2015-2016九年级数学上册 22.2 二次函数与一元二次方程课件1 (新版)新人教版

合集下载

人教版九年级数学:22.2 二次函数与一元二次方程 (共27张PPT)

人教版九年级数学:22.2 二次函数与一元二次方程 (共27张PPT)

∴y=-2x2+8x-6=-2(x-2)2+2. y=-2(x-2)2+2-k,实际上是原抛物线下移 k 个单位,由题 中图形知,当 k<2 时,抛物线与 x 轴有两个交点.所以 k<2.
规律总结:二次函数与一元二次方程的关系 1.从“形”的方面看: 二次函数 y=ax2+bx+c 与 x 轴交点的横坐标,即为一元二 次方程 ax2+bx+c=0 的解. 2.从“数”的方面看: 当二次函数 y=ax2+bx+c 的函数值等于 0 时,相应的自变 量的值即为一元二次方程 ax2+bx+c=0 的解.Fra bibliotek

题组A 二次函数与一元二次方程的关系 1.(2015·苏州)若二次函数y=x2+bx的图象的 对称轴是经过点 (2,0) 且平行于 y 轴的直线,则 2+bx=5的解为( 关于x 的方程 x ) D A.x1=0,x2=4 B.x1=1,x2=5 C.x1=1,x2=-5 D.x1=-1,x2=5
(1)从函数与方程的关系的角度: 利用 b2-4ac 的符号可判断
抛物线与 x 轴交点个数; (2)从形的角度: 根据其开口方向和顶点 的位置可判断抛物线与 x 轴交点个数.
【猜一猜】 二次函次 y=x2-2x+1 的图象与 x 轴的交点坐标是 (1,0) .


【辨一辨】 1.若函数y=(k-3)x2+2x+1的图象与x轴有交点, 则k的取值范围是k≤4且k≠3.( ) 2.抛物线y=x2-4× x+k与x轴的一个交点的坐标为 (-1,0),则此抛物线与x轴的另一个交点的坐标是 (3,0).( )
知识点 2 用函数图象求一元二次方程的根的近似值 【例 2】利用二次函数的图象求一元二次方程 x2-2x-1=0 的近似解(精确到 0.1).

人教版九年级数学上册精品教学课件22.2二次函数与一元二次方程

人教版九年级数学上册精品教学课件22.2二次函数与一元二次方程

(2)y=x2-6x+9;
(3)y=x2-x+1.
观察图象,完成下表:
抛物线与x轴 公共点 公共点个数 横坐标
y = x2-x+1
y = x2-6x+9 y = x2+x-2
0个 1个 2个
0 -2, 1 y = x2-x+1
相应的一元二次 方 程 的 根 x2-x+1=0无解 x2-6x+9=0,x1=x2=3
0 个交点; 那么函数y=ax2+bx+c的图象与 x轴有______
不等式ax2+bx+c<0的解集是多少?
解:(1)当a>0时, ax2+bx+c<0无解; (2)当a<0时, ax2+bx+c<0 的解集是一切实数.
-1
O
3
x
试一试:利用函数图象解下列方程和不等式:
(1) ①-x2+x+2=0; ②-x2+x+2>0; ③-x2+x+2<0. (2) ①x2-4x+4=0; ②x2-4x+4>0; ③x2-4x+4<0. (3) ①-x2+x-2=0; ②-x2+x-2>0; x1=-1 , x2=2 1 < x<2 x1<-1 , x2>2 x=2 y
第二十二章
二次函数
22.2二次函数与一元二次方程
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.通过探索,理解二次函数与一元二次方程(不等式) 之间的联系.(难点) 2.能运用二次函数及其图象、性质确定方程的解或不等
式的解集.(重点)

《二次函数与一元二次方程》(上课)课件PPT1

《二次函数与一元二次方程》(上课)课件PPT1

有两个交点:
有两个不相等的 实数根
b2-4ac > 0
有一个交点
b2-4ac = 0
没有交点
没有实数根
b2-4ac < 0
学习目标(1分钟)
1.能够利用二次函数的图象求一元二次方程的 近似根.
2.能利用图象确定方程的根和不等式的解集。
还可以解一元二自次学方指导一(3分钟) 思程考求:近由似图值象如何估计一元二次方程x2 +2x-10=0的根? 由图象知方程有两个根,一个在-5和-4之间,另一个在2 和3之间. (1)先求-5和-4之间的根.
(2)经过_1_0_s ,炮弹落在地上爆炸.
3.一元二次方程ax2+bx+c=h的根就是二次函数 y=ax2+bx+c与直线__y_=_h___交点的__横__坐标.
变式:(2019春•天心区校级期中)函数y=ax²+bx+c 的图象 如图所示,那么关于一元二次方程ax²+bx+c-2=0的根的情况
对应值:
x
1
1.1 1.2 1.3 1.4
y
-1 -0.49 0.04 0.59 1.16
那么方程x²+3x-5=0的一个近似根是( C )
A.1
B.1.1
C.1.2
D.1.3
2.在平原上,一门迫击炮发射的一发炮弹飞行的高度y(m)
与飞行时间x(s)的关系满足:y=-x2+10x. (1)经过_5___s,炮弹达到最高点,最高点的高度是_2_5_m.
x -4.1 -4.2 -4.3 -4.4
y -1.39 -0.76 -0.11 0.56 因此x=-4.3是方程的一用个图近象似法根求一元二次 (2)另一个根可以类似的方求程出的:近似根时,结 x 2.1 2.2 2.3 果只2.取4到十分位

九年级上《22.2二次函数与一元二次方程》课件

九年级上《22.2二次函数与一元二次方程》课件

2.自主探究:
问题1
以 40 m/s 的速度将小球沿与地面成 30°角的 方向击出时,小球的飞行路线将是一条抛物线. 如果不考虑空气阻力,小球的飞行高度 h (单位 :m )与飞行时间t(单位:s)之间具有函数关 系 h = 20t - 5t 2. (2)小球的飞行高度能否达到 20 m? 如能,需 要多少飞行时间?
归纳 一般地,从二次函数 y = ax 2 + bx + c 的图象可知: (1)如果抛物线 y = ax 2 + bx + c 与 x 轴有公共点, 公共点的横坐标是 x0,那么当 x = x0 时,函数值是 0, 因此 x = x0 是方程 ax 2 + bx + c = 0 的一个根. (2)二次函数 y = ax 2 + bx + c 的图象与 x 轴的位置 关系有三种:没有公共点,有一个公共点,有两个公共 点. 这对应着一元二次方程 ax 2 + bx + c = 0 的根的三种 情况:没有实数根,有两个相等的实数根,有两个不等 的实数根.
y=ax2+bx+c的图 象和x轴交点
方程ax2+bx+c=0 的根
b2-4ac
函数的图象
y . o y o y o . x
有两个交点
方程有两个不相等 b2-4ac 的实数根
> 0
只有一个交点 方程有两个相等 b2-4ac = 0
的实数根
x
没有交点
方程没有实数根
b2-4ac
< 0
x
2.小组合作,类比探究
1.复习知识,回顾方法
问题1:一次函数y=kx+b与一次方程 kx+b=0之间有什么关系?

人教版九年级数学上册22.2:二次函数y=ax2+bx+c的图像与性质课件 (共46张PPT)

人教版九年级数学上册22.2:二次函数y=ax2+bx+c的图像与性质课件 (共46张PPT)

例1:指出抛物线:y x2 5x 4
的开口方向,求出它的对称轴、顶点坐 标、与y轴的交点坐标、与x轴的交点坐 标。并画出草图。
对于y=ax2+bx+c我们可以确定它的开口 方向,求出它的对称轴、顶点坐标、与y 轴的交点坐标、与x轴的交点坐标(有交 点时),这样就可以画出它的大致图象。
方法归纳
② c=0 <=>图象过原点;
③ c<0 <=>图象与y轴交点在x轴下方。
⑷顶点坐标是( b , 4ac b2 )。
2a
4a
(5)二次函数有最大或最小值由a决定。
当x=- —2ba 时,y有最大(最小)
值 y= 4ac-b2
______________________
4a
例2、已知函数y = ax2 +bx +c的图象如 下图所示,x= 1 为该图象的对称轴,根
的平方
整理:前三项化为平方形 式,后两项合并同类项
a x
b
2
4ac
b2
.
化简:去掉中括号
2a 4a
函数y=ax²+bx+c的对称轴、 顶点坐标是什么?
y ax2 bx c的对称轴是:x b 2a
顶点坐标是:( b , 4ac b2 ) 2a 4a
1. 说出下列函数的开口方向、对称轴、顶 点坐标:
D. 4ac-b2 >0-1 o 1 x 4a
5.若把抛物线y = x2 - 2x+1向右平移2个单位,再向
下平移3个单位,得抛物线y=x2+bx+c,则( B )
A.b=2 c= 6
B.b=-6 , c=6
C.b=-8 c= 6
D.b=-8 , c=18

人教版九年级数学上22.2二次函数与一元二次方程(共19张PPT)

人教版九年级数学上22.2二次函数与一元二次方程(共19张PPT)

飞行时间?
h=20t-5t2
解方程: 20=20t-5t2, t2-4t+4=0,
20 h
O
4
t
t1=t2=2. 你能结合图形指出为什
当球飞行2秒时,它的高度为20米. 么只在一个时间球的高
度为20m?
h=20t-5t2 (3)球的飞行高度能否达到20.5m?如果能,需要多少
飞行时间? 解方程:
20.5 h

5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021

3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021
不论m取何值, 抛物线与x轴总有公共点.
(
)
A.3
B.2 C.1
D.0
2.如图,已知抛物线与x轴的一个交点A(2,0),对称轴是
x=-1,则该抛物线与x轴的另一个交点的坐标是
(
)
A.(-2,0) B.(-3,0)
C.(-4,0) D.(-5,0)
3.抛物线y=x2+6x+m与x轴只有一个公共点,则m的值为 ______.

人教版九年级上册数学课件22.2 二次函数与一元二次方程

人教版九年级上册数学课件22.2   二次函数与一元二次方程

观察思考
图象如下图所示:
归纳总结
(1) 抛物线y=x2+x-2与x轴有两个公共点,它们
的横坐标是-2,1. 当 x取公共点的横坐标时,函
数的值是0. 由此得出方程x2+x-2=0的根是-2,1.
归纳总结
(2)抛物线y=x2-6x+9与x轴只有一个公共点, 它的横坐标是3.当 x=3时,函数的值是0.由此 得出方程x2-6x+9=0有两个相等的实数根3.
所以可以将问题中h的值代入函数解析 式,得到关于 t 的一元二次方程.如果方程 有合乎实际的解,则说明小球的飞行高度 可以达到问题中h的值;否则,说明小球的 飞行高度不能达到问题中h的值.
问题探究
解:(1)解方程
15=20t-5t2 , t2-4t+3=0, t1=1,t2=3. 当小球飞行1 s和3 s时,它的高度为15 m.
2
归纳总结 (2)二次函数的图象与x轴的位置关系有 三种: (1)有两个交点 (2)有一个交点 (3)没有交点
b2 – 4ac > 0
(方程有两个不相等的实数根)
b2 – 4ac= 0
b2 – 4ac< 0 (方程没有实数根)
(方程有两个相等的实数根)
典型例题
例 利 用 函 数 图 象 求 方 程 x2-2x-2=0 的 实数根(精确到0.1).
解:画 x2-2x-2=0的图象(如图所示,它与x轴
的公共点的横坐标大约是-0.7,2.7).
所以方程 x2-2x-2=0 的实数根为
x 1 0 .7 , x 2 2 .7 .
探究
观察函数 y= x2-2x-2 的图象可以发现,当 自变量为2时的函数值小于0,当自变量为3时的 函数值大于0,所以抛物线 y= x2-2x-2 在2<x<3

人教版九年级数学上册《22.2.2 利用函数的图象解一元二次方程》教学课件

人教版九年级数学上册《22.2.2  利用函数的图象解一元二次方程》教学课件

知2-练
1 抛物线y=ax2+bx+ c(a<0)如图,则关于x的 不等式ax2+bx +c>0的解集是( C ) A.x<2 B.x>-3 C.-3<x<1 D.x<-3或x>1
知2-练
2 如图,已知顶点为(-3,-6)的抛物线y=ax2+ bx+c经过点(-1,-4),则下列结论中错误的 是( C ) A.b2>4ac B.ax2+bx+c≥-6 C.若点(-2,m),(-5,n) 在抛物线上,则m>n D.关于x的一元二次方程ax2+bx+c=-4的两 根为-5和-1
人教版九年级数学上册
第二十二章 二次函数
22.2 二次函数与一元二次方程
第2课时 用函数的图象解一 元二次方程(不等式)
1 课堂讲解 用图象法求一元二次方程的近似解
用图象法求一元二次不等式的解集
2 课时流程
逐点 导讲练
二次方程有着 紧密联系,我们是否可以利用二次函数的图象 求一元二次方程的根呢?
知2-讲
解:∵y=-x2+4x+5=-(x2-4x)+5 =-(x2-4x+4)+9=-(x-2)2+9.
∴抛物线的顶点坐标为(2,9),对称轴为直线x=2. 令-x2+4x+5=0,即x2-4x-5=0, ∴x1=5,x2=-1,
∴抛物线与x轴的两个交点为(-1,0),(5,0). 令x=0,则y=5,即抛物线与y轴的交点为(0,5). 由抛物线的对称性知抛物线上的另一点为(4,5).
如何利用函数图象解一元二次不等式呢?
归纳
知2-讲
画出函数y=ax2+bx+c(a≠0)的图象,不等式 ax2+bx+c>0的解集为图象在x轴上方的点所对应 的x值所组成的集合,不等式ax2+bx+c<0的解集 为图象在x轴下方的点所对应的x值所组成的集 合.如下表:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
2
(1)证明 : 令y 0, 得2 x m x m 0 (m) 4 2 m 9m 0
2 2 2
2
2
不论m取何值, 抛物线与x轴总有公共点 .
(2) A(1,0)在抛物线y 2 x m x m 上 0 2 1 m 1 m
有两个交点 有一个交点 没有交点
有两个相异的实数根 有两个相等的实数根 没有实数根
b2-4ac > 0 b2-4ac = 0 b2-4ac < 0
体会两种思想:
数形结合思想
分类讨论思想
下课!
结束寄语
• 时间是一个常数,但对勤奋者来说, 是一个“变数”. • 用“分”来计算时间的人比用“小 时”来计算时间的人时间多59倍.
分析:根据图象可知,水流的 落地点D的纵坐标为0,横坐 标即为落地点D到A的距离。
即:y=0 。
-1 A 0
y B
解:根据题意得 -0.5x2+2x+2.5 = 0,
D x
解得x1=5,x2=-1(不合题意舍去)
答:水流的落地点D到A的距离是5m。
边观察边思考
1、二次函数y = x2+x-2 , y = x2 - 6x +9 , y = x2 – x+ 1 2 的图象如图所示。 y x x 1 2 y x 6 x 9 y x2 x 2
2
1 又S p 2
x
2
2 xy
由①② 消去 y得S 3x 5 x
2 5 5 5 5 25 时, 3( 5´ ( ´ 当x ) ) S 最大 米 ´ 2 ( 3) 6 6 12 2
6
答:略。
●请你把这节课你学到了东西告诉你的同 讨 桌,然后告诉老师? 论
x
一个交点 点
没有交点
1、二次函数y=x2+x-6的图象与x轴交点横坐 标是( A ) A:2和-3 B:-2和3 C:2和3 D:-2和3 2、已知实数s、t,且满足s2+s-2006=0, t2+t-2006=0,那么二次函数y=x2+x-2006的 图象大致是( B )
A
B
C
D
3、已知抛物线y=x2+mx-2m2(m≠0)
(1).每个图象与x轴有几个交点? 答:2个,1个,0个 (2).一元二次方程? x2+x-2=0 , x2 - 6x +9=0有几个根? 验证一下一元二次方程x2 – x+ 1 =0有根吗? (3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与 一元二次方程ax2+bx+c=0的根有什么关系?
A.x<0或x>2 D.-1<x<3 B.0<x<2 C.x<-1或x>3
5.王强在一次高尔夫球的练习中,在某处击球, 1 8 y x x 其飞行路线满足抛物线 ,其中 y 5 5 (m)是球的飞行高度,x(m)是球飞出的水 平距离,结果球离球洞的水平距离还有2m. (1)请写出抛物线的开口方向、 顶点坐标、对称轴. (2)请求出球飞行 的最大水平距离.
练习:看谁算的又快又准。 1.不与x轴相交的抛物线是( D ) A y=2x2 – 3 B y= - 2 x2 + 3 C y= - x2 – 2x D y=-2(x+1)2 - 3 2.如果关于x的一元二次方程 x2-2x+m=0有两个相等的实 数根,则m=__ 1 ,此时抛物线 y=x2-2x+m与x轴有_ 1 个 交点. 16 . 3.已知抛物线 y=x2 – 8x +c的顶点在 x轴上,则c=__ (0,2) ,与x轴交 4.抛物线y=x2-3x+2 与y轴交于点____ (1,0) (2,0) 于点___ _.
作业
升华提高
弄清一种关系------函数与一元二次方程的关系
如果抛物线 y=ax 2 +bx+c 与x轴有公共点(x 0 ,o), 那么x=x 0 就是方程 ax 2 +bx+c=0的一个根.
二次函数y=ax2+bx+c 的图象和x轴交点 一元二次方程 ax2+bx+c=0的根 一元二次方程 ax2+bx+c=0根的判别式 Δ=b2-4ac
2 2 2 2 2
即 m m 2 0, (m 2)(m 1) 0 m1 2, m2 1 B点坐标为(2,0)
5.在ABC中, B 90, 点P从点A开始沿AB边向点B 以1cm / s的速度移动 , 点Q从点B开始沿BC的边向点C 以2cm / s的速度移动,设 PBQ的面积为y cm 运动 时间为xs,如果P、Q分别从A、B同时出发: ( 1 )写出y与x的函数关系式; (2)几秒后PBQ的面积等于 8c m ?
K≠0 5.如图,抛物线y=ax2+bx+c的对称轴是直线 x=-1,由 2-4ac≥0 b 2
图象知,关于x的方程ax +bx+c=0的两个根分别是 x1=1.3 ,x2=___ -3.3
6.已知抛物线y=kx2-7x-7的图象和x轴有交点,则 k的取值范围( B )
4 A:k 7 4 B:k 7 且k 0 4 C:k 7 4 D: k 7 且k 0
50-20t2=
们可以求
方程
的解。
问题1:如图,以
40 m /s的速度将小球沿与地面成 30度 角的方向击出时,球的飞行路线是一条抛物线,如果不考虑 空气阻力,球的飞行高度 h (单位:m)与飞行时间 t (单 位:s)之间具有关系:h= 20 t – 5 t2 2 考虑下列问题:
20= 20 t 20 –20 5ttt 20.5= –– 55 t2t2 15=
那么从上面,二次函数y=ax2+bx+c何时为 一元二次方程?它们的关系如何? 一般地,当y取定值时,二次函数为一元 二次方程。
如:y=5时,则5=ax2+bx+c就 是一个一元二次方程。
练习一:
如图设水管AB的高出地面2.5m,在B处有一自动旋 转的喷水头,喷出的水呈抛物线状,可用二次函数 y=-0.5x2+2x+2.5描述,在所有的直角坐标系中,求 水流的落地点D到A的距离是多少?
如图4所示,则下列说法不正确的是(
A b2 4ac 0 B

a0Cc0D Nhomakorabeab 0 2a
2.二次函数y = ax2 + bx + c的部分对应值如下表:
x y -3 12 -2 5 -1 0 0 -3 1 -4 2 -3 3 0 4 5 5 12
利用二次函数的图象可知,当函数值y<0时,x的取 值范围是( ).
2
6.某建筑物的窗户如图所示,它的上半部是半圆, 下半部是矩形,制造窗框的材料长(图中所有黑线 的长度和)为10米.当x等于多少米时,窗户的透光 面积最大? 最大面积是多少?
px 4 x 2 x 4 y 10 5 6p
y 解:设窗户的面积为 s 米 ,依题意得 x
2
2
4
① ②
2 2
6.已知抛物线y x ax a 2与x轴交于A、B两点, 与y轴交于点D(0,8), 直线DC平行于x轴, 交抛物线于另一点 C.动点P以每秒2个单位长度的 速度的速度从C出发, 沿C D运动.同时, 点Q以每秒1个单位长度的速度 从点A出发, 沿A B运动.连接PQ、CB,设点P的运动时间t秒. (1)求a的值; (2)当t为何值时, PQ平行于y轴; (3)当四边形PQBC的面积等于 14时, 求t的值.
2 2 2
二次函数与一元二次方程
2、二次函数y=ax2+bx+c的图象和x轴交点 情况如何?(b2-4ac如何) 2 – 4ac > 0 b (1)有两个交点 (2)有一个交点 b2 – 4ac= 0 (3)没有交点 b2 – 4ac< 0
思考:若抛物线y=ax2+bx+c与x轴有交点,则 ≥0 . b2-4ac
2
2
2
抛物线y x x n的顶点在( A ). A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.已知二次函数 y 2 x m x m . (1)求证 : 对于任意实数 m, 该二次函数的图象与 x轴总有公共点 ; (2)若该二次函数的图象与 x轴有两个公共点 A、B, 且A点坐标 为(1,0), 求B点坐标.
这节课应有以下内容:
二次函数与一 元二次方程的 关系 交
当二次函数y=ax2+bx+c中y的值 确定,求x的值时,二次函数就变 为一元二次方程。即当y取定值时, 二次函数就为一元二次方程。
两个交点
二 轴次 的函 交数 点与
b2-4ac>0 b2-4ac=0 b2-4ac<0
二次函数与x轴的交点的横坐标是一元二次方程的解
(1)球的飞行高度能否达到 15 m ? 若能,需要多少时间? (2) 球的飞行高度能否达到 20 m ? 若能,需要多少时间? 0= 20 t – 5 t2 h=0 (3)球的飞行高度能否达到 20.5 m ? 若能,需要多少时间?
(4)球从 飞出到落地 要用多少时间 ?
h t
为一个常数 (定值)
复习.
1、一元二次方程ax2+bx+c=0的根的情 况可由 b2- 4ac 确定。
> 0 = 0 < 0
有两个不相等的实数根 有两个相等的实数根 没有实数根
2、在式子h=50-20t2中,如果h=15,那么 15 ,如果h=20,那50-20t2= 20 , 如果h=0,那50-20t2= 0 。如果要想求t的值,那么我
相关文档
最新文档