线性规划教学目标1.解线性约束条件、线性目标函数、线性规划概念

合集下载

线性规划教学大纲

线性规划教学大纲

线性规划教学大纲引言:线性规划是数学中的一种重要方法,用于解决优化问题。

本教学大纲旨在介绍线性规划的基本概念、原理和应用,使学生能够理解并运用线性规划解决实际问题。

一、课程目标本课程旨在使学生:1. 理解线性规划及其应用领域;2. 掌握线性规划中的基本概念和术语;3. 理解线性规划模型的构建过程;4. 掌握线性规划模型的求解方法;5. 能够运用线性规划解决实际问题。

二、教学内容1. 线性规划基本概念a. 线性规划的定义和特点;b. 线性规划的基本形式和标准形式;c. 线性规划的约束条件和目标函数。

2. 线性规划模型的构建a. 确定决策变量;b. 建立决策变量与目标函数之间的关系;c. 建立决策变量与约束条件之间的关系。

3. 线性规划模型的求解方法a. 图形法:介绍线性规划模型在二维平面上的图形表示方法;b. 单纯形法:介绍单纯形表和单纯形算法的基本原理;c. 整数规划:介绍整数规划模型的特点和求解方法。

4. 教学案例分析通过实际案例分析,引导学生掌握线性规划的应用技巧,并能够独立解决实际问题。

三、教学方法1. 讲授结合案例分析:通过理论讲授和具体案例分析相结合的方式,引导学生深入理解和掌握线性规划的基本原理和方法。

2. 互动式教学:鼓励学生积极参与课堂讨论,提出问题并与教师和其他同学进行交流和互动,促进思维的碰撞和深入思考。

3. 实践操作:安排一定的实践操作环节,使学生能够亲自动手建立线性规划模型和运用求解方法解决实际问题。

四、教学评估1. 平时成绩:包括课堂表现、参与讨论和实践操作。

2. 作业成绩:布置相关作业,旨在巩固学生对线性规划的理论知识和求解方法的掌握。

3. 期末考试:考查学生对线性规划的基本概念、模型构建和求解方法的理解和应用能力。

五、教材和参考书目主教材:1. 《线性规划基础》,作者:XXX,出版社:XXX。

参考书目:1. 《线性规划与整数规划》,作者:XXX,出版社:XXX。

2. 《运筹与优化导论》,作者:XXX,出版社:XXX。

线性规划教案

线性规划教案

线性规划教案一、教学目标通过本教案的学习,学生将能够:1. 理解线性规划的基本概念和原理;2. 掌握线性规划的常见问题求解方法;3. 运用线性规划解决实际问题。

二、教学内容1. 线性规划的定义和基本概念;2. 线性规划模型的建立;3. 线性规划的图解法;4. 单纯形法求解线性规划问题;5. 整数规划的基本概念和求解方法;6. 线性规划在实际问题中的应用。

三、教学步骤第一步:导入1. 引入线性规划的概念和背景,让学生了解线性规划在现实生活中的应用;2. 引起学生对线性规划的兴趣,激发他们的学习动力。

第二步:讲解线性规划的基本概念和原理1. 介绍线性规划的定义和基本概念,如目标函数、约束条件、可行解等;2. 解释线性规划问题的普通形式,并通过实例进行说明。

第三步:讲解线性规划模型的建立1. 介绍线性规划模型的建立过程,包括确定决策变量、目标函数和约束条件;2. 通过实例演示线性规划模型的建立方法。

第四步:讲解线性规划的图解法1. 介绍线性规划的图解法,包括绘制目标函数的等高线图和约束条件的直线图;2. 演示如何通过图解法求解线性规划问题。

第五步:讲解单纯形法求解线性规划问题1. 介绍单纯形法的基本思想和步骤;2. 演示如何使用单纯形法求解线性规划问题。

第六步:讲解整数规划的基本概念和求解方法1. 介绍整数规划的定义和基本概念;2. 讲解整数规划问题的求解方法,包括分支定界法和割平面法。

第七步:讲解线性规划在实际问题中的应用1. 介绍线性规划在生产计划、资源分配、投资组合等领域的应用;2. 通过实例演示线性规划在实际问题中的求解过程。

四、教学方法1. 讲授法:通过讲解线性规划的基本概念和原理,匡助学生建立起对线性规划的整体认识;2. 演示法:通过实例演示线性规划的求解过程,让学生掌握具体的解题方法;3. 实践法:引导学生进行线性规划的实际问题求解,提高他们的应用能力。

五、教学评估1. 课堂练习:布置一些线性规划问题的练习题,让学生在课后进行解答;2. 作业评分:对学生的课堂练习和作业进行评分,及时反馈学生的学习情况。

线性规划教案

线性规划教案

线性规划教案一、教学目标通过本教案的学习,学生将能够:1. 理解线性规划的基本概念和原理;2. 掌握线性规划模型的建立和求解方法;3. 能够在实际问题中应用线性规划进行决策和优化。

二、教学重点1. 线性规划的基本概念和原理;2. 线性规划模型的建立和求解方法;3. 线性规划在实际问题中的应用。

三、教学难点线性规划模型的建立和求解方法。

四、教学过程1. 导入引入线性规划的概念和背景,与学生分享线性规划的应用案例,激发学生的学习兴趣。

2. 理论讲解(1)线性规划的基本概念- 线性规划的定义:线性规划是一种用于求解最优化问题的数学方法,其目标函数和约束条件都是线性的。

- 最优解的定义:线性规划的最优解是使目标函数达到最大(或最小)值的变量取值。

(2)线性规划模型的建立- 决策变量的定义:根据实际问题,确定需要优化的变量,表示为决策变量。

- 目标函数的定义:确定需要最大化(或最小化)的目标,在实际问题中通常是利润、成本等。

- 约束条件的定义:确定影响决策变量的限制条件,包括等式约束和不等式约束。

(3)线性规划模型的求解方法- 图形法:通过画出约束条件和目标函数所表示的直线或面,找到最优解所在的区域,从而确定最优解。

- 单纯形法:通过运用单纯形表格法,逐步迭代求解线性规划模型,直到得到最优解。

- 整数规划:当决策变量只能取整数值时,需要使用整数规划方法进行求解。

3. 实例演练选择一个简单的线性规划实例,带领学生一起完成模型的建立和求解过程,让学生通过实际操作,进一步理解线性规划的求解方法。

4. 拓展应用从实际生活或工作中的问题出发,引导学生运用线性规划进行决策和优化,培养学生的实际应用能力。

五、教学评价1. 在实例演练中,教师可以针对学生的解题过程和答案,进行实时评价,及时纠正错误。

2. 可以组织小组或个人探究性学习活动,让学生自主构建线性规划模型并求解,评价学生的表现和学习成果。

六、教学延伸可以引导学生进一步深入学习线性规划的应用方法、算法和模型扩展,培养学生在实际问题中的建模和求解能力。

高中数学简单线性规划教案

高中数学简单线性规划教案

高中数学简单线性规划教案
目标:学生能够理解和应用简单线性规划概念,解决实际问题
一、引入
1. 引导学生回顾线性规划的基本概念:目标函数、约束条件等。

2. 引导学生思考以下问题:什么是线性规划?线性规划在生活中有哪些应用?
二、知识点讲解
1. 线性规划的定义:将问题转化为目标函数和约束条件的最优化问题。

2. 线性规划的基本步骤:确定目标函数、列出约束条件、求解最优解等。

3. 简单线性规划的例子:例如生产某种产品时的最优生产数量、销售某种商品时的最大利润等。

三、练习与应用
1. 让学生通过实际例子练习简单线性规划的求解过程。

2. 给学生一个生活中的实际问题,让他们尝试用线性规划方法解决。

四、总结与反思
1. 总结本节课所学的内容,强调线性规划的重要性和应用价值。

2. 让学生思考如何将线性规划应用到更复杂的实际问题中,并鼓励他们多做练习。

五、作业
1. 布置相关练习题和应用题作为作业,巩固本节课所学的知识。

2. 提醒学生在做作业时要注意思考问题的建模和求解方法。

六、拓展
1. 可以邀请专业人士或相关领域的学者给学生讲解线性规划在实际中的应用和发展趋势。

2. 可以组织学生参加线性规划竞赛或实践活动,增强他们的动手能力和实际应用能力。

线性规划教案

线性规划教案

线性规划教案一、引言线性规划是运筹学中的一种优化问题求解方法,它可以用来解决多种实际问题,如生产计划、资源分配、投资决策等。

本教案旨在介绍线性规划的基本概念、求解方法和应用案例,帮助学生理解和掌握线性规划的原理和应用。

二、教学目标1. 理解线性规划的基本概念,包括目标函数、约束条件、可行解等。

2. 掌握线性规划的求解方法,包括图形法、单纯形法等。

3. 能够应用线性规划解决实际问题,如生产计划、资源分配等。

4. 培养学生的逻辑思维能力和数学建模能力。

三、教学内容1. 线性规划的基本概念1.1 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。

1.2 约束条件:线性规划的决策变量需要满足一系列线性等式或不等式,称为约束条件。

1.3 可行解:满足所有约束条件的解称为可行解。

2. 线性规划的图形法2.1 二元线性规划的图形解法:通过绘制目标函数和约束条件的图形,确定最优解的方法。

2.2 三元或多元线性规划的图形解法:通过绘制等高线图,确定最优解的方法。

3. 线性规划的单纯形法3.1 单纯形表格法:通过构造单纯形表格,通过迭代计算找到最优解的方法。

3.2 单纯形法的基本步骤:初始化、选择主元、计算新的单纯形表格、迭代计算等。

4. 线性规划的应用案例4.1 生产计划问题:如何安排生产计划,使得利润最大化。

4.2 资源分配问题:如何合理分配资源,满足各项需求。

4.3 投资决策问题:如何选择最佳投资组合,最大化收益。

(可以根据实际情况增加或修改案例内容)四、教学方法1. 讲授法:通过讲解线性规划的基本概念和求解方法,帮助学生理解和掌握知识点。

2. 实例演示法:通过具体的应用案例,演示线性规划的解题过程,培养学生的应用能力。

3. 讨论互动法:引导学生参与讨论,思考问题,提高学生的思维能力和合作能力。

4. 练习和作业:布置练习和作业,巩固学生的知识和技能。

五、教学评估1. 课堂表现:观察学生在课堂上的学习态度、参与度和表达能力。

线性规划教案

线性规划教案

线性规划教案一、教案概述本教案旨在介绍线性规划的基本概念、模型建立方法和求解技巧,帮助学生掌握线性规划的基本理论和应用技巧。

通过理论讲解、示例分析和实践操作等多种教学方法,使学生能够灵活运用线性规划方法解决实际问题。

二、教学目标1. 了解线性规划的基本概念和应用领域;2. 掌握线性规划模型的建立方法;3. 学会使用单纯形法和对偶理论求解线性规划问题;4. 能够应用线性规划解决实际问题。

三、教学内容1. 线性规划的基本概念1.1 线性规划的定义和特点1.2 线性规划的基本术语和符号1.3 线性规划的应用领域2. 线性规划模型的建立方法2.1 目标函数的建立2.2 约束条件的建立2.3 决策变量的定义3. 单纯形法的基本原理和步骤3.1 单纯形表格的构建3.2 单纯形法的迭代计算过程3.3 单纯形法的终止条件和解的判定4. 对偶理论及其应用4.1 对偶问题的建立4.2 对偶问题与原始问题的关系4.3 对偶理论在线性规划中的应用5. 实际问题的线性规划求解5.1 生产计划问题的线性规划求解5.2 运输问题的线性规划求解5.3 投资组合问题的线性规划求解四、教学方法1. 理论讲解:通过教师讲解线性规划的基本概念、模型建立方法和求解技巧,让学生对线性规划有全面的认识。

2. 示例分析:通过具体的实例分析,引导学生理解线性规划模型的建立过程和解题思路。

3. 实践操作:提供一些实际问题,让学生运用线性规划方法进行求解,并对结果进行分析和讨论。

4. 讨论交流:组织学生进行小组讨论,分享解题思路和经验,提高学生的合作能力和解决问题的能力。

1. 课堂练习:在课堂上布置一些练习题,检验学生对线性规划的理解和应用能力。

2. 作业布置:布置一些课后作业,要求学生独立完成线性规划问题的求解,检验学生的独立思考和解决问题的能力。

3. 实践项目:组织学生参与一些实际项目,运用线性规划方法解决实际问题,并进行报告和评估。

六、教学资源1. 教材:《线性规划教程》2. 多媒体教学课件:包括线性规划的基本概念、模型建立方法和求解技巧的讲解和示例分析。

大学线性规划教案

大学线性规划教案

课程名称:运筹学授课班级:XX年级XX班授课时间:2课时授课教师:XX一、教学目标1. 知识目标:(1)理解线性规划的基本概念和数学模型。

(2)掌握线性规划问题的标准形式和约束条件。

(3)学会使用单纯形法求解线性规划问题。

2. 能力目标:(1)培养学生运用线性规划解决实际问题的能力。

(2)提高学生的逻辑思维和数学建模能力。

3. 情感目标:(1)激发学生对运筹学的兴趣。

(2)培养学生严谨求实的科学态度。

二、教学内容1. 线性规划的基本概念2. 线性规划问题的数学模型3. 线性规划问题的标准形式4. 线性规划问题的约束条件5. 单纯形法求解线性规划问题三、教学过程第一课时1. 导入新课(1)介绍线性规划在各个领域的应用,激发学生的学习兴趣。

(2)提出本节课的学习目标。

2. 线性规划的基本概念(1)介绍线性规划的定义、特点和应用。

(2)举例说明线性规划在实际问题中的应用。

3. 线性规划问题的数学模型(1)讲解线性规划问题的目标函数和约束条件。

(2)举例说明如何将实际问题转化为线性规划问题。

4. 线性规划问题的标准形式(1)介绍线性规划问题的标准形式。

(2)讲解如何将线性规划问题转化为标准形式。

第二课时1. 线性规划问题的约束条件(1)讲解线性规划问题的约束条件类型。

(2)举例说明如何处理线性规划问题的约束条件。

2. 单纯形法求解线性规划问题(1)介绍单纯形法的基本原理和步骤。

(2)举例说明如何使用单纯形法求解线性规划问题。

3. 案例分析(1)选取实际案例,引导学生运用所学知识进行分析。

(2)让学生分组讨论,共同解决问题。

4. 总结与回顾(1)总结本节课所学内容,强调重点和难点。

(2)布置课后作业,巩固所学知识。

四、教学评价1. 课堂表现:观察学生的课堂参与度和学习积极性。

2. 课后作业:检查学生对所学知识的掌握程度。

3. 案例分析:评估学生运用线性规划解决实际问题的能力。

五、教学资源1. 教材:《运筹学》2. 教学课件3. 实际案例4. 在线资源(如网络课程、学术论文等)六、教学反思本节课通过理论讲解、案例分析等方法,帮助学生掌握线性规划的基本概念、数学模型和求解方法。

线性规划教案

线性规划教案
线性规划教案
一、教案概述
本教案旨在介绍线性规划的基本概念、模型建立和求解方法,以及在实际问题中的应用。通过本教案的学习,学生将能够理解线性规划的基本原理,掌握线性规划模型的建立和求解技巧,以及应用线性规划解决实际问题的能力。
二、教学目标
1.理解线性规划的基本概念,包括决策变量、目标函数、约束条件等。
3.练习与讨论:设计一定数量的练习题,让学生进行实践操作和讨论,巩固所学知识。
五、教学评估与反馈
1.课堂练习:布置一些练习题,检验学生对线性规划的理解和应用能力。
2.作业评估:布置一道综合性的作业题,考察学生对线性规划的综合应用能力。
3.学生反馈:鼓励学生提出问题和意见,及时调整教学方法和内容。
六、教学资源
2.掌握线性规划模型的建立方法,能够将实际问题转化为线性规划模型。
3.学会使用单纯形法和对偶理论等方法求解线性规划问题。
4.能够应用线性规划解决实际问题,如生产计划、资源分配等。
三、教学内容与流程
1.线性规划的基本概念
a.介绍线性规划的定义和基本特点。
b.解释线性规划中的决策变量、目标函数和约束条件的含义。
1.教材:线性规划教材,包括基本概念、模型建立和求解方法的介绍。
2.课件:线性规划的PPT讲义,包括概念解释、例题演示和应用实例等。
3.练习题:线性规划的练习题集,包括基础练习和综合应用题。
七、教学反思
本教案通过清晰的教学目标、详细的教学内容和流程,以及多种教学方法和手段,旨在匡助学生全面理解线性规划的基本概念和求解方法,提高应用线性规划解决实际问题的能力。教学过程中,应注重引导学生思量和讨论,激发学生的学习兴趣和动力。同时,及时进行评估和反馈,以便及时调整教学策略,提高教学效果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划
教学目标:
1.解线性约束条件、线性目标函数、线性规划概念;
2.在线性约束条件下求线性目标函数的最优解;
3.了解线性规划问题的图解法。

教学重点:线性规划问题。

教学难点:线性规划在实际中的应用。

教学过程:
1.复习回顾:
上一节,我们学习了二元一次不等式表示的平面区域,这一节,我们将应用这一知识来解决线性规划问题.所以,我们来简要回顾一下上一节知识.(略)
2.讲授新课:
例1:设z=2x+y,式中变量满足下列条件:
,求z的最大值和最小值.
解:变量x,y所满足的每个不等式都表示一个平面
区域,不等式组则表示这些平面区域的公共
区域.(如右图).
作一组与l0:2x+y=0平行的直线l:2x+y=t.t∈R可知:当l在l0的右上方时,直线l上的点(x,y)满足2x+y>0,即t>0,而且,直线l往右平移时,t随之增大,在经过不等式组①所表示的公共区域内的点且平行于l的直线中,以经过点A(5,2)的直线l2所对应的t最大,以经过点B (1,1)的直线l1所对应的t最小.所以
zmax=2×5+2=12 zmin=2×1+1=3
说明:例1目的在于给出下列线性规划的基本概念.
线性规划的有关概念:
①线性约束条件:
在上述问题中,不等式组是一组变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,故又称线性约束条件.
②线性目标函数:
关于x、y的一次式z=2x+y是欲达到最大值或最小值所涉及的变量x、y的解析式,叫线性目标函数.
③线性规划问题:
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.
④可行解、可行域和最优解:
满足线性约束条件的解(x,y)叫可行解.
由所有可行解组成的集合叫做可行域.
使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.
Ex:P841,2,3
例2:在x≥0,y≥0,3x+y≤3及2x+3y≤6的条件下,试求x-y的最值。

解:画出不等式组的图形
设x-y=t,则y=x-t
由图知直线l:y=x-t过A(1,0)时纵截距
最小,这时t=1;过B(0,2)时纵截距最大,
这时t=-2. 所以,x-y的最大值为1,最小值为-2。

例3:某工厂生产甲、乙两种产品。

已知生产甲种产品1t需耗A种矿石10t、B种矿石5t、煤4t;生产乙种产品1t需耗A种矿石4t、B种矿石4t、煤9t。

每1t甲种产品的利润是600元,每1t乙种产品的利润是1000元。

工厂在生产这两种产品的计划中要求消耗A种矿石不超过300t、B种矿石不超过200t、煤不超过360t。

甲、乙两种产品应各生产多少(精确到0.1t),能使利润总额达到最大?
分析:将已知数据列成下表
消产
耗量品资源甲产品(1t)乙产品(1t)资源限额(t)A种矿石(t)104300B种矿石(t)54200煤(t)49360利润(元)6001000
解:设生产甲、乙两种产品分别为x t、y t,利润总额为z元,那么
z=600x+1000y
作出以上不等式组所表示的平面区域,即可行域。

作直线l:600x+1000y=0,即直线l:3x+5y=0
把直线l向右上方平移至l1的位置时,直线经过可行域上的点M,且与原点距离最大。

此时 z=600x +1000y 取最大值。

解方程组
得M的坐标为 x=≈12.4,
y=≈34.4
答:应生产甲产品约12.4t,乙产
品34.4t,能使利润总额达到最大。

3.课堂练习:
课本P84 1,2,3
4.课堂小结:
通过本节学习,要求大家掌握线性规划问题,并能解决简单的实际应用.
5.课后作业:
课本P87习题 3,4
教学后记:
线性规划
例1:某工厂生产甲、乙两种产品。

已知生产甲种产品1t需耗A种矿石10t、B种矿石5t、煤4t;生产乙种产品1t需耗A种矿石4t、B种矿石4t、煤9t。

每1t甲种产品的利润是600元,每1t乙种产品的利润是1000元。

工厂在生产这两种产品的计划中要求消耗A种矿石不超过300t、B种矿石不超过200t、煤不超过360t。

甲、乙两种产品应各生产多少(精确到0.1t),能使利润总额达到最大?
例2:某工厂有甲、乙两种产品,按计划每天各生产不少于15t,已知生产甲产品1t需煤9t,电力4kw,劳动力3个(按工作日计算);生产乙产品l t需煤4t,电力5kw,劳动力10个;甲产品每吨价7万元,乙产品每吨价12万元;但每天用煤量不得超过300吨,电力不得超过200 kw,劳动力只有300个,问每天各生产甲、乙两种产品多少吨,才能既保证完成生产任务,又能为国家创造最多的财富。

例3:一位农民有田2亩,根据他的经验:若种水稻,则每亩每期产量为400 kg;若种花生,则每亩每期产量为100 kg,但水稻成本较高,每亩每期需240元,而花生只要80元,且花生每 kg可卖5元,稻米每kg只卖3元,现在他只能凑足400元,问这位农民对两种作物各种多少亩,才能得到最大利润?例3:要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:
规格类型
钢板类型A规格B规格C规格第一种钢板211第二种钢板123今需要A、B、C三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?。

相关文档
最新文档