)已知函数1()cos (sin cos )2f x x x x =+-. (1)若02πα<<,且2sin 2α=,求()f α的值; (2)求函数()f x 的最小正周期及单调递增区间.17.(本小题满分12分)在平行四边形ABCD 中,1AB BD CD ===,,AB BCD CD BD ⊥⊥.将ABD ∆沿BD 折起,使得平面ABD ⊥平面BCD ,如图.(1)求证:CD ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.18.(本小题满分13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求①顾客所获的奖励额为60元的概率②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.19.(本小题满分13分)已知双曲线)0,0(1:2222>>=-b a by a x E 的两条渐近线分别为x y l x y l 2:,2:21-==. (1)求双曲线E 的离心率;(2)如图,O 为坐标原点,动直线l 分别交直线21,l l 于B A ,两点(B A ,分别在第一,四象限),且OAB ∆的面积恒为8,试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由。
2024年福建省高考数学真题及参考答案

2024年福建省高考数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。
1.已知集合{}553<<-=x x A ,{}3,2,0,13--=,B ,则=B A ()A.{}0,1-B.{}32, C.{}0,13--, D.{}2,0,1-2.若i z z+=-11,则=z ()A.i --1B.i +-1C.i -1D.i +13.已知向量()1,0=a,()x b ,2= ,若()a b b 4-⊥,则=x ()A.2- B.1- C.1D.24.已知()m =+βαcos ,2tan tan =βα,则()=-βαcos ()A.m3- B.3m -C.3m D.m35.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为()A.π32 B.π33 C.π36 D.π396.已知函数()()⎪⎩⎪⎨⎧≥++<---=0,1ln 0,22x x e x a ax x x f x 在R 上单调递增,则a 的取值范围是()A.(]0,∞-B.[]0,1-C.[]1,1-D.[)∞+,07.当[]π2,0∈x 时,曲线x y sin =与⎪⎭⎫⎝⎛-=63sin 2πx y 的交点个数为()A.3B.4C.6D.88.已知函数()x f 定义域为R ,()()()21-+->x f x f x f ,且当3<x 时,()x x f =,则下列结论中一定正确的是()A.()10010>fB.()100020>fC.()100010<f D.()1000020<f二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,由选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值1.2=x ,样本方差01.02=S ,已知该种植区以往的亩收入X 服从正态分布()21.08.1,N ,假设失去出口后的亩收入Y 服从发正态分布()2,S x N ,则()(若随机变量Z 服从正态分布()2,σμN ,则()8413.0≈+<σμZ P )A.()2.02>>X PB.()5.0<>Z X PC.()5.0>>Z Y P D.()8.0<>Z Y P 10.设函数()()()412--=x x x f ,则()A.3=x 是()x f 的极小值点B.当10<<x 时,()()2xf x f <C.当21<<x 时,()0124<-<-x f D.当01<<-x 时,()()x f x f >-211.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于2-,到点()02,F 的距离与到定直线()0<=a a x 的距离之积为4,则()A .2-=aB .点()022,在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,y x 在C 上时,2400+≤x y三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线()0,012222>>=-b a by a x C :的左右焦点分别为21,F F ,过2F 作平行于y 轴的直线交C 于B A ,两点,若131=A F ,10=AB ,则C 的离心率为.13.若曲线x e y x+=在点()1,0处的切线也是曲线()a x y ++=1ln 的切线,则=a .14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己特有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分小于2的概率为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记ABC ∆的内角C B A ,,的对边分别为c b a ,,.已知B C cos 2sin =,ab c b a 2222=-+.(1)求B ;(2)若ABC ∆的面积为33+,求c .16.(15分)已知()30,A 和⎪⎭⎫⎝⎛233,P 为椭圆()012222>>=+b a b y a x C :上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP ∆的面积为9,求l 的方程.17.(15分)如图,四棱锥ABCD P -中,⊥P A 底面ABCD ,2==PC P A ,1=BC ,3=AB .(1)若PB AD ⊥,证明:∥AD 平面PBC ;(2)若DC AD ⊥,且二面角D CP A --的正弦值为742,求AD .18.(17分)已知函数()()312ln-++-=x b ax xx x f .(1)若0=b ,且()0≥'x f ,求a 的最小值;(2)证明:曲线()x f y =是中心对称图形;(3)若()2->x f ,当且仅当21<<x ,求b 的取值范围.19.(17分)设m 为正整数,数列242.1,,,+m a a a 是公差不为0的等差数列,若从中删去两项i a 和()j i <后剩余的m 4项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列242.1,,,+m a a a 是()j i ,一一可分数列.(1)写出所有的()j i ,,61≤<≤j i ,使数列62.1,,,a a a 是()j i ,一一可分数列;(2)当3≥m 时,证明:数列242.1,,,+m a a a 是()13,2一一可分数列;(3)从242,1+m ,, 中一次任取两个数i 和j ()j i <,记数列242.1,,,+m a a a 是()j i ,一一可分数列的概率的概率为m P ,证明:81>m P .参考答案一、单项选择题1.A解析:∵553<<-x ,∴3355<<-x .∵2513<<,∴1523-<-<-.∴{}0,1-=B A .2.C解析:∵i z z +=-11,∴()()i i i z i iz z i z -=+=⇒+=⇒-+=11111.3.D 解析:()4,24-=-x a b ,∵()a b b4-⊥,∴()044=-+x x ,∴2=x .4.A解析:∵()m =+βαcos ,2tan tan =βα,∴()()32121tan tan 1tan tan 1sin sin cos cos sin sin cos cos cos cos -=-+=-+=-+=+-βαβαβαβαβαβαβαβα.∴()m 3cos -=-βα.5.B解析:由32⋅==r rl S ππ侧可得32=l ,∴3=r .∴ππ33393131=⋅⋅==Sh V .6.B由()()0,1ln ≥++=x x e x f x为增函数,故此分段函数在R 上递增,只需满足:⎪⎩⎪⎨⎧≤-≥-=--1022a a a,解得01≤≤-a .7.C解析:∴32π=T .8.B解析:()()()123f f f +>,()22=f ,()11=f .()()()()()122234f f f f f +>+>,()()()()()1223345f f f f f +>+>,……()()()8912123410>+>f f f ,……,()()()9871233237715>+>f f f ,()()()15971377261016>+>f f f .∴()100020>f .二、多项选择题9.BC 解析:已知()21.08.1~,N X ,由题目所给条件:若随机变量Z 服从正态分布,()8413.0≈+<σμZ P ,则()8413.09.1≈<X P ,易得()1587.08413.012≈-<>X P .故A 错误,B 正确;对于C:()21.01.2~,N Y ,∴()5.01.2=>Y P ,即()()5.01.22=>>>Y P Y P ,故C正确;对于D:同上易得()8413.02.2≈<Y P .由正态密度曲线的对称性可知()()8.08412.02.22>≈<=>Y P Y P .故D 错误.10.ACD解析:对于A:()()()()()()31314122--=-+--='x x x x x x f .令()0='x f ,解得11=x ,32=x .x 变化时,()x f '与()x f 变化如下表:故A 正确;对于B:当10<<x 时,102<<<x x ,又()x f 在()1,0上单调递增,所以()()x f xf <2,故B 错误;对于C :令()2112<<-=x x t ,则31<<x .()x f 在()3,1上单调递减,()()()13f t f f <<,()43-=f ,()11=f ,即()0121<-<-x f .故C 正确;对于D:()()()412--=x x x f ,()()()()()21421222---=---=-x x x x x f .∴()()()()()32122212-=--=--x x x x f x f .当01<<-x 时,()013<-x ,∴()()x f x f -<2成立.故D 正确.11.ABD解析:对于A:O 点在曲线C 上,O 到F 的距离和到a x =的距离之积为4,即42=⨯a ,解得2±=a .又∵0<a ,∴2-=a ,故A 正确;对于B:由图象可知曲线C 与x 轴正半轴相交于一点,不妨设B 点.设()0,m B ,其中2>m ,由定义可得()()422=+-m m ,解得22±=m .又∵2>m ,∴22=m ,故B 正确;对于C:设C 上一点()y x P ,,()()42222=++-x y x ,其中2->x .化简得曲线C 的轨迹方程为()()2222216--+=x x y ,其中2->x .已知2=x 时,12=y ,对x 求导()()2223232--+-=x x y .2122-==x y ,则在2=x 是下降趋势,即存在2<x 时,1>y 成立,故C 错误;对于D:()()2222216--+=x x y ,∵()022≥-x ,∴()22216+≤x y .∴240+≤x y .又∵20->x ,2400+≤x y ,则24000+≤≤x y y ,故D 正确.三、填空题12.23解析:作图易得131=A F ,52=AF ,且212F F AF ⊥,12222121=-=AF A F F F .由双曲线定义可得:8221=-=AF A F a ,6221==F F c ,则23==a c e .13.2ln 解析:1+='xe y ,20='==x y k ,切线l 的方程:12+=x y .设l 与曲线()a x y ++=1ln 的切点横坐标为0x ,110+='x y ,则2110=+=x k ,解得210-=x .代入12+=x y 可得切点为⎪⎭⎫⎝⎛-021,,再代入()a x y ++=1ln ,a +=21ln 0,即2ln =a .14.21解析:不妨确定甲的出牌顺序为7,5,3,1.乙随机出牌有2444=A 种基本事件.甲的数字1最小,乙的数字8最大.若数字1和数字8轮次不一致,乙最少得2分,甲最多2分.站在甲的视角下,分四种情况:①8对1,则7必得分(1)若得3分:3,5都得分,3对2,5对4(1种情况)(2)若得2分:3,5只有一个得分(ⅰ):5得分,3不得分:5对2,3对4或6(2种情况);5对4,3对6(1种情况);(ⅱ):3得分,5不得分:3对2,5对6(1种情况);②8对3,7必得分5得分:5对2,4,7对应2种情况,共有422=⨯种情况;③8对5,7必得分3得分:3对2,7对应2中情况,共有221=⨯种情况;④8对7,最多得2分3得分,5得分:3对2,5对4(1种情况).共有12种情况,甲总得分不小于2的概率为212412=.四、解答题15.解:(1)∵ab c b a 2222=-+,∴22222cos 222==-+=ab ab ab c b a C .∴22cos 1sin 2=-=C C .又∵B C cos 2sin =,∴22cos 2=B ,∴21cos =B ,∴3π=B .(2)∵33sin 21+==∆Bac S ABC ,∴333sin 21+=ac π.即434+=ac ……①由(1)易知4π=C ,3π=B .由正弦定理C c A a sin sin =,()CcC B a sin sin =+.∴4sin43sin πππc a =⎪⎭⎫ ⎝⎛+,∴224269c =+,∴c a 213+=.代入①式解得22=c .16.解:(1)将()30,A ,⎪⎭⎫⎝⎛233,P 代入椭圆12222=+b y a x 得:⎪⎪⎩⎪⎪⎨⎧=+=149919222b a b ,可得⎪⎩⎪⎨⎧==91222b a ,∴3222=-=b a c ,∴32=a ,3=c .∴离心率21323===a c e .(2)①当l 斜率不存在时,29332121=⨯⨯=-⋅=∆A P ABP x x PB S ,不符,舍去.②当l 斜率存在时,设l 方程:()323-=-x k y .联立()⎪⎪⎩⎪⎪⎨⎧=+-=-191232322y x x k y 可得:()()()02736212342222=--++-++k k x k k x k.由韦达定理:()34273622+--=⋅k k k x x B P ,又3=P x ,∴()3491222+--=k k k x B .∵BP 与y 轴交点⎪⎭⎫ ⎝⎛+-233,0k ,∴()9349123323213232122=+---⋅+=-+⋅=∆k k k k x x k S B P ABP 解得21=k 或23,∴l 方程x y 21=或0623=--y x .17.解:(1)证明:∵⊥P A 底面ABCD ,∴AD P A ⊥.又∵PB AD ⊥,∴⊥AD 平面P AB ,则AB AD ⊥.又∵1,32===BC AB AC ,,∴222BC AB AC +=,则BC AB ⊥,∴BC AD ∥.∵⊄AD 平面PBC ,⊂BC 平面PBC ,∴∥AD 平面PBC .(2)以D 为原点,DA 为x 轴正方向建立如图所示空间直角坐标系.设0,0,,>>==q p q DC p DA ,满足4222==+AC q p ,则()()()()0,0,0,0,,0,20,0,0,D q C p P p A ,,.设平面APC 法向量为()111,,z y x m =,∴()()0,,200q p AC AP -==,,,.∴⎪⎩⎪⎨⎧=+-=⋅==⋅002111qy px m AC z m AP ,取()0,,p q m = .设平面DPC 法向量为()()()0,,0,2,0,,,,222q DC p DP z y x n ===.∴⎪⎩⎪⎨⎧==⋅=+=⋅002222qy n DC z px n AP ,取()p n -=,0,2 .∴2222742142,cos ⎪⎪⎭⎫⎝⎛-=+⋅+=p q p qn m .∴7142=+p q .又∵422=+q p ,∴3=p ,即3=AD .18.解:(1)0=b 时,()ax x x x f +-=2ln,∴()()022≥+-⋅='a x x x f .∴()22-≥x x a .又∵()2,0∈x ,设()()22-=x x x h ,当()2,0∈x 时,()2max -=x h ,∴2-≥a .∴a 的最小值为2-.(2)由题意可知()x f 的定义域为()20,.()()()()()a x b x a xx bx x a x x x f x f 2111ln 111ln1133=-+-++-++++-+=-++.∴()x f 关于()a ,1中心对称.(3)()212ln 3->-++-x b ax xx ,即()0212ln3>+-++-x b ax x x 即()()02112ln 3>++-+-+-a x b x a xx.令1-=x t ,则()1,0∈t ,()0211ln 3>++++-+=a bt at tt t g .()t g 关于()a +2,0中心对称,则当且仅当()1,0∈t 时,()0>t g 恒成立.需02=+a ,即2-=a ,()0≥'t g 在()1,0恒成立.()()()()22222212231223032112t t t b t bt bt t t t g --≥⇒--≥⇒≥+--+='.令2t m =,则()1,0∈m ,()()12122-=--=m m m m m h .()2max -=m h ,∴23-≥b ,即32-≥b .∴⎪⎭⎫⎢⎣⎡+∞-∈,32b .19.解:(1)从1,2,3,4,5,6中删去()j i ,剩下的四个数从小到大构成等差数列,记为{}k b ,41≤≤k .设{}k b 公差为d ,已知1=d ,否则,若2≥d ,则6314≥=-d b b ,又51614=-≤-b b ,故矛盾,∴1=d ,则{}k b 可以为{}4,3,2,1,{}5,4,3,2,{}6,5,4,3,则对应()j i ,分别为()()()2,16,16,5,,.(2)证明:只需考虑前14项在去掉()13,2后如何构成3组4项的等差数列,后面剩下的()34124-=-m m 可自然依序划分为3-m 组等差数列.则只需构造{}14,12,11,10,9,8,7,6,5,4,3,1的一组划分,使划分出的3组数均成等差数列,取{}{}{}14,11,8,512,9,6,310,7,4,1,,,这单租数均为公差为3的等差数列,对于剩下的()34-m 个数,按每四个相邻数一组,划分为3-m 组即可.由此可见去掉()13,2后,剩余的m 4个数可以分为m 组,每组均为等差数列,故3≥m 时,24,2,1+m 是()13,2可分数列,即2421,,,+m a a a 是()13,2可分数列.(3)证明:用数学归纳法证明:共有不少于12++m m 中()j i ,的取法使24,2,1+m 是()j i ,可分数列,①当1=m 时,由(1)知,有11132++=种()j i ,的取法,②假设当n m =时,有至少12++n n 种()j i ,的取法,则当1+=n m 时,考虑数列{}64,,2,1+n 下对于()j i ,分三种情况讨论:1°当1=i 时,取()1,,,2,1,0,24+=+=n n k k j 则j i ,之间(不含j i ,)有k k 41124=--+个连续的自然数,可按形如{}{}{}14,4,14,249,8,7,65,4,3,2+--k k k k ,,, 划分,剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2,1,0+=n n k ,∴这种情况有2+n 种()j i ,的取法.2°当2=i 时,取()1,,,2,14+=+=n n k k j ,现以k 为公差构造划分为:{}13,12,11+++k k k ,,{}33,32,3,3+++k k k ,……{}14,13,12,1----k k k k ,{}k k k k 4,3,22,,{}24,23,22,2++++k k k k (注意当2=k 时,只有{}{}10,8,6,47,5,3,1,这两组)剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2+=n n k ,∴这种情况有n 种()j i ,的取法.3°当2>i 时,考虑{}64,,7,6,5+n 共24+n 个数,由归纳假设里n m =时,有至少12++n n 种()j i ,的取法.综合1°2°3°,当1+=n m 时,至少有()()()()1111222++++=+++++n n n n n n 中取法,由①②及数学归纳法原理,值共有不少于12++m m 种()j i ,的取法使24,2,1+m 为()j i ,可分数列,那么()()8188811681121411222222242=++++>++++=++++=++≥+m m m m m m m m m m m m C m m P m m ,∴81>m P .。
高考数学理(福建卷)WORD版有答案

绝密★启用前2013 年一般高等学校招生全国一致考试(福建卷)数学试题(理工农医类)第Ⅰ卷(选择题共50分)一、选择题:此题共10 小题,每题 5 分,共 50 分。
在每题给出的四个选项中,只有一项切合题目的要求的 .1.已知复数z的共轭复数z 1 2i ( i 为虚数单位),则 z 在复平面内对应的点位于()A. 第一象限B.第二象限C.第三象限D.第四象限2.已知会合A 1,a , B 1,2,3 ,则“ a 3”是“ A B”的()A.充足而不用要条件B. 必需而不充足条件C.充足必需条件D. 既不充足也不用要条件3.双曲线x2y2 1 的极点到渐进线的距离等于()42 4 2 5 4 5A. 5B.5C. 5D. 54.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分红 6 组: [40,50), [50,60), [60,70), [70,80), [80,90), [90,100] 加以统计,获取以下图的频次散布直方图。
已知高一年级共有学生600 名,据此预计,该模块测试成绩许多于60 分的学生人数为()A.588B.480C.450D.1205.知足a,b 1,0,1,2 ,且对于 x 的方程ax22x b有实数解的有序数对的个数为()A. 14B. 13C. 12D. 106.阅读以下图的程序框图,若编入的k 10 ,则该算法的功能是()A. 计算数列2n 1 的前 10 项和B.计算数列2n 1的前9项和C. 计算数列2n- 1的前 10 项和D. 计算数列2n -1 的前 9项和7. 在四边形ABCD 中, AC (1,2) , BD ( 4, 2) ,则该四边形的面积为()A. 5B. 2 5C.5D.108. 设函数 f ( x) 的定义域为R, x0 x00 是 f (x) 的极大值点,以下结论必定正确的选项是()A. x R, f ( x) f ( x0 )B. x0是f (- x)的极小值点C. x0是 - f ( x) 的极小值点D. x0是 - f (- x) 的极小值点9. 已知等比数列 a n 的公比为 q ,记b n a m( n 1) 1 a m(n1) 2a m (n 1) m,b n am(n 1) 1am (n 1) 2am(n 1) m, m, n N * ,则以下结论必定正确的选项是()A. 数列b n 为等差数列,公差为q mB. 数列b n 为等比数列,公比为q2mC. 数列c n 为等比数列,公比为q m2D. 数列c n 为等比数列,公比为q m m10. 设 S,T 是 R的两个非空子集,假如存在一个从 S到 T 的函数y f (x) 满足:(i ) T f ( x) x S ; (ii ) 对随意 x1 ,x2 S ,当 x1 x2时,恒有 f ( x1) f ( x2 ) ,那么称这两个会合“保序同构” ,以下会合对不是“保序同构”的是()A. A N*, B NB.A x 1 x 3 ,B x x 8或 0 x 10C. A x 0 x 1 , B RD.A Z,B Q第Ⅱ卷(非选择题共 100 分)二、填空题:本大题共 5 小题,每题 4 分,共 20 分.把答案填写在答题卡的相应地点.11. 利用计算机产生0~ 1之间的平均随机数a,则事件‘3a-1>0’发生的概率为_________12.已知某一多面体内接于球组成一个简单组合体,假如该组合体的正视图、俯视图、均以下图,且图中的四边形是边长为 2 的正方形,则该球的表面积是13. 如图,在ABC 中,已知点 D 在BC 边上,AD AC , sin BAC 2 2, AB 3 2 , AD 3, 3则 BD 的长为14. 椭圆x2 y21 a b 0 的左右焦点分别为F1, F2,焦距为2c,若直线y3 x c :b2a2与椭圆的一个交点知足MF1F2 2 MF 2 F1,则该椭圆的离心率等于_____15. 当 x R, x 1时,有以下表达式:1x x 2x n11 x111 111dx两边同时积分得:21dx2xdx2 x 2dx2 x ndx2 10 0x进而获取以低等式:111(1)21 (1)3n 1( 1 ) n 1 ln 2.22 23 21 2请依据以上资料所包含的数学思想方法,计算:1 1 1 12 1 21 3 1n1n 1C n22Cn( 2)3Cn( 2 )n 1 C n ( 2 )三、解答题:本大题共 6 小题,共 80 分.解答应写出文字说明、证明过程或演算步骤 .16.(本小题满分 13 分)某联欢晚会举行抽奖活动, 举办方设置了甲、 乙两种抽奖方案, 方案甲的中奖率为2,中奖能够获取2 分;3方案乙的中奖率为2,中奖能够获取 3 分;未中奖则不得分。
高考福建理科数学试题及答案(高清版)

2019年普通高等学校夏季招生全国统一考试数学理工农医类(福建卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.理科:第Ⅱ卷第21题为选考题, 其他题为必考题, 满分150分.第Ⅰ卷一、选择题:(理科)本大题共10小题, 每小题5分, 共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.(文科)本大题共12小题, 每小题5分, 共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.下列命题中, 真命题是( )A .x 0∈R , 0e 0x≤ B .x ∈R , 2x >x 2 C .a +b =0的充要条件是1ab=- D .a >1, b >1是ab >1的充分条件2.一个几何体的三视图形状都相同、大小均相等, 那么这个几何体不可以是( ) A .球 B .三棱锥 C .正方体 D .圆柱3.若复数z 满足z i =1-i , 则z 等于( )A .-1-iB .1-iC .-1+iD .1+i A .3+4i B .5+4i C .3+2i D .5+2i4.等差数列{a n }中, a 1+a 5=10, a 4=7, 则数列{a n }的公差为( ) A .1 B .2 C .3 D .4 5.下列不等式一定成立的是( )A .lg(x 2+14)>lg x (x >0) B .sin x +1sin x≥2(x ≠k π, k ∈Z )C .x 2+1≥2|x |(x ∈R )D .2111x >+(x ∈R ) 6.如图所示, 在边长为1的正方形OABC 中任取一点P , 则点P 恰好取自阴影部分的概率为( )A .14 B .15 C .16 D .177.设函数1,()0,x D x x ⎧=⎨⎩为有理数,为无理数,则下列结论错误的是( )A .D (x )的值域为{0,1}B .D (x )是偶函数C .D (x )不是周期函数 D .D (x )不是单调函数8.已知双曲线22214x y b-=的右焦点与抛物线y 2=12x 的焦点重合, 则该双曲线的焦点到其渐近线的距离等于( )AB. C .3 D .59.若函数y =2x 图象上存在点(x , y )满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为( )A .12 B .1 C .32D .2 10.函数f (x )在[a , b ]上有定义, 若对任意x 1, x 2∈[a , b ], 有()()12121()22x x f f x f x +≤[+], 则称f (x )在[a , b ]上具有性质P .设f (x )在[1,3]上具有性质P , 现给出如下命题:①f (x )在[1,3]上的图象是连续不断的;②f (x 2)在[1,]上具有性质P ;③若f (x )在x =2处取得最大值1, 则f (x )=1, x ∈[1,3]; ④对任意x 1, x 2, x 3, x 4∈[1,3], 有12341()44x x x x f +++≤[f (x 1)+f (x 2)+f (x 3)+f (x 4)].其中真命题的序号是( )A .①②B .①③C .②④D .③④第Ⅱ卷二、填空题:(理科)本大题共5小题, 每小题4分, 共20分.把答案填在答题卡的相应位置.(文科)本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.11.(a+x)4的展开式中x3的系数等于8,则实数a=________.12.阅读右图所示的程序框图,运行相应的程序,输出的s值等于________.13.已知△ABC的等比数列,则其最大角的余弦值为________.14.数列{a n}的通项公式πcos12nna n=+,前n项和为S n,则S2 012=________.15.对于实数a和b,定义运算“*”:22*.a ab a ba bb ab a b⎧-≤=⎨->⎩,,,设f(x)=(2x-1)*(x-1),且关于x的方程f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是__________.三、解答题:(理科)本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.(文科)本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.17.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2(-18°)+cos248°-sin(-18°)cos48°;⑤sin2(-25°)+cos255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.18.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD中点.(1)求证:B1E⊥AD1.(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.(3)若二面角A-B1E-A1的大小为30°,求AB的长.19.如图,椭圆E:22221x ya b+=(a>b>0)的左焦点为F1,右焦点为F2,离心率12e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(1)求椭圆E的方程;(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.20.已知函数f(x)=e x+ax2-e x,a∈R.(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;(2)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.21.(1)选修4-2:矩阵与变换设曲线2x2+2xy+y2=1在矩阵1ab⎛⎫= ⎪⎝⎭A(a>0)对应的变换作用下得到的曲线为x2+y2=1.①求实数a,b的值;②求A2的逆矩阵.(2)选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),π2⎫⎪⎪⎝⎭,圆C的参数方程为22cos,2sinxyθθ=+⎧⎪⎨=⎪⎩(θ为参数).①设P为线段MN的中点,求直线OP的平面直角坐标方程;②判断直线l与圆C的位置关系.(3)选修4-5:不等式选讲已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].①求m的值;②若a,b,c∈R+,且11123ma b c++=,求证:a+2b+3c≥9.22.(文)已知函数f(x)=ax sin x-32(a∈R),且在[0,π2]上的最大值为π32-.(1)求函数f(x)的解析式;(2)判断函数f(x)在(0,π)内的零点个数,并加以证明.1.A由z i=1-i,得221i(1i)i i i i+11ii i11z---=====----.2.B∵a1+a5=10=2a3,∴a3=5.故d=a4-a3=7-5=2.3.D∵a>1>0,b>1>0,∴由不等式的性质得ab>1,即a >1, b >1⇒ab >1.4. D ∵圆柱的三视图中有两个矩形和一个圆, ∴这个几何体不可以是圆柱.5. C ∵x 2+1≥2|x |⇔x 2-2|x |+1≥0,∴当x ≥0时, x 2-2|x |+1=x 2-2x +1=(x -1)2≥0成立; 当x <0时, x 2-2|x |+1=x 2+2x +1=(x +1)2≥0成立. 故x 2+1≥2|x |(x ∈R )一定成立.6. C ∵由图象知阴影部分的面积是31220121211)d ()032326x x x x =⋅-=-=⎰,∴所求概率为11616=.7. C ∵D (x )是最小正周期不确定的周期函数, ∴D (x )不是周期函数是错误的.8. A 由双曲线的右焦点与抛物线y 2=12x 的焦点重合, 知32pc ==, c 2=9=4+b 2, 于是b 2=5,b =.因此该双曲线的渐近线的方程为2y x =±,即20y ±=.故该双曲线的焦点到其渐近线的距离为d ==.9. B 由约束条件作出其可行域如图所示:由图可知当直线x =m 经过函数y =2x的图象与直线x +y -3=0的交点P 时取得最大值, 即得2x=3-x , 即x =1=m .10. D ①如图1,图1在区间[1,3]上f (x )具有性质P , 但是是间断的, 故①错.②可设f (x )=|x -2|(如图2), 当x ∈[1,3]时易知其具有性质P , 但是f (x 2)=|x 2-2|=222,1x x x x ⎧-≤≤⎪⎨-<≤⎪⎩P (如图3).故②错.图2图3③任取x 0∈[1,3], 则4-x 0∈[1,3], 1=f (2)=004()2x x f +-≤12[f (x 0)+f (4-x 0)]. 又∵f (x 0)=1, f (4-x 0)≤1, ∴12[f (x 0)+f (4-x 0)]≤1. ∴f (x 0)=f (4-x 0)=1.故③正确.④3412123422()()42x x x x x x x x f f ++++++= ≤34121()+()222x x x x f f ++⎡⎤⎢⎥⎣⎦≤14[f (x 1)+f (x 2)+f (x 3)+f (x 4)], 故④正确.11.答案:2解析:∵T r +1=4C r a r x 4-r , ∴当4-r =3, 即r =1时, T 2=14C ·a ·x 3=4ax 3=8x 3.故a =2.12.答案:-3解析:(1)k =1,1<4, s =2×1-1=1; (2)k =2,2<4, s =2×1-2=0; (3)k =3,3<4, s =2×0-3=-3; (4)k =4, 直接输出s =-3.13.答案:4-解析:设△ABC 的最小边长为a (m >0),, 2a , 故最大角的余弦值是2222cos 4θ===-. 14.答案:3 018 解析:∵函数πcos 2n y =的周期2π4π2T ==,∴可用分组求和法:a 1+a 5+…+a 2 009=50311+1=503++14243个…; a 2+a 6+…+a 2 010=(-2+1)+(-6+1)+…+(-2 010+1)=-1-5-…-2 009=503(12009)2--=-503×1 005;a 3+a 7+…+a 2 011=50311+1=503++14243个…; a 4+a 8+…+a 2 012=(4+1)+(8+1)+…+(2 012+1)=503(52013)2⨯+=503×1 009;故S 2 012=503-503×1 005+503+503×1 009 =503×(1-1 005+1+1 009)=3 018. 15.答案:, 0) 解析:由已知, 得()22200x x x f x x x x ⎧≤⎪⎨⎪⎩-,,=-+,>,作出其图象如图, 结合图象可知m 的取值范围为0<m <14,当x >0时, 有-x 2+x =m , 即x 2-x +m =0,于是x 1x 2=m .当x <0时, 有2x 2-x -m =0,于是314x =.故123(14m x x x =.设h (m )=m (1,∵h ′(m )=(1+[m()]=10<,∴函数h (m )单调递减.故x 1x 2x 3的取值范围为(116, 0). 16.解:(1)设“甲品牌轿车首次出现故障发生在保修期内”为事件A , 则231()5010P A +==. (2)依题意得, X 1X 2的分布列为(3)由(2)得, E (X 1)=1×125+2×50+3×10=50=2.86(万元),E (X 2)=1.8×110+2.9×910=2.79(万元).因为E (X 1)>E (X 2), 所以应生产甲品牌轿车.17.解:方法一:(1)选择②式, 计算如下:sin 215°+cos 215°-sin15°cos15°=1-12sin30°=13144-=. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下: sin 2α+cos 2(30°-α)-sin αcos(30°-α) =sin 2α+(cos30°cos α+sin30°sin α)2-sin α·(cos30°cos α+sin30°sin α)=sin 2α+34cos 2α+2sin αcos α+14sin 2α-2sin α·cos α-12sin 2α=34sin 2α+34cos 2α=34. 方法二:(1)同方法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34. 证明如下: sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1cos21cos(602)22αα-+︒-+-sin α(cos30°cos α+sin30°sin α)=12-12cos2α+12+12(cos60°·cos2α+sin60°sin2α)sin αcos α-12sin 2α=12-12cos2α+12+14cos2ααα-14(1-cos2α)=11131cos2cos24444αα--+=.18.解:(1)以A 为原点, AB u u u r , AD u u ur, 1AA u u u r 的方向分别为x 轴, y 轴, z 轴的正方向建立空间直角坐标系(如图).设AB =a , 则A (0,0,0), D (0,1, 0), D 1(0,1,1), E (2a, 1,0), B 1(a,0,1), 故1AD u u u u r =(0,1,1), 1B E u u u r =(2a -, 1, -1), 1AB u u u r =(a,0,1), AE u u u r =(2a, 1,0).∵1AD u u u u r ·1B E u u u r =2a -×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)假设在棱AA 1上存在一点P (0,0, z 0), 使得DP ∥平面B 1AE .此时DP u u u r=(0, -1, z 0).又设平面B 1AE 的法向量n =(x , y , z ). ∵n ⊥平面B 1AE ,∴n ⊥1AB u u u r , n ⊥AE u u u r , 得00.2ax z ax y +=⎧⎪⎨+=⎪⎩,取x =1, 得平面B 1AE 的一个法向量n =(1, 2a-, -a ). 要使DP ∥平面B 1AE , 只要n ⊥DP u u u r , 有2a -az 0=0, 解得012z =.又DP 平面B 1AE , ∴存在点P , 满足DP ∥平面B 1AE , 此时12AP =.(3)连接A 1D , B 1C , 由长方体ABCD -A 1B 1C 1D 1及AA 1=AD =1, 得AD 1⊥A 1D .∵B 1C ∥A 1D , ∴AD 1⊥B 1C .又由(Ⅰ)知B 1E ⊥AD 1, 且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1.∴1AD u u u u r 是平面A 1B 1E 的一个法向量, 此时1AD u u u u r=(0,1,1).设1AD u u u u r 与n 所成的角为θ, 则1212·2cos ||||214a a AD AD aa θ--==++u u u u r u u u u r n n . ∵二面角A -B 1E -A 1的大小为30°,∴|cos θ|=cos30°,3a=, 解得a =2, 即AB 的长为2.19.解:方法一:(1)因为|AB |+|AF 2|+|BF 2|=8, 即|AF 1|+|F 1B |+|AF 2|+|BF 2|=8, 又|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a , 所以4a =8, a =2. 又因为12e =, 即12c a =, 所以c =1.所以b故椭圆E 的方程是22143x y +=. (2)由22143y kx m x y =+⎧⎪⎨+=⎪⎩,,得(4k 2+3)x 2+8kmx +4m 2-12=0.因为动直线l 与椭圆E 有且只有一个公共点P (x 0, y 0), 所以m ≠0且∆=0, 即64k 2m 2-4(4k 2+3)(4m 2-12)=0, 化简得4k 2-m 2+3=0.(*)此时024443km k x k m =-=-+, y 0=kx 0+m =3m , 所以P (4k m -, 3m ).由4x y kx m =⎧⎨=+⎩,,得Q (4,4k +m ). 假设平面内存在定点M 满足条件, 由图形对称性知, 点M 必在x 轴上.设M (x 1,0), 则0MP MQ ⋅=u u u r u u u u r对满足(*)式的m , k 恒成立.因为MP u u u r =(14k x m --, 3m ), MQ u u u u r =(4-x 1,4k +m ),由0MP MQ ⋅=u u u r u u u u r,得211141612430kx k k x x m m m-+-+++=,整理, 得(4x 1-4)km+x 12-4x 1+3=0.(**)由于(**)式对满足(*)式的m , k 恒成立, 所以1211440,430,x x x -=⎧⎨-+=⎩解得x 1=1.故存在定点M (1,0), 使得以PQ 为直径的圆恒过点M . 方法二:(1)同方法一.(2)由22143y kx m x y =+⎧⎪⎨+=⎪⎩,,得(4k 2+3)x 2+8kmx +4m 2-12=0.因为动直线l 与椭圆E 有且只有一个公共点P (x 0, y 0), 所以m ≠0且∆=0, 即64k 2m 2-4(4k 2+3)(4m 2-12)=0,化简得4k 2-m 2+3=0.(*)此时024443km k x k m =-=-+, y 0=kx 0+m =3m , 所以P (4k m -, 3m ).由4x y kx m =⎧⎨=+⎩,,得Q (4,4k +m ).假设平面内存在定点M 满足条件, 由图形对称性知, 点M 必在x 轴上.取k =0,m =, 此时P (0,, Q (4,, 以PQ 为直径的圆为(x -2)2+(y2=4, 交x 轴于点M 1(1,0), M 2(3,0);取12k =-, m =2, 此时P (1, 32), Q (4,0),以PQ 为直径的圆为225345()()2416x y -+-=, 交x 轴于点M 3(1,0), M 4(4,0).所以若符合条件的点M 存在, 则M 的坐标必为(1,0).以下证明M (1,0)就是满足条件的点:因为M 的坐标为(1,0), 所以MP u u u r =(41k m --, 3m), MQ u u u u r =(3,4k +m ),从而1212330k k MP MQ m m ⋅=--++=u u u r u u u u r ,故恒有MP MQ ⊥u u u r u u u u r, 即存在定点M (1,0), 使得以PQ 为直径的圆恒过点M .20.解:(1)由于f ′(x )=e x +2ax -e , 曲线y =f (x )在点(1, f (1))处切线斜率k =2a =0, 所以a =0, 即f (x )=e x -e x .此时f ′(x )=e x -e , 由f ′(x )=0得x =1.当x ∈(-∞, 1)时, 有f ′(x )<0;当x ∈(1, +∞)时, 有f ′(x )>0. 所以f (x )的单调递减区间为(-∞, 1), 单调递增区间为(1, +∞).(2)设点P (x 0, f (x 0)), 曲线y =f (x )在点P 处的切线方程为y =f ′(x 0)(x -x 0)+f (x 0), 令g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), 故曲线y =f (x )在点P 处的切线与曲线只有一个公共点P 等价于函数g (x )有唯一零点.因为g (x 0)=0, 且g ′(x )=f ′(x )-f ′(x 0)=e x -e x 0+2a (x -x 0).(1)若a ≥0, 当x >x 0时, g ′(x )>0, 则x >x 0时, g (x )>g (x 0)=0; 当x <x 0时, g ′(x )<0, 则x <x 0时, g (x )>g (x 0)=0. 故g (x )只有唯一零点x =x 0.由P 的任意性, a ≥0不合题意.(2)若a <0, 令h (x )=e x -e x 0+2a (x -x 0), 则h (x 0)=0, h ′(x )=e x +2a .令h ′(x )=0, 得x =ln(-2a ), 记x ′=ln(-2a ), 则当x ∈(-∞, x *)时, h ′(x )<0, 从而h (x )在(-∞, x *)内单调递减;当x ∈(x *, +∞)时, h ′(x )>0, 从而h (x )在(x *, +∞)内单调递增.①若x 0=x *, 由x ∈(-∞, x *)时, g ′(x )=h (x )>h (x *)=0;x ∈(x *, +∞)时, g ′(x )=h (x )>h (x *)=0, 知g (x )在R 上单调递增.所以函数g (x )在R 上有且只有一个零点x =x *.②若x 0>x *, 由于h (x )在(x *, +∞)内单调递增, 且h (x 0)=0, 则当x ∈(x *, x 0)时有g ′(x )=h (x )<h (x 0)=0, g (x )>g (x 0)=0;任取x 1∈(x *, x 0)有g (x 1)>0.又当x ∈(-∞, x 1)时, 易知g (x )=e x +ax 2-[e +f ′(x 0)]x -f (x 0)+x 0f ′(x 0)<e x 1+ax 2-[e +f ′(x 0)]x -f (x 0)+x 0f ′(x 0)=ax 2+bx +c ,其中b =-[e +f ′(x 0)], c =e x 1-f (x 0)+x 0f ′(x 0). 由于a <0, 则必存在x 2<x 1, 使得ax 22+bx 2+c <0.所以g (x 2)<0.故g (x )在(x 2, x 1)内存在零点,即g(x)在R上至少有两个零点.③若x0<x*,仿②并利用3e6xx>,可证函数g(x)在R上至少有两个零点.综上所述,当a<0时,曲线y=f(x)上存在唯一点P(ln(-2a),f(ln(-2a))),曲线在该点处的切线与曲线只有一个公共点P.21.(1)选修4-2:矩阵与变换解:①设曲线2x2+2xy+y2=1上任意点P(x,y)在矩阵A对应的变换作用下的像是P′(x′,y′).由1x ay b'⎛⎫⎛⎫=⎪ ⎪'⎝⎭⎝⎭x axy bx y⎛⎫⎛⎫=⎪ ⎪+⎝⎭⎝⎭,得,.x axy bx y'=⎧⎨'=+⎩又点P′(x′,y′)在x2+y2=1上,所以x′2+y′2=1,即a2x2+(bx+y)2=1,整理得(a2+b2)x2+2bxy+y2=1.依题意得222,22,a bb⎧+=⎨=⎩解得1,1,ab=⎧⎨=⎩或1,1,ab=-⎧⎨=⎩因为a>0,所以1,1. ab=⎧⎨=⎩②由①知,1 01 1⎛⎫= ⎪⎝⎭A,21 0 1 0 1 01 1 1 12 1⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭⎝⎭A,所以|A2|=1,(A2)-1=1 02 1⎡⎤⎢⎥-⎣⎦.(2)选修4-4:坐标系与参数方程解:①由题意知,M,N的平面直角坐标分别为(2,0),(0,).又P为线段MN的中点,从而点P的平面直角坐标为(1,),故直线OP的平面直角坐标方程为y x=.②因为直线l上两点M,N的平面直角坐标分别为(2,0),(0,),所以直线l30y+-=.又圆C的圆心坐标为(2,),半径r=2,圆心到直线l的距离32d r==<,故直线l与圆C相交.(3)选修4-5:不等式选讲解:①因为f(x+2)=m-|x|,f(x+2)≥0等价于|x|≤m,由|x|≤m有解,得m≥0,且其解集为{x|-m≤x≤m}.又f(x+2)≥0的解集为[-1,1],故m=1.②由①知111123a b c++=,又a,b,c∈R+,由柯西不等式得a+2b+3c=(a+2b+3c)(11123a b c ++)≥29=.。
普通高等学校招生全国统一考试数学理试题(福建卷,解析版)

普通高等学校招生全国统一考试数学理试题(福建卷,解析版)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷第3至6页。
第Ⅱ卷第21题为选考题,其他题为必考题。
满分150分。
注意事项: 1. 答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号,姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3. 考试结束,考生必须将试题卷和答题卡一并交回。
参考公式:样本数据x 1,x 2,…,x a 的标准差 锥体体积公式222121--...-n s x x x x x x n ⎡⎤=++⎣⎦()()() 13V Sh = 其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式 V=Sh 2344,3S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径 第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 虚数单位,若集合S=}{1.0.1-,则A.i S ∈B.2i S ∈ C. 3i S ∈ D.2S i∈2.若a ∈R ,则a=2是(a-1)(a-2)=0的A.充分而不必要条件 B 必要而不充分条件C.充要条件 C.既不充分又不必要条件 【答案】A【解析】:a=2⇒(a-1)(a-2)=0 充分 反之(a-1)(a-2)=0 ⇒a=2不必要,故选A 3.若tan α=3,则2sin 2cos aα的值等于A.2B.3C.4D.6 【答案】D 【解析】:22sin 22sin cos 2sin 2tan 6cos cos cos a a αααααα====。
2020年福建省高考理科数学试题及答案(word版)

2020年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题).1.若z=1+i,则|z2﹣2z|=()A.0B.1C.D.22.设集合A={x|x2﹣4≤0},B={x|2x+a≤0},且A∩B={x|﹣2≤x≤1},则a=()A.﹣4B.﹣2C.2D.43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.4.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2B.3C.6D.95.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2, (20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bx B.y=a+bx2C.y=a+be x D.y=a+blnx6.函数f(x)=x4﹣2x3的图象在点(1,f(1))处的切线方程为()A.y=﹣2x﹣1B.y=﹣2x+1C.y=2x﹣3D.y=2x+17.设函数f(x)=cos(ωx+)在[﹣π,π]的图象大致如图,则f(x)的最小正周期为()A.B.C.D.8.(x+)(x+y)5的展开式中x3y3的系数为()A.5B.10C.15D.209.已知α∈(0,π),且3cos2α﹣8cosα=5,则sinα=()A.B.C.D.10.已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π11.已知⊙M:x2+y2﹣2x﹣2y﹣2=0,直线1:2x+y+2=0,P为l上的动点.过点P作⊙M 的切线PA,PB,切点为A,B,当|PM|•|AB|最小时,直线AB的方程为()A.2x﹣y﹣1=0B.2x+y﹣1=0C.2x﹣y+1=0D.2x+y+1=0 12.若2a+log2a=4b+2log4b,则()A.a>2b B.a<2b C.a>b2D.a<b2二、填空题:本题共4小题,每小题5分,共20分。
普通高等学校招生全国统一考试福建卷理科数学试题及答案

2019年一般高等学校招生福建卷理工类数学试题第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.复数(1i )10的值是(1iA .-1B .1C .-32D .322.tan15°+cot15°的值是()A .2B .2+3C .44 3D .33.命题p :若a 、b ∈R ,则|a|+|b|>1是|a+b|>1的充足而不用要条件;命题q :函数y=|x1|2的定义域是(-∞,-1]∪[3,+∞).则( )A .“p 或q ”为假C .p 真q 假B .“p 且q ”为真D .p 假q 真4.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是真实三角形,则这个椭圆的离心率是()3 2 2 2 3A .B .C .2D .33325.已知m 、n 是不重合的直线,α、β是不重合的平面,有以下命题:①若mα,n ∥α,则m ∥n ;②若m ∥α,m ∥β,则α∥β;③若α∩β=n ,m ∥n ,则m ∥α且m ∥β;④若m ⊥α,m ⊥β,则α∥β.此中真命题的个数是()A .0B .1C .2D .36.某校高二年级共有六个班级,现从外处转入4名学生,要安排到该年级的两个班级且每班安排2名,则不一样的安排方案种数为()A .A 62C 42B .1A 62C 422C .A 62A 42D .2A 627.已知函数y=log 2x 的反函数是y=f—1—1()(x),则函数 y=f(1-x)的图象是yyy1O1x (A)y111(B)O1 xO1xO1x(C)(D)8.已知a 、b 是非零向量且知足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是( )A .B .C .2D .563639.若(1-2 x 9睁开式的第3项为288,则lim(1 11)的值是 ()) xx 2x nn12A .2B .1C .D .2510.如图,A 、B 、C 是表面积为48π的球面上三点,AB=2,BC=4,∠ABC=60°,O 为球心,则直线OA 与截面ABC 所成的角是()A .arcsinC .arcsin36 33B .arccos D .arccos363311.定义在R 上的偶函数f(x)知足f(x)=f(x+2),当x ∈[3,5]时,f(x)=2-|x -4|,则()A .f(sin)<f(cos )B .f(sin1)>f(cos1)66C .f(cos2 2D .f(cos2)>f(sin2))<f(sin)3312.如图,B 地在A 地的正东方向4km 处,C地在B 地的北偏东30°方向2km 处,河流的没岸PQ (曲线)上随意一点到A 的距离比到B 的距离远2km.现要在曲线PQ 上选一处M 建一座码头,向B 、C 两地转运货物.经测算,从M 到B 、M 到C 修筑公路的花费分别是a 万元/km 、2a 万元/km ,那么修筑这两条公路的总花费最低是( )A .(2 7-2)a 万元B .5a 万元C .(27+1)a 万元D .(23+3)a 万元第Ⅱ卷(非选择题共90分)二、填空题:本大题共 4小题,每题4分,共16分,把答案填在答题卡的相应地点.13.直线x+2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于.14.设函数f(x)1x1(x0)在x=0处连续,则实数a的值为.x(x0)a15.某射手射击1次,击中目标的概率是0.9.他连续射击4次,且各次射击能否击中目标相互之间没有影响.有以下结论:①他第3次击中目标的概率是;②他恰巧击中目标3次的概率是3×;③他起码击中目标1次的概率是4.此中正确结论的序号是(写出全部正确结论的序号).16.如图1,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为时,其容积最大.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)设函数f(x)=a·b,此中向量a=(2cosx,1),b=(cosx,3sin2x),x∈R.(Ⅰ)若f(x)=1-3且x∈[-,],求x;33(Ⅱ)若函数y=2sin2x的图象按向量c=(m,n)(|m|<)平移后获得函数y=f(x)的图象,2务实数m、n的值.18.(本小题满分12分)甲、乙两人参加一次英语口语考试,已知在备选的乙能答对此中的8题.规定每次考试都从备选题中随机抽出10道试题中,甲能答对此中的3题进行测试,起码答对6题,2题才算合格.(Ⅰ)求甲答对试题数ξ的概率散布及数学希望;(Ⅱ)求甲、乙两人起码有一人考试合格的概率.19.(本小题满分12分)在三棱锥S—ABC 中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=23,M、N分别为AB、SB的中点.(Ⅰ)证明:AC⊥SB;(Ⅱ)求二面角N—CM—B的大小;(Ⅲ)求点B到平面CMN的距离.20.(本小题满分12分)某公司2003年的纯收益为500万元,因设施老化等原由,公司的生产能力将逐年降落.若不可以进行技术改造,展望从今年起每年比上一年纯收益减少20万元,今年初该公司一次性投入资本600万元进行技术改造,展望在未扣除技术改造资本的状况下,第n年(今年为第一年)的收益为500(1+12n)万元(n为正整数).(Ⅰ)设从今年起的前n年,若该公司不进行技术改造的累计纯收益为A n万元,进行技术改造后的累计纯收益为B n万元(须扣除技术改造资本),求A n、B n的表达式;(Ⅱ)依上述展望,从今年起该公司起码经过多少年,进行技术改造后的累计纯收益超过不进行技术改造的累计纯收益?21.(本小题满分 14分)2x a已知f(x)=(x ∈R)在区间[-1,1]上是增函数.x 22(Ⅰ)务实数 a 的值构成的会合A ;(Ⅱ)设对于x 的方程f(x)=1的两个非零实根为x 1、x 2.试问:能否存在实数m ,使得x不等式m 2+tm+1≥|x 1-x 2|对随意a ∈A 及t ∈[-1,1]恒成立?若存在,求 m 的取值范围;若不存在,请说明原由.22.(本小题满分 12分)如图,P 是抛物线C :y=1x 2上一点,直线 l 过点P 且与抛物线C 交于另一点Q.2(Ⅰ)若直线 l 与过点P 的切线垂直,求线段 PQ 中点M 的轨迹方程;(Ⅱ)若直线 l 可是原点且与x 轴交于点S ,与y 轴交于点T ,试求|ST||ST|的取|SP||SQ|值范围.2004年一般高等学校招生福建卷理工类数学试题参照答案一、二、13.45,3三、本小题主要考察平面向量的观点和计算,三角函数的恒等变换及其图象变换的基本技术,考察运算能力.满分12分.解:(Ⅰ)依题设,f(x)=2cos 2x+3sin2x=1+2sin(2x+).6由1+2sin(2x+)=1-33,得sin(2x+)=-.66 2∵-≤x ≤ ,∴-≤2x+≤5,∴2x+=-3,332 6 6 6即x=-.4(Ⅱ)函数y=2sin2x 的图象按向量 c=(m ,n)平移后获得函数y=2sin2(x -m)+n 的图象,即函数y=f(x)的图象.由(Ⅰ)得f(x)=2sin2(x+)+1.12∵|m|<,∴m=-12 ,n=1.218.本小题主要考察概率统计的基础知识,运用数学知识解决问题的能力.满分12分.解:(Ⅰ)依题意,甲答对试题数 ξ的概率散布以下:ξ0 1 2 31 3 1 1P102630甲答对试题数 ξ的数学希望1 31 1 9 E ξ=0×+1×+2×+3×6 =.301025(Ⅱ)设甲、乙两人考试合格的事件分别为 A 、B ,则C 62C 41 C 6360202,P(A)===C 1031203C 82C 21 C 83565614 P(B)===.C 10312015由于事件A 、B 互相独立, 方法一:∴甲、乙两人考试均不合格的概率为2 14 1P(AB )=P(A )P(B )=1-)(1-15)=.345∴甲、乙两人起码有一人考试合格的概率为1 44P=1-P(AB )=1-=.45 4544答:甲、乙两人起码有一人考试合格的概率为.45方法二:∴甲、乙两人起码有一个考试合格的概率为=P =P(A ·B )+P(A ·B)+P(A ·B)=P(A )P(B )+P(A )P(B)+P(A)P(B)2×1+1×14+2×14=44.3153153154544答:甲、乙两人起码有一人考试合格的概率为 .4519.本小题主要考察直线与直线,直线与平面,二面角,点到平面的距离等基础知识,考察空间想象能力和逻辑推理能力.满分12分.解法一:(Ⅰ)取 AC 中点D ,连接SD 、DB. SA=SC ,AB=BC ,∴AC ⊥SD 且AC ⊥BD , ∴AC ⊥平面SDB ,又SB 平面SDB ,∴AC ⊥SB. (Ⅱ)∵AC ⊥平面SDB ,AC 平面ABC , ∴平面SDB ⊥平面ABC. 过N 作NE ⊥BD 于E ,NE ⊥平面ABC , 过E 作EF ⊥CM 于F ,连接NF , 则NF ⊥CM. ∴∠NFE 为二面角 N -CM -B 的平面角. ∵平面SAC ⊥平面ABC ,SD ⊥AC ,∴SD ⊥平面ABC. 又∵NE ⊥平面ABC ,∴NE ∥SD.∵SN=NB ,∴NE=1 SD= 1 SA2 AD 2 = 1 12 4=2,且ED=EB.2 2 EF=1 21,在正△ABC 中,由平几知识可求得MB= 在Rt △NEF 中,tan ∠NFE=EN=2422,EF∴二面角N —CM —B 的大小是arctan22.(Ⅲ)在Rt △NEF 中,NF=EF 2EN 2 = 3,13123 3.∴S △CMN =CM ·NF=2 ,S △CMB =BM ·CM=222设点B 到平面CMN 的距离为h ,∵V B-CMN=V N-CMB,NE⊥平面CMB,∴1S△CMN·h=1S△CMB·NE,33S CMB NE4242∴h==.即点B到平面CMN的距离为.SCMN33解法二:(Ⅰ)取AC中点O,连接OS、OB.SA=SC,AB=BC,∴AC⊥SO且AC⊥BO.∵平面SAC⊥平面ABC,平面SAC∩平面ABC=ACSO⊥面ABC,∴SO⊥BO.以下图成立空间直角坐标系O-xyz.则A(2,0,0),B(0,23,0),C(-2,0,0),S(0,0,22),M(1,3,0),N(0,3,2).∴AC=(-4,0,0),SB=(0,23,22),∵AC·SB=(-4,0,0)·(0,23,22)=0,∴AC⊥SB.(Ⅱ)由(Ⅰ)得CM=(3,3,0),MN=(-1,0,2).设n=(x,y,z)为平面CMN的一个法向量,CM·n=3x+3y=0,则取z=1,则x=2,y=-6,MN·n=-x+2z=0,n=(2,-6,1),又OS=(0,0,22)为平面ABC的一个法向量,nOS1∴cos(n,OS)==.|n||OS|3∴二面角N-CM-B的大小为1 arccos.3(Ⅲ)由(Ⅰ)(Ⅱ)得MB=(-1,3,0),n=(2,-6,1)为平面CMN的一个法向量,∴点B 到平面CMN 的距离d=|n ·MB|=4 2 .|n| 320.本小主要考成立函数关系式、数列乞降、不等式的等基知,考运用数学知解决的能力.分12分.解:(Ⅰ)依, A n =(500-20)+(500-40)+⋯+(500-20n)=490n -10n 2;1)+(1+1 1 500 -100.B n =500[(1+22 )+⋯+(1+n )]-600=500n -n2500 22(Ⅱ)B n -A n =(500n --100) -(490n -10n 2)2n=10n 2+10n -500-100=10[n(n+1) -50-10].2n2n因函数y=x(x+1)-50-10在(0,+∞)上增函数,2n当1≤n ≤3,n(n+1)-50-10≤12-50-10<0;2n8当n ≥4,n(n+1)-50n -10≥20-50-10>0.216∴当n ≥4,B n >A n .答:起码4年,企行技改造后的累利超不可以技改造的累 利.21.本小主要考函数的性,数的用和不等式等相关知,考数形合及分思想和灵巧运用数学知剖析和解决的能力 .分14分.解:(Ⅰ)f '(x)=42ax2x 2 = 2(x 2 ax2),(x 22)2 (x 22)2(1) ∵f(x)在[-1,1]上是增函数,f '(x)≥0x ∈[-1,1]恒成立,即x 2-ax -2≤0 x ∈[-1,1]恒成立. ①(x)=x 2-ax -2, 方法一:1a20 ①-1≤a ≤1,(1)1 a2∵x ∈[-1,1],f(x)是函数,且只有当 a=1,f '(-1)=0以及当a=-1,f '(1)=0 ∴A={a|-1≤a ≤1}. 方法二:aa①2或21a201a20(1) (1)0≤a ≤1或-1≤a ≤0-1≤a ≤1.∴ ∵x ∈[-1,1],f(x)是函数,且只有当 a=1,f '(-1)=0以及当a=-1,f '(1)=0A={a|-1≤a ≤1}.(Ⅱ)由2xa=1,得x2-ax-2=0,∵△=a2+8>0 x22xx1,x2是方程x2-ax-2=0的两非零实根,x1+x2=a,x1x2=-2,进而|x1-x2|=(x1x2)24x1x2=a28.∵-1≤a≤1,∴|x1-x2|=a28≤3.2及t∈[-1,1]恒成立,要使不等式m+tm+1≥|x1-x2|对随意a∈A当且仅当m2+tm+1≥3对随意t∈[-1,1]恒成立,即m2+tm-2≥0对随意t∈[-1,1]恒成立.②设g(t)=m2+tm-2=mt+(m2-2),方法一:g(-1)=m2-m-2≥0,g(1)=m2+m-2≥0,m≥2或m≤-2.因此,存在实数m,使不等式m2+tm+1≥|x1-x2|对随意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}.方法二:当m=0时,②明显不可立;当m≠0时,②m>0,g(-1)=m2-m-2≥0或m<0,g(1)=m2+m-2≥0m≥2或m≤-2.因此,存在实数m,使不等式m2+tm+1≥|x1-x2|对随意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年福建高考数学试题(理)
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.复数(32)z i i =-的共轭复数z 等于( )
.23A i -- .23B i -+ .23C i - .23D i + 2.某空间几何体的正视图是三角形,则该几何体不可能是( )
.A 圆柱 .B 圆锥 .C 四面体 .D 三棱柱
3.等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( )
.8A .10
B .12
C .14
D 4.若函数log (0,1)a y x a a =>≠且的图像如右图所示,则下列函数图像正确的是( )
5.阅读右图所示的程序框图,运行相应的程序,输出的S 得值等于( )
.18A .20
B .21
C .40D
6.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“ABC ∆的面积为12
”的( )
.A 充分而不必要条件 .B 必要而不充分条件
.C 充分必要条件 .D 既不充分又不必要条件 7.已知函数()⎩
⎨⎧≤>+=0,cos 0,12x x x x x f 则下列结论正确的是( ) A.()x f 是偶函数 B. ()x f 是增函数 C.()x f 是周期函数 D.()x f 的值域为[)+∞-,1
8.在下列向量组中,可以把向量()2,3=表示出来的是( )
A.)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e e
C.)10,6(),5,3(21==e e
D.)3,2(),3,2(21-=-=e e
9.设Q P ,分别为()262
2=-+y x 和椭圆11022
=+y x 上的点,则Q P ,两点间的最大距离是( )
10.用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个篮球中取出若干个球的所有取法可由()()b a ++11的展开式ab b a +++1表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球,面“ab ”用表示把红球和篮球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个有区别的黑球中取出若干个球,且所有的篮球都取出或都不取出的所有取法的是
A. ()()()555432111c b a a a a a +++++++
B.()()()5
54325111c b b b b b a +++++++ C. ()()()554325111c b b
b b b a +++++++ D.()()()
543255111c c c c c b a +++++++ 二、填空题 11、若变量y x ,满足约束条件⎪⎩
⎪⎨⎧≥≤-+≤+-008201x y x y x 则y x z +=3的最小值为________
12、在ABC ∆中,3,2,60==︒=BC AC A ,则ABC ∆等于_________
13、要制作一个容器为43m ,高为m 1的无盖长方形容器,已知该容器的底面造价是每平方
米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元)
14.如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.
15.若集合},4,3,2,1{},,,{=d c b a 且下列四个关系:
①1=a ;②1≠b ;③2=c ;④4≠d 有且只有一个是正确的,则符合条件的有序数组),,,(d
c b a 的个数是_________.
三.解答题:本大题共6小题,共80分.
16.(本小题满分13分)
已知函数
1()cos (sin cos )2
f x x x x =+-. (1)若02πα<<,且sin 2
α=,求()f α的值; (2)求函数()f x 的最小正周期及单调递增区间. 17.(本小题满分12分)
在平行四边形ABCD 中,1AB BD CD ===,,AB BCD CD BD ⊥⊥.将ABD ∆沿BD 折起,使得平面ABD ⊥平面BCD ,如图.
(1)求证:CD ⊥CD ;
(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.
18.(本小题满分13分)
为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从 一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾 客所获的奖励额.
(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求 ①顾客所获的奖励额为60元的概率
②顾客所获的奖励额的分布列及数学期望;
(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和 50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励 总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球 的面值给出一个合适的设计,并说明理由.
19.(本小题满分13分) 已知双曲线)0,0(1:22
22>>=-b a b
y a x E 的两条渐近线分别为x y l x y l 2:,2:21-==. (1)求双曲线E 的离心率;
(2)如图,O 为坐标原点,动直线l 分别交直线21,l l 于B A ,两点(B A ,分别在第一, 四象限),且OAB ∆的面积恒为8,试探究:是否存在总与直线l 有且只有一个公 共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由。
20. (本小题满分14分)
已知函数()ax e x f x -=(a 为常数)的图像与y 轴交于点A ,曲线()x f y =在点A 处
的切线斜率为-1.
(I )求a 的值及函数()x f 的极值;
(II )证明:当0>x 时,x
e x <2; (III )证明:对任意给定的正数c ,总存在0x ,使得当()∞+∈,0x x ,恒有x
ce x <2. 21. 本题设有(1),(2),(3)三个选考题,每题7分,请考生任选2题作答,满分14分. 如果多做,则按所做的前两题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应题
号右边的方框涂黑,并将所选题号填入括号中.
(1)(本小题满分7分)选修4—2:矩阵与变换
已知矩阵A 的逆矩阵⎪⎪⎭
⎫ ⎝
⎛=-21121A . (I )求矩阵A ;
(II )求矩阵1-A 的特征值以及属于每个特征值的一个特征向量.
(2)(本小题满分7分)选修4—4:极坐标与参数方程 已知直线l 的参数方程为⎩
⎨⎧-=-=t y t a x 42,(t 为参数),圆C 的参数方程为 ⎩⎨⎧==θ
θsin 4cos 4y x ,(θ为常数).
(I )求直线l 和圆C 的普通方程;
(II )若直线l 与圆C 有公共点,求实数a 的取值范围.
(3)(本小题满分7分)选修4—5:不等式选将
已知定义在R 上的函数()21-++=x x x f 的最小值为a .
(I )求a 的值;
(II )若r q p ,,为正实数,且a r q p =++,求证:3222≥++r q p .。