集合间的基本关系教案及练习
《集合间的基本关系》示范课教案【高中数学】

《集合间的基本关系》教学设计1.通过类比实数间的关系,观察、发现、形成集合间关系的概念,理解集合之间的包含与相等的含义,提升学生的数学抽象素养.2.能识别给定集合的子集,了解空集的含义.3.对集合之间的关系,能进行自然语言、图形语言(Venn图)、符号语言间的转换,提升数学抽象素养.教学重点:集合间包含与相等的含义,用集合语言表达数学对象或数学内容.教学难点:对相似概念及符号的理解,例如区别元素与集合、属于与包含等概念及其符号表示.PPT.一、概念的引入问题1:上一节我们学习了集合,对于这个新的研究对象,接下来该如何研究呢?比如要研究些什么?用什么方法研究?如果有困难可以阅读本节的引言.师生活动:学生独立思考、讨论交流,教学时要特别关注研究方法的指引.教师提示,类比已有的学习经验是一个好方法,类比已有的学习经验是一个好方法,比如我们已研究过“实数”,引导学生回顾实数研究了哪些内容,如实数间的关系、实数的运算等,最后确定集合的研究问题:集合间的关系,集合的运算设计意图:引入一个新的数学对象后,关键在于引导学生思考“如何研究一个数学对象”,这种思考有助于学生掌握研究数学对象的方法,学会发现问题和提出问题.这里采用的“类比”就是一种重要的数学思维方法.问题2:阅读教科书“观察”,类比实数之间的相等关系、大小关系,集合与集合之间有哪些关系?师生活动:学生独立观察,充分思考,交流讨论.根据学生交流讨论情况,教师可以适时地选择以下问题进行追问.追问:(1)你从哪个角度来分析每组两个集合间的关系?(从元素与集合之间的关系.)(2)上述三个具体例子有什么共同特点?请你概括.(在每组的两个集合中,第一个集合中的任何一个元素都是第二个集合中的元素.).(3)上述三组集合中,前两组的两个集合间的关系与第三组的两个集合间的关系有什么不同之处?(不同之处是:前两组集合中,集合B中有的元素属于集合A,有的元素不属于集合A;第三组集合中,集合A中的任何一个元素都属于集合B,反过来,集合B中的任何一个元素也都属于集合A.)师生活动:教师引导学生梳理观察、讨论、分析的结果,抽象概括形成数学定义,介绍子集、包含关系和相等关系.一般地:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为B的子集.记作:A⊆B(B⊇A)读作:A 包含于B(或B包含A).设计意图:让学生通过观察、比较、归纳、概括出集合间的基本关系.并创设情境,让学生运用类比、联想、抽象、概括的思维方法解决问题,提升学生数学抽象素养.教学时要确保学生独立思考、讨论交流的时间.二、概念的理解问题3:阅读教科书观察之后至思考之前的内容,你有什么疑问?如果没有疑问,请你回答下列问题:(1)你能举几个具有包含关系、相等关系的集合,并用符号语言和Venn图表示吗?(2)子集和真子集的区别与联系是什么?(3)什么是空集?请你再举几个空集的例子.师生活动:让学生独立阅读这段内容,然后分别提出自己感到困惑的问题.教师根据学生回答的情况,进行补充,帮助学生提升对概念的理解,比如集合“{0}”是否为空集等例子.设计意图:对于难度不大的内容,特别是符号比较多时,通过阅读,熟悉自然语言、符号语言和图形语言,并建立它们之间的对应关系;通过阅读,提出自己的困惑,学会质疑,深入理解概念;通过举例子,抽象概念具体化,深入理解概念.问题4:包含关系{a}⊆A与属于关系a∈A有什么区别?试结合实例作出解释.师生活动:让学生独立思考,然后讨论交流,教师提问.预设的答案:{a}⊆A表示集合与集合间的关系,集合{a}是集合A的子集;而a∈A表示元素a与集合A间的关系.如针对集合A={0,1,2},{0}⊆{0,1,2}而0∈{0,1,2}.本图片为微课《【知识点解析】包含于的含义》及《【知识点解析】属于》的含义的知识讲解,微课中分别讲解了包含于和属于的意义,并进行了辨析,若需使用,请插入相应微课.设计意图:通过新学习的知识和已学习知识的对比,学生更容易区别集合的子集、元素与集合的关系,以及符号间的区别.问题5:通过类比实数关系的性质,你能发现集合之间的关系有哪些性质?师生活动:学生回顾、讨论、交流,教师提问.预设的答案:(1)任何一个集合是它本身的子集,即A⊆A(2)对于集合A⊆B,B⊆C,那么A⊆C.设计意图:类比实数关系的对称性、传递性等性质,得出两个集合间的关系的性质.在旧知识的基础上学习新知识有生长点,学生容易类比、掌握.三、概念的巩固应用例1 写出集合{a,b}的所有子集,并指出哪些是它的真子集.师生活动:学生分析解题思路,教师给出解答示范,特别突出有规律地列举.答案:子集有Φ,{a},{b},{a,b},其中真子集是Φ,{a},{b}.设计意图:巩固子集和真子集的概念和性质,体会分类的原则和方法,为保证不重不漏,要按照一定顺序写出子集,比如可以根据子集中元素的个数分类.例2 判断下列各题中集合A是否为集合B的子集,并说明理由:(1)A={1,2,3},B={x|x是8的约数};(2)A={x|x是长方形},B={x|x是两条对角线相等的平行四边形}.师生活动:学生判断,教师给出解答示范.答案:(1)A={1,2,3},B={x|x是8的约数}={1,2,4,8},其中3 ∉B,所以集合A不是集合B的子集.(2)A=B.设计意图:检验学生对子集概念的掌握情况,进一步明确判断两个集合之间关系的基本方法——定义法.例3 (1)已知集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m-1},若B⊆A,则实数m的取值范围为________.(2)已知集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m-1},若B⫋A,则实数m 的取值范围为________.师生活动:学生做练习,教师根据学生练习情况给予反馈.答案:(1)(-∞,3] ;(2)(-∞,3).设计意图:巩固两个集合的基本关系.两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系.特别要注意易错点:丢掉空集.常用数轴、Venn图来直观解决这类问题.练习:教科书练习1,2,3题.四、归纳总结、布置作业问题6:本节课你有哪些收获?可以从以下几方面思考:(1)两个集合间的基本关系有哪些?如何判断两个集合间的关系?(2)你是如何研究集合间基本关系的?(3)包含关系与属于关系有什么区别?设计意图:从知识内容和研究方法两个方面对本节课进行小结.布置作业:教科书习题1.2第1,2,3题.五、目标检测设计1.用适当的符号填空:(1)0______{x|x2=x};(2)-1______{x|x2=x};(3)Φ______ {x|x2=x};(4){0}______{x|x2=x};(5){0,1}______ {x|x2=x};(6)Φ______ {x|x2<-1}.设计意图:考查学生对符号语言的掌握程度.2.已知满足条件{1,2}⫋M⊆{1,2,3,4,5},写出满足条件的集合M.设计意图:考查学生对子集的概念、性质与符号的理解.3.已知集合A={x|1≤x<5},C={x|-a<x≤a+3}.若C⊆A,则a的取值范围是________.设计意图:考查学生对符号语言的掌握程度.参考答案:1.(1)∈;(2)∉;(3)⊂;(4)⊂;(5)=;(6)=.2.M={1,2,3}、{1,2,4}、{1,2,5}、{1,2,3,4}、{1,2,3,5}、{1,2,4,5}、{1,2,3,4,5}.3.(-∞,-1].。
新高一数学教案(7)_ 集合间的基本关系

其中:“A 含于B”中的于是被的意思,简单地说就是A 被B 包含.“⊆”类似于“≤”开口朝向谁谁就“大”.在数学中,除了用列举法、描述法来表示集合之外,我们还有一种更简洁、直观的方法——用平面上的封闭曲线的内部来表示集合venn (韦恩)图.那么,集合A 是集合B 的子集用图形表示如下:B A ⊆2.若集合A 是集合B 的子集,并且存在元素B x ∈,且A x ∉,那么集合A 叫做集合B 的真子集. 记作:A B (或B A )A = BB A ⊆A B3.集合相等:对于实数b a ,,如果b a ≥且a b ≥,则 a 与b 的大小关系如何?b a = 用子集的观点,仿照上面的结论在什么条件下A=B ?⎩⎨⎧⊆⊆⇔=A B BA B A4.空集:如(1)2{|10}x R x ∈+= (2){|||20}x R x ∈+<集合中没有元素,我们就把上述集合称为空集.不含任何元素的集合叫做空集,记为∅,规定:空集是任何集合的子集 ,空集是任何非空集合的真子集.四、【典型例题剖析】[例 1]写出集合{a,b,c}的所有子集并指出,真子集、非空真子集.[举一反三]写出下列各集合的子集及其个数.{}{}{},,,,,,a a b a b c ∅ABA B B A ⊆⊆且1.下列各式中错误的个数为( )①{}10,1,2∈ ②{}{}10,1,2∈ ③{}{}0,1,20,1,2⊆ ④{}{}0,1,22,0,1=A. 1B. 2C. 3D. 4 2.已知{}|22,M x R x a π=∈≥=,给定下列关系:①a M ∈,②{}a M ③a M ④{}a M ∈, 其中正确的是( ) A.①② B.④ C.③ D.①②④ 3.满足{}a M ⊆{},,,abcd 的集合M共有( ) A.6个 B.7个 C.8个 D.9个4.若,x y R ∈,集合{}(,)|,(,)|1y A x y y x B x y x ⎧⎫====⎨⎬⎩⎭,则A,B的关系为( ) A. A=B B. A⊆B C.AB D.BA5.已知{}{}{}A B C ===菱形正方形平行四边形,则集合A,B,C之间的关系为___________6.已知集合{}{}2|320,|10A x x x B x ax =-+==-=若B A,则实数a 的值为__________7.已知A={},a b ,{}|B x x A =∈,集合A与集合B的关系为_______ 8.集合{}{}|12,|0A x x B x x a =<<=-<若A B,则a 的取值范围是_____ 9.已知集合{}{}2|560,|1A x x x B x mx =-+===,若B A ,则实数m 所构成的集合M=________10.若集合{}2|30A x x x a =++=为空集,则实数a 的取值范围是______ 11.写出满足{},a b A ⊆{},,,a b c d 的所有集合A.12.已知集合{}{}22,,,2,2,A x y B x y A B ===且,求,x y 的值.。
集合间的基本关系示范教案

集合间的基本关系示范教案第一章:集合的基本概念1.1 集合的定义理解集合的概念,了解集合的表示方法(如用大括号{}表示),掌握集合中元素的性质。
1.2 集合的类型掌握集合的分类,包括普通集合、有序集合和多重集合。
1.3 集合的运算学习集合的基本运算,包括并集、交集、差集和补集。
第二章:集合间的基本关系2.1 包含关系理解集合之间的包含关系,学习如何判断一个集合是否包含另一个集合。
2.2 相等关系学习集合之间的相等关系,了解如何判断两个集合是否相等。
2.3 真子集和真超集理解真子集和真超集的概念,学习如何判断一个集合是否为另一个集合的真子集或真超集。
第三章:集合的德摩根定律3.1 德摩根定律的定义学习德摩根定律的定义,了解其对集合运算的影响。
3.2 德摩根定律的证明学习德摩根定律的证明过程,加深对其的理解。
3.3 德摩根定律的应用学习如何运用德摩根定律解决集合运算问题。
第四章:集合的性质和定理4.1 集合的性质学习集合的性质,如确定性、互异性、无序性等。
4.2 集合的定理学习集合的定理,如集合论中的三条基本定理。
4.3 集合的运算性质学习集合运算的性质,如结合律、分配律等。
第五章:集合的应用5.1 集合在数学中的应用了解集合在数学中的应用,如在代数、几何等领域中的应用。
5.2 集合在其他学科中的应用了解集合在其他学科中的应用,如在计算机科学、逻辑学中的应用。
5.3 集合在日常生活中的应用了解集合在日常生活中的应用,如在分类、整理数据等方面的应用。
第六章:集合的幂集6.1 幂集的定义理解幂集的概念,掌握幂集的表示方法。
6.2 幂集的性质学习幂集的性质,如幂集是所有子集的集合。
6.3 幂集的应用学习幂集在组合数学和概率论中的应用。
第七章:集合的树结构7.1 树结构的基本概念理解树结构的概念,掌握树结构的表示方法。
7.2 集合的树结构学习如何将集合表示为树结构,了解树结构在集合运算中的应用。
7.3 集合的树结构的应用学习树结构在图论、组合数学等领域的应用。
集合间的基本关系示范教案

集合间的基本关系示范教案第一章:集合的基本概念1.1 集合的定义引导学生理解集合的概念,理解集合中的元素具有无序性和确定性。
通过实际例子,让学生理解集合的表示方法,如用大括号表示集合,用集合的字母表示集合。
1.2 集合的类型介绍集合的种类,如自然数集、整数集、实数集等。
引导学生理解无限集合和有限集合的概念。
1.3 集合的运算介绍集合的并、交、差运算。
通过示例,让学生理解并集、交集、差集的概念和运算方法。
第二章:集合的关系2.1 集合的相等关系引导学生理解集合相等的概念,即两个集合包含相同的元素。
通过示例,让学生理解集合相等的判断方法。
2.2 集合的包含关系引导学生理解集合的包含关系,即一个集合是另一个集合的子集。
通过示例,让学生理解子集、真子集、超集的概念。
2.3 集合的幂集引导学生理解幂集的概念,即一个集合的所有子集构成的集合。
通过示例,让学生理解幂集的表示方法和性质。
第三章:集合的德摩根定律3.1 德摩根定律的定义引导学生理解德摩根定律的概念,即德摩根定律是描述集合的并、交运算与集合的补集运算之间的关系。
3.2 德摩根定律的证明通过逻辑推理和集合的运算,引导学生理解德摩根定律的证明过程。
3.3 德摩根定律的应用通过示例,让学生理解德摩根定律在解决集合运算问题中的应用。
第四章:集合的集合4.1 集合的集合的概念引导学生理解集合的集合的概念,即集合的元素本身也是集合。
4.2 集合的集合的运算介绍集合的集合的并、交、差运算。
通过示例,让学生理解集合的集合的运算方法和性质。
4.3 集合的集合的应用通过示例,让学生理解集合的集合在解决集合运算问题中的应用。
第五章:集合的布尔代数5.1 集合的布尔代数的定义引导学生理解集合的布尔代数的概念,即集合的布尔代数是一种描述集合运算的数学系统。
5.2 集合的布尔代数的运算介绍集合的布尔代数的并、交、差、补集运算。
通过示例,让学生理解集合的布尔代数的运算方法和性质。
集合间的基本关系示范教案

集合间的基本关系示范教案一、教学目标1. 让学生理解集合间的基本关系,包括子集、真子集、非空子集、超集等概念。
2. 培养学生运用集合间的基本关系解决实际问题的能力。
3. 提高学生对集合论的兴趣,培养学生的逻辑思维能力。
二、教学内容1. 集合间的基本关系概念讲解。
2. 集合间基本关系的图示演示。
3. 集合间基本关系的应用举例。
三、教学重点与难点1. 重点:集合间的基本关系概念及运用。
2. 难点:理解真子集、非空子集等概念。
四、教学方法1. 采用讲授法讲解集合间的基本关系。
2. 利用图示法直观展示集合间的基本关系。
3. 通过举例法引导学生运用集合间的基本关系解决问题。
五、教学准备1. 教案、PPT及相关教学资料。
2. 教学黑板、粉笔。
3. 练习题及答案。
一、集合间的基本关系概述1. 子集:如果一个集合的所有元素都是另一个集合的元素,这个集合就是另一个集合的子集。
2. 真子集:如果一个集合是另一个集合的子集,并且这两个集合不相等,这个集合就是另一个集合的真子集。
3. 非空子集:如果一个集合的子集中包含至少一个元素,这个子集就是非空子集。
4. 超集:如果一个集合包含另一个集合的所有元素,这个集合就是另一个集合的超集。
二、集合间基本关系的图示演示1. 通过图示展示子集、真子集、非空子集、超集等概念。
2. 让学生直观理解集合间的基本关系。
三、集合间基本关系的应用举例1. 举例说明集合间基本关系在实际问题中的应用。
2. 引导学生运用集合间的基本关系解决问题。
四、真子集与非空子集的判断1. 讲解如何判断一个集合是否为真子集。
2. 讲解如何判断一个集合是否为非空子集。
五、练习与巩固1. 布置练习题,让学生巩固所学内容。
2. 批改作业,及时反馈学生学习情况。
六、集合的相等关系1. 定义:如果两个集合包含相同的元素,则这两个集合相等。
2. 性质:集合的相等关系是一种对称关系和传递关系。
3. 举例:解释并展示几个集合相等的情况。
集合间的基本关系示范教案

集合间的基本关系示范教案第一章:集合的概念与表示方法1.1 集合的定义与表示理解集合的概念,即集合是由确定的、互异的元素构成的整体。
学习使用列举法、描述法等表示集合的方法。
1.2 集合间的元素关系掌握集合间的包含关系(子集)、相等关系、不相交关系等。
学习如何表示集合间的这些基本关系。
第二章:集合的运算2.1 集合的并集理解并集的定义,即包含两个或多个集合中所有元素的集合。
学习并集的运算方法及如何表示并集。
2.2 集合的交集理解交集的定义,即属于两个或多个集合的元素构成的集合。
学习交集的运算方法及如何表示交集。
2.3 集合的补集理解补集的定义,即在全集之外不属于某个集合的元素构成的集合。
学习补集的运算方法及如何表示补集。
第三章:集合的性质与运算规律3.1 集合的性质掌握集合的确定性、互异性、无序性等基本性质。
理解集合性质在集合运算中的应用。
3.2 集合运算的规律学习集合运算中的分配律、结合律、吸收律等基本规律。
掌握运用这些规律简化集合运算的方法。
第四章:集合与逻辑推理4.1 集合与集合的关系推理学习利用集合的基本关系进行逻辑推理的方法。
掌握集合的包含关系、相等关系等在逻辑推理中的应用。
4.2 集合与属性推理理解利用集合的属性进行逻辑推理的方法。
学会运用集合的确定性、互异性等属性进行逻辑推理。
第五章:集合的应用5.1 集合在数学中的应用了解集合在数学领域中的应用,如在代数、几何等分支中的运用。
学习集合在解决数学问题中的重要性。
5.2 集合在其他领域的应用探索集合在其他学科领域,如计算机科学、自然科学等中的应用。
认识集合作为一种基本概念在不同领域的重要性。
第六章:集合的排列与组合6.1 排列的概念与计算理解排列的定义,即从n个不同元素中取出m(m≤n)个元素的所有可能的顺序。
学习排列的计算公式及如何表示排列。
6.2 组合的概念与计算理解组合的定义,即从n个不同元素中取出m(m≤n)个元素的所有可能组合。
集合间的基本关系教案

集合间的基本关系教案引言:集合是数学中非常基础且重要的概念之一。
在集合论中,我们研究的是元素的集合,而不关心具体的元素是什么。
为了更好地理解集合的基本关系,我们需要掌握包含、相等、交集、并集、差集等概念。
本教案将介绍集合间的基本关系,并通过实例进行说明。
一、包含关系包含关系是指一个集合包含另一个集合的所有元素。
用符号表示为A⊆B,即集合A是集合B的子集或等于集合B。
包含关系可以表示为:如果x是集合A的元素,则x也是集合B的元素。
实例:假设A={1,2,3},B={1,2,3,4},则A⊆B。
二、相等关系相等关系是指两个集合拥有相同的元素。
用符号表示为A=B。
实例:假设A={1,2,3},B={3,2,1},则A=B。
三、交集关系交集关系是指两个集合中共同拥有的元素构成的集合。
用符号表示为A∩B,表示集合A与集合B的交集。
实例:假设A={1,2,3},B={3,4,5},则A∩B={3}。
四、并集关系并集关系是指两个集合中包含的所有元素构成的集合。
用符号表示为A∪B,表示集合A与集合B的并集。
实例:假设A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。
五、差集关系差集关系是指一个集合中除去与另一个集合共有的元素之外的元素构成的集合。
用符号表示为A-B,表示集合A与集合B的差集。
实例:假设A={1,2,3},B={3,4,5},则A-B={1,2}。
六、互斥关系互斥关系是指两个集合没有共同的元素,其交集为空集。
用符号表示为A∩B=∅。
实例:假设A={1,2,3},B={4,5,6},则A∩B=∅。
七、包含关系、相等关系与交集关系的关联1. 如果集合A包含集合B,则A∩B=B。
2. 如果集合A与集合B相等,则A∩B=A。
实例:假设A={1,2,3,4},B={1,2,3},由于B是A的子集,所以A∩B=B。
八、包含关系、相等关系与并集关系的关联1. 如果集合A包含集合B,则A∪B=A。
集合间的基本关系教案

集合间的基本关系教案教学目标:1. 了解并理解集合间的基本关系,包括子集、真子集、超集、幂集的概念。
2. 能够判断集合之间的包含关系,并能运用集合间的基本关系解决实际问题。
3. 提高逻辑思维能力和数学表达能力。
教学内容:1. 集合间的基本关系2. 子集、真子集、超集的概念及判断3. 幂集的概念及判断4. 集合间的基本运算5. 实际问题中的应用教学重点:1. 集合间的基本关系的理解2. 子集、真子集、超集、幂集的判断3. 集合间的基本运算的应用教学难点:1. 幂集的概念及判断2. 集合间的基本运算的运用教学准备:1. 教学课件或黑板2. 教学素材(如集合卡片、实例等)教学过程:一、导入(5分钟)1. 引入集合的概念,复习集合的基本运算(并集、交集、补集)。
2. 提问:我们已经学习了集合的基本运算,集合之间还有哪些基本关系呢?二、子集、真子集、超集(10分钟)1. 介绍子集的概念,讲解子集的定义及判断方法。
2. 举例说明如何判断一个集合是否是另一个集合的子集。
3. 引入真子集的概念,讲解真子集的定义及判断方法。
4. 举例说明如何判断一个集合是否是另一个集合的真子集。
5. 介绍超集的概念,讲解超集的定义及判断方法。
6. 举例说明如何判断一个集合是否是另一个集合的超集。
三、幂集(10分钟)1. 介绍幂集的概念,讲解幂集的定义及判断方法。
2. 举例说明如何求一个集合的幂集。
3. 讲解幂集的性质及运算规律。
四、集合间的基本运算(10分钟)1. 复习集合的基本运算(并集、交集、补集)。
2. 讲解集合间的基本运算的运用,如求集合的并集、交集、补集等。
3. 举例说明如何运用集合间的基本运算解决实际问题。
五、实际问题中的应用(10分钟)1. 给出几个实际问题,让学生运用集合间的基本关系和基本运算解决。
2. 引导学生思考如何将实际问题转化为集合间的基本关系和基本运算问题。
3. 讲解解题思路和方法,并进行解答。
教学反思:本节课通过讲解集合间的基本关系,让学生了解并理解子集、真子集、超集、幂集的概念及判断方法,能够判断集合之间的包含关系,并能运用集合间的基本关系解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2集合间的基本关系1.Venn图(1)定义:在数学中,经常用平面上封闭曲线的内部代表集合,这种图称为Venn图.(2)适用范围:元素个数较少的集合.(3)使用方法:把元素写在封闭曲线的内部.2.子集、真子集、集合相等的概念(1)子集的概念文字语言符号语言图形语言对于两个集合A,B,如果集合A中任意A⊆B(或B⊇A)一个元素都是集合B中的元素,就称集合A为集合B的子集集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A与集合B相等,记作A=B. 也就是说,若A⊆B,且B⊆A,则A=B.(3)真子集的概念文字语言符号语言图形语言如果集合A⊆B,但存在元素x∈B,且A B(或B A)x∉A,就称集合A是集合B的真子集(1)定义:不含任何元素的集合叫做空集,记为∅.(2)规定:空集是任何集合的子集.4.集合间关系的性质(1)任何一个集合都是它本身的子集,即A⊆A.(2)对于集合A,B,C,若A⊆B且B⊆C,则A⊆C.1.集合A={-1,0,1},A的子集中,含有元素0的子集共有()A.2个B.4个C.6个D.8个B解析:根据题意,在集合A的子集中,含有元素0的子集有{0},{0,1},{0,-1},{-1,0,1}, 共4个,故选B.2.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A<BC.B⊆A D.A⊆BC解析:用数轴表示集合A,B,如图所示,由图可知B⊆A.3.若{1,2}⊆B⊆{1,2,4},则B=________.{1,2}或{1,2,4}解析:由条件知B中一定含有元素1和2,故B可能是{1,2},{1,2,4}.【例1】指出下列各对集合之间的关系:(1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A={x|x是等边三角形},B={x|x是等腰三角形};(3)A={x|-1<x<4},B={x|x-5<0};(4)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.解:(1)集合A的元素是数,集合B的元素是有序实数对,故A与B之间无包含关系.(2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故AB.(3)集合B={x|x<5},用数轴表示集合A,B,如图所示,由图可知A B.(4)由列举法知M={1,3,5,7,…},N={3,5,7,9,…},故N M.集合间基本关系的两种判定方法和一个关键提醒:注意元素与集合、集合与集合之间的关系和所用符号的区别.1.已知集合M={x|x2-3x+2=0},N={0,1,2},则集合M与N的关系是()A.M=NB.N MC.M ND.N⊆MC解析:解方程x2-3x+2=0得x=2或x=1,则M={1,2}.因为1∈M 且1∈N,2∈M且2∈N,所以M⊆N.又因为0∈N但0∉M,所以M N.2.已知集合M ={x |-1<x <5},N ={x |0<x <3},则正确表示M 和N 关系的Venn 图是( )B 解析:因为N M ,故选B.3.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =2n +13,n ∈Z ,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =2n3+1,n ∈Z ,则集合A ,B 的关系为________.A =B解析:A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =13(2n +1),n ∈Z , B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =13(2n +3),n ∈Z . 因为2n +1,n ∈Z 和2n +3,n ∈Z 都表示所有奇数,所以A =B .【例2】已知集合A ={x ∈Z|-2≤x <2},B ={y |y =x 2,x ∈A },则集合B 的子集的个数为( )A .7B .8C .15D .16B 解析:由题意得A ={-2,-1,0,1},B ={0,1,4},所以B 的子集有23=8(个),即∅,{0},{1},{4},{0,1},{0,4},{1,4},{0,1,4}.故选B.【例3】已知集合A ={x ∈R|x 2=a },使集合A 的子集个数为2的a 的值为( )A .-2B .4C .0D .以上答案都不是C 解析:由题意知,集合A 中只有1个元素,也即x 2=a 只有一个解; 若方程x 2=a 只有一个解,则有a =0.【例4】若A={2,3,4},B={x|x=m n,m,n∈A且m≠n},则集合B的非空真子集的个数为________.6解析:由题意A={2,3,4},B={x|x=m n,m,n∈A且m≠n},可知B={6,8,12},所以集合B的非空真子集个数为23-2=6.元素个数与集合子集个数的关系(1)探究.集合A集合A中元素的个数n集合A的子集个数∅0 1{a}1 2{a,b}2 4{a,b,c}38{a,b,c,d}416①A的子集有2n个.②A的非空子集有(2n-1)个.③A的非空真子集有(2n-2)个(n≥1).已知集合A={(x,y)|x+y=2,x,y∈N},试写出A的所有子集.解:∵A={(x,y)|x+y=2,x,y∈N},∴A={(0,2),(1,1),(2,0)}.∴A的子集有:∅,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.探究题1 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1,m 为常数},若B ⊆A ,求实数m 的取值范围.解:①若B =∅,满足B ⊆A , 则m +1>2m -1,解得m <2.②若B ≠∅,满足B ⊆A ,则⎩⎨⎧2m -1≥m +1,m +1≥-2,2m -1≤5,解得2≤m ≤3.综上,实数m 的取值范围为{m |m ≤3}.探究题2 已知集合A ={0,-4},集合B ={x |x 2+2(a +1)x +a 2-1=0},若B ⊆A ,试求a 的取值范围.解:因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此知0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关系,得⎩⎨⎧Δ=4(a +1)2-4(a 2-1)>0,-2(a +1)=-4,a 2-1=0,解得a =1; ②当B ≠∅且BA 时,B ={0}或B ={-4},并且Δ=4(a +1)2-4(a 2-1)=0, 解得a =-1, 此时B ={0}满足题意;③当B =∅时,Δ=4(a +1)2-4(a 2-1)<0,解得a <-1. 综上所述,所求实数a 的取值范围是{a |a ≤-1或a =1}.已知两个集合之间的关系求参数时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解.(1)若集合元素是一一列举的,依据集合间的关系,转化为方程(组)求解,此时注意集合中元素的互异性;(2)若集合表示的是不等式(组)的解集,常借助数轴求解,此时需注意端点值能否取到.1.已知集合A={x|-3≤x≤4},B={x|1<x<m}(m>1),且B⊆A,则实数m的取值范围是________.{m|1<m≤4}解析:由于B⊆A,结合数轴分析可知,m≤4,又m>1,所以1<m≤4.2.已知集合A={1,3,x2},B={1,x+2},是否存在实数x,使得集合B 是A的子集?若存在,求出A,B;若不存在,请说明理由.解:因为B⊆A,所以x+2=3或x+2=x2(即x-1或x=-1或x=2).当x=1时,A={1,3,1}不满足互异性,所以x=1(舍).当x=2时,A={1,3,4},B={1,4},满足B⊆A.当x=-1时,A={1,3,1}不满足互异性,所以x=-1(舍).综上,存在x=2使得B⊆A.此时,A={1,3,4},B={1,4}.集合间基本关系练习(30分钟60分)1.(5分)已知集合A ={x |x 2-9=0},则下列式子表示正确的有( ) ①3∈A ;②{-3}∈A ;③∅⊆A ;④{3,-3}⊆A . A .4个 B .3个 C .2个D .1个B 解析:根据题意,集合A ={x |x 2-9=0}={-3,3}. 3∈A ,3是集合A 的元素,故①正确; {-3}是集合,有{-3}⊆A ,故②错误; 空集是任何集合的子集,故③正确; 任何集合都是其本身的子集,故④正确.2.(5分)已知a 为给定的实数,那么集合M ={x |x 2-3x -a 2+2=0,x ∈R}的子集的个数为( )A .1B .2C .4D .不确定C 解析:因为方程x 2-3x -a 2+2=0的根的判别式Δ=1+4a 2>0, 所以方程有两个不相等的实数根,所以集合M 有2个元素,所以集合M 有22=4(个)子集.3.(5分)设A ={x |2≤x ≤6},B ={x |2a ≤x ≤a +3},若B ⊆A ,则实数a 的取值范围是( )A .{a |1≤a ≤3}B .{a |a ≥3}C .{a |a ≥1}D .{a |1<a <3}C 解析:因为A ={x |2≤x ≤6},B ={x |2a ≤x ≤a +3},且B ⊆A ,所以当B=∅时,2a >a +3,解得a >3;当B ≠∅时,⎩⎨⎧a +3≤6,2a ≥2,2a ≤a +3,解得1≤a ≤3.综上,a的取值范围是{a |a ≥1}.4.(5分)设集合M ={x |x =2k -1,k ∈Z},N ={x |x =4k ±1,k ∈Z},则( )A.M=NB.M NC.N MD.N⊆MA解析:方法一:(列举法)因为集合M={x|x=2k-1,k∈Z},所以其中的元素是奇数且M={…,-3,-1,1,3,…}.因为集合N={x|x=4k±1,k∈Z},所以其中的元素也是奇数且N={…,-3,-1,1,3,…}.所以它们之间的关系为M=N.方法二:(特征性质法)对于x=2k-1,k∈Z.当k为偶数,即k=2n,n∈Z 时,x=4n-1,n∈Z,当k为奇数,即k=2n+1,n∈Z时,x=4n+1,n∈Z,所以集合M=N.5.(5分)集合{(x,y)|x+y=3,x∈N,y∈N}的非空子集有________个.15解析:{(x,y)|x+y=3,x∈N,y∈N}={(0,3),(1,2),(2,1),(3,0)}共4个元素,故原集合的非空子集共有24-1=15(个).6.(5分)已知集合M={x|x=1+a2,a∈N*},P={x|x=a2-4a+5,a∈N*},那么M________P.(填“”“”或“=”)解析:对于任意.x∈M,有x=1+a2=(a+2)2-4(a+2)+5.∵a∈N*,∴a+2∈N*,∴x∈P.由子集的定义知,M⊆P.由a=2∈N*时,a2-4a+5=1∈P,而1+a2=1在a∈N*时无解,∴1∉M.综上所述,M P.7.(5分)已知集合P={x|x2=1},集合Q={x|ax=1},若Q⊆P,则a的取值是________.0,±1 解析:P ={-1,1}, 若Q =∅,则a =0,此时满足Q ⊆P .若Q ≠∅,则Q =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =1a .由题意知1a =1或1a =-1,解得a =±1.综上可知,a 的取值是0,±1.8.(5分)集合A =⎩⎨⎧⎭⎬⎫13,12,1,2,3,具有性质“若x ∈P ,则1x ∈P ”的所有非空子集的个数为________.7解析:根据题意,满足题意的子集有{1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫13,3,⎩⎨⎧⎭⎬⎫1,12,2,⎩⎨⎧⎭⎬⎫1,13,3,⎩⎨⎧⎭⎬⎫2,3,12,13,⎩⎨⎧⎭⎬⎫1,2,12,13,3,共7个.9.(10分)已知集合A ={x |-5<x <5},B ={x |-2a <x ≤a +3},若B ⊆A ,求实数a 的取值范围.解:因为B ⊆A ,当B =∅时,-2a ≥a +3,解得a ≤-1;当B ≠∅时,⎩⎨⎧-2a <a +3,-2a ≥-5,a +3<5,解得-1<a <2.综上,实数a 的取值范围为{a |a <2}.10.(10分)已知集合A ={x |(x -a )·(x -a +1)=0},B ={x |(x -2)(x-b )=0,b ≠2},C ={x |1<2x -3<5}.(1)若A =B ,求b 的值; (2)若A ⊆C ,求a 的取值范围. 解:A ={a ,a -1},B ={2,b }, (1)若a =2,则A ={1,2}. 因为A =B ,所以b =a -1=1.若a -1=2,则a =3,A ={2,3},所以b =3. 综上,b 的值为1或3.(2)C ={x |2<x <4},因为A ⊆C ,所以⎩⎨⎧2<a <4,2<a -1<4,所以3<a <4. 所以a 的取值范围是{a |3<a <4}.。