中原名校(即豫南九校)2020-2021学年高一上学期期末联考数学试题 (2)
2021届河南省中原名校高三上学期期末联考数学(理)试题Word版含解析

2020届河南省中原名校高三上学期期末联考数学(理)试题一、单选题1.已知集合{}2|230A x x x =--≤,{}|21x B y y ==+,则AB =() A .∅B .(]1,3C .(]0,3D .()1,+∞ 【答案】B【解析】根据一元二次不等式的解集和指数函数的值域求得.【详解】由已知解得[]()1,3,1,A B =-=+∞,所以(]1,3A B =,故选B.【点睛】本题考查一元二次不等式的解集、指数函数的值域和集合的交集运算,属于基础题.2.已知20191i z =+,则2z i -=( )AB .C .2D 【答案】A【解析】首先化简复数z ,再代入模的计算.【详解】由201911z i i =+=-,所以|2||13|z i i -=-==.故选:A【点睛】本题考查复数的计算,属于基础计算题型.3.若tan 13θ=,则cos2θ=( ) A .45- B .15- C .15 D .45【答案】D 【解析】222222cos cos2cos cos sin sin sin θθθθθθθ-=-=+.分子分母同时除以2cos θ,即得:2211149cos211519tan tan θθθ--===++. 故选D.4.若直线1y x =+和曲线ln 2y a x =+相切,则实数a 的值为( )A .12B .1C .2D .32【答案】B【解析】设切点为()00,ln 2x a x +,求出函数在0x x =处的导数后可得切线的斜率,从而可用a 表示切点的横坐标,最后根据切点在切线上得到关于a 的方程,解该方程后可得实数a 的值.【详解】设切点为()00,ln 2x a x +,因为a y x'=,故切线的斜率01a k x ==, 所以0x a =,所以ln 21a a a +=+,因为0a >,故1a =,故选B.【点睛】解决曲线的切线问题,核心是切点的横坐标,因为函数在横坐标处的导数就是切线的斜率,本题为基础题.5.已知数列{}n a 为各项均为正数的等比数列,n S 是它的前n 项和,若174a a =,且47522a a +=,则5S =( )A .32B .31C .30D .29 【答案】B【解析】根据已知求出4712,4a a ==,再求出公比和首项,最后求5S . 【详解】因为174a a =,所以2444,0,2n a a a =>∴=. 因为47522a a +=,所以714a =. 所以3111,16.82q q a =∴==,, 所以55116[1()]2=31112S -=-. 故选B【点睛】本题主要考查等比数列的通项的基本量的计算,考查等比中项的应用,考查等比数列的前n 项和的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.函数|2|()ln cos x f x x π=-的部分图像大致为( )A .B .C .D .【答案】B【解析】利用函数的奇偶性可排除两个答案,再根据2x =时,函数值的正负可得正确答案.【详解】 因为|2()|()ln cos()()x f x x f x π--=--=,所以()f x 为偶函数,排除A,D ; 当2x =时,(2)lnco 4s 20f π=->,故排除C ; 故选B.【点睛】 本题考查根据函数的解析式选择对应函数图象,考查数形结合思想的应用,求解时要充分利用函数的性质和特殊点寻找解题的突破口.7.如图所示,半径为1的圆O 是正方形MNPQ 的内切圆,将一颗豆子随机地扔到正方形MNPQ 内,用A 表示事件“豆子落在圆O 内”,B 表示事件“豆子落在扇形OEF (阴影部分)内”,则()|P B A =( )A .4πB .14C .16πD .18【答案】B【解析】利用几何概型先求出()22124P A ππ⨯==,()22114216P AB ππ⨯⨯==,再由条件概率公式求出(|)P B A.【详解】如图所示,半径为1的圆O是正方形MNPQ的内切圆,将一颗豆子随机地扔到正方形MNPQ内,用A表示事件“豆子落在圆O内”,B表示事件“豆子落在扇形(OEF阴影部分)内”,则()22124P Aππ⨯==,()22114216P ABππ⨯⨯==,()()116(|)44P ABP B AP Aππ∴===.故选B.【点睛】本题考查概率的求法,考查几何概型、条件概率能等基础知识,考查运算求解能力,是基础题.8.我国古代科学家祖冲之儿子祖暅在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”(“幂”是截面积,“势”是几何体的高),意思是两个同高的几何体,如在等高处截面的面积恒相等,则它们的体积相等.已知某不规则几何体与如图所示的三视图所表示的几何体满足“幂势既同”,则该不规则几何体的体积为( )A.12π-B.8π-C.122π-D.122π-【答案】A【解析】首项把三视图转换为几何体,得该几何体表示左边是一个棱长为2的正方体,右边是一个长为1,宽和高为2的长方体截去一个底面半径为1,高为2的半圆柱,进一步利用几何体的体积公式,即可求解,得到答案.【详解】根据改定的几何体的三视图,可得该几何体表示左边是一个棱长为2的正方体,右边是一个长为1,宽和高为2的长方体截去一个底面半径为1,高为2的半圆柱, 所以几何体的体积为2122222112122V ππ=⨯⨯+⨯⨯-⨯⨯=-,故选A.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解. 9.设实数,x y 满足不等式组00152x y yx yx ⎧⎪⎪⎨-⎪⎪-⎩,(2,1)是目标函数z ax y =-+取最大值的唯一最优解,则实数a 的取值范围是( ).A .(0,1)B .(0,1]C .(,2)-∞-D .(,2]-∞-【答案】C 【解析】作出不等式组所对应的平面区域,分类讨论确定目标函数的最优解,即可得到答案.【详解】作出不等式组对应的平面区域如图:(阴影部分OABC ).则(1,0),(2,1),(0,5)A B C由z y ax =-得y ax z =+,平移直线y ax z =+,则直线的截距最大时,z 也最大,当0a =时,y z =在C 处的截距最大,此时不满足条件.当0a >时,直线y ax z =+,在C 处的截距最大,此时不满足条件.当0a <时,直线y ax z =+,要使(2,1)是目标函数z y ax =-取最大值的唯一最优解,则y ax z =+在B 处的截距最大,此时目标函数的斜率a 须小于直线BC 的斜率2-,即2a <-. 故选:C .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.已知数列{}n a 的前n 项和为n S ,且11a =,2(1)n n S a n n =+-()*n N ∈,则数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和是( )A .922B .611C .12D .511【答案】D【解析】根据公式2n ≥时,1n n n S S a --= ,化简为14n n a a --=,说明数列{}n a 是等差数列,代入等差数列求和,得到1111132(1)21n S n n n n n ⎛⎫==- ⎪+++⎝⎭,利用裂项相消法求和. 【详解】 由2(1)n n S a n n =+-()*n N ∈得2(1)n n S na n n =--.则当2n ≥时, 11(1)4(1)n n n n n a S S na n a n --=-=----,整理得14n n a a --=,所以{}n a 是公差为4的等差数列,又11a =,所以43n a n =-*()n N ∈,从而()2133222(1)2n n n a a S n n n n n n ++=+=+=+,所以1111132(1)21n S n n n n n ⎛⎫==- ⎪+++⎝⎭, 设故数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和10T , 101111111151...12223101121111T ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 故数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和10511T =. 故选:D【点睛】本题考查数列n a 和n S 的关系求通项公式,以及裂项相消法求和,重点考查转化与变形,计算能力,属于中档题型.11.函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( ) A .5B .4C .3D .6 【答案】A【解析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数.【详解】函数()()()2384g x fx f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点 即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x fx f x =-+有5个零点,故选:A.【点睛】 本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.12.已知圆()(221:31C x y -+-=和焦点为F 的抛物线221:8,C y x N C =是上一点,M 是2C 上,当点M 在1M 时,MF MN +取得最小值,当点M 在2M 时,MF MN -取得最大值,则12M M =A.B.C.D【答案】D【解析】根据抛物线的定义和三角形中两边之差小于第三边转化111MF MN C D +-,当且仅当1,,M C D 三点共线,且点N 在线段1MC 上时等号成立,求得点1M 的坐标,再根据三角形中两边之差小于第三边转化11MF MN FC ≤+-,当且仅当M 为线段1FC 的延长线与抛物线的交点,且点N 在线段1MC 上时等号成立,求得2M 的坐标,从而求出12MM ,得解.【详解】由已知得:(()13,,2,0C F ,记2C 的准线为l ,如图,过点M 作l 的垂线,垂足为D ,过点1C 作l 的垂线,垂中为1D ,则111||||||||||11MF MN MD MN MD MC C D +=++--,当且仅当1,,M C D 三点共线,且点N 在线段1MC 上时等号成立,此时MF MN +取得最小值, 则点1M 的坐标为(, ()111||||||1||11MF MN MF MC MF MC FC ---=-+≤+,当且仅当M 为线段1FC 的延长线与抛物线的交点,且点N 在线段1MC上时等号成立,此时MF MN -取得最大值,又直线1FC 的方程为2)yx =-,由22)8y x y x ⎧=-⎪⎨=⎪⎩,解得1x y =⎧⎪⎨=-⎪⎩,或4x y =⎧⎪⎨=⎪⎩,所以2M 的坐标为(4,42), 所以2212(41)(4222)17M M =-+-=,故选:D . 【点睛】本题关键在于根据抛物线的定义和三角形中两边之差小于第三边将所求的线段的和或差转化,进而得到取得最值的位置,属于中档题.二、填空题13.“关注夕阳、爱老敬老”—某马拉松协会从2013年开始每年向敬老院捐赠物资和现金.下表记录了第x 年(2013年是第一年)与捐赠的现金y (万元)的对应数据,由此表中的数据得到了y 关于x 的线性回归方程ˆ0.35ymx =+,则预测2019年捐赠的现金大约是______万元. x 34 5 6 y2.5 3 4 4.5【答案】5.25【解析】首先根据数据求样本中心点(),x y ,代入求m ,当7x =时,求2019年捐赠的现金.【详解】由已知得样本点的中心点的坐标为(4.5,3.5),代入ˆ0.35ymx =+, 得3.5 4.50.35m =+,即0.7m =,所以ˆ0.70.35y x =+,取7x =,得ˆ0.770.35 5.25y=⨯+=,预测2019年捐赠的现金大约是5.25万元. 故答案为:5.25 【点睛】本题考查回归直线方程的求解和应用,属于基础题型. 14.某年级有1000名学生,一次数学测试成绩()2105,10X N ,()951050.34P X ≤≤=,则该年级学生数学成绩在115分以上的人数大约为______. 【答案】160【解析】根据考试的成绩X 服从正态分布(105N ,210).得到考试的成绩X 关于105X =对称,根据(95105)0.34P X =,得到1(115)(10.68)0.162P X =-=,根据频率乘以样本容量得到这个分数段上的人数.【详解】考试的成绩X 服从正态分布(105N ,210).∴考试的成绩X 关于105X =对称,(95105)0.34P X =, 1(115)(10.68)0.162P X ∴=-=,∴该班数学成绩在115分以上的人数为0.161000160⨯=故答案为:160. 【点睛】本题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩X 关于105X =对称,利用对称写出要用的一段分数的频数,题目得解. 15.已知()4121x a x x ⎛⎫++- ⎪⎝⎭的展开式中含3x 的项的系数为5,则a =_________. 【答案】2【解析】首先原式展开为()()()44412111x x x a x x⋅-+⋅-+-,然后分别求每一项中含有3x 的系数,最后求a . 【详解】由题意知原式展开为()()()44412111x x x a x x⋅-+⋅-+-,所以412(1)x a x x ⎛⎫++- ⎪⎝⎭的展开式中含3x 的项为224334412C ()()C ()x x x a x x ⋅-+-+-, 即3(134)a x -,由已知条件知1345a -=,解得2a = . 【点睛】本题考查了二项式定理的综合问题,意在考查二项式定理指定项的求法,属于基础题.16.三棱锥P ABC -中,点P 到A 、B 、C 三点的距离均为8,PA PB ⊥,PA PC ⊥,过点P 作PO ⊥平面ABC ,垂足为O ,连接AO ,此时cos 3PAO ∠=,则三棱锥P ABC -外接球的体积为______.【答案】【解析】先证明出PA ⊥平面PBC ,根据cos 3PAO ∠=计算出AD 、BD ,并证明出点D 为BC 的中点,可得出BC ,利用勾股定理可证明出PB PC ⊥,然后构造正方体模型可求出三棱锥P ABC -外接球的半径长,最后利用球体体积公式可计算出结果. 【详解】因为PA PB ⊥,PA PC ⊥,PB PC P ⋂=,故PA ⊥平面PBC ,因为8PA PB PC ===,故AB AC ==cosPA PAO AD ∠==AD ∴===BD ==PA ⊥平面PBC ,BC ⊂平面PBC ,BC PA ∴⊥.PO ⊥平面ABC ,BC ⊂平面ABC ,BC PO ∴⊥. PA PO P =,BC ∴⊥平面PAO ,PD ⊂平面PAO ,PD BC ∴⊥,8PB PC ==,D ∴为BC 的中点,2BC BD ∴==222PB PC BC ∴+=.故PC PB ⊥,构造正方体模型可知,四面体P ABC -的外接球半径R ==,因此,三棱锥P ABC -外接球的体积为(343V π=⨯=.故答案为:.【点睛】本题考查三棱锥的外接球体积的计算,解题的关键在于推导出线面垂直关系,并结合几何体的结构找出合适的模型计算出外接球的半径,考查推理能力与计算能力,属于中等题.三、解答题17.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且33m a sinA ⎛⎫= ⎪ ⎪⎝⎭,,()n cosC c =,,b m n =⋅.(1)求角A 的大小;(2)若a =3,求△ABC 的周长L 的取值范围. 【答案】(1)3A π=(2)L ∈(6,9]【解析】(1)由条件b m n =⋅可得3b acosC =+,再结合正弦定理及三个角之间的关系可得3tanA =A ;(2)利用余弦定理再结合基本不等式,求得3<b+c ≤6,即可得到周长L 的范围. 【详解】(1)由题意3m a sinA ⎛⎫= ⎪ ⎪⎝⎭,,()n cosC c =,,b m n =⋅.所以3b acosC =, 由正弦定理,可得33sinB sinAcosC sinCsinA =+, 因为()B A C π=-+,所以sinB=sin (A +C )=sinAcosC+cosAsinC , 又由(0,)C π∈,则sin 0C >,整理得3tanA =,又因为(0,)A π∈,所以3A π=.(2)由(1)和余弦定理2222cos a b c bc A =+-,即2222232cos 3b c bc b c bc π=+-=+-,即229b c bc +-=,整理得2()39b c bc +-=,又由2()2b c bc +≤(当且仅当b=c=3时等号成立) 从而22219()3()()24b c b c b c +≥+-=+,可得b+c ≤6, 又b+c >a=3,∴3<b+c ≤6,从而周长L ∈(6,9]. 【点睛】本题主要考查了正弦定理、余弦定理和的应用,以及基本不等式求最值的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理,结合基本不等式求解是解答的关键,着重考查了运算与求解能力,属于基础题.18.如图四棱锥P ABCD -中,底面ABCD 是正方形,PB BC ⊥,PD CD ⊥,且PA AB =,E 为PD 中点.(1)求证:PA ⊥平面ABCD ; (2)求二面角A BE C --的余弦值. 【答案】(1)证明见解析;(2) 10. 【解析】(1)推导出BC AB ⊥,BC PB ⊥,从而BC ⊥平面PAB ,进而BC PA ⊥.求出CD PA ⊥,由此能证明PA ⊥平面ABCD .(2)以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能求出二面角A BE C --的正弦值. 【详解】(1)∵底面ABCD 为正方形, ∴BC AB ⊥,又BC PB ⊥,AB PB B ⋂=, ∴BC ⊥平面PAB , ∴BC PA ⊥.同理CD PA ⊥,BC CD C ⋂=, ∴PA ⊥平面ABCD .(2)建立如图的空间直角坐标系A xyz -,不妨设正方形的边长为2.则 (0,0,0)A ,(2,2,0)C ,(0,1,1)E ,(2,0,0)B设(;,)m x y z =为平面ABE 的一个法向量,又(0,1,1)AE =,(2,0,0)AB =,20m AE y z m AB x ⎧⋅=+=⎨⋅==⎩,令1y =-,1z =,得(0,1,1)m =- 同理(1,0,2)n =是平面BCE 的一个法向量,则10cos ,||||525m n m n m n ⋅<>===⨯. ∴二面角A BE C --的余弦值为105-.【点睛】本题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.19.在平面直角坐标系xOy 中,椭圆C 的中心在坐标原点O ,其右焦点为()1,0F ,且点 31,2⎛⎫⎪⎝⎭在椭圆C 上.()1求椭圆C 的方程;()2设椭圆的左、右顶点分别为A 、B ,M 是椭圆上异于A ,B 的任意一点,直线MF 交椭圆C 于另一点N ,直线MB 交直线4x =于Q 点,求证:A ,N ,Q 三点在同一条直线上.【答案】(1)22143x y += (2)见解析【解析】(1)设椭圆的方程为22221x y a b +=,由题意可得2222211914c a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩,解方程组即可. (2)设()11,M x y ,()22,N x y ,直线MN 的方程为1x my =+,由方程组221143x my x y =+⎧⎪⎨+=⎪⎩,消去x 整理得()2234690my my ++-=,根据韦达定理求出点Q 的坐标,根据向量即可求出//AN AQ ,且向量AN 和AQ 有公共点A ,即可证明.【详解】(1)不妨设椭圆的方程为22221x y a b+=,(0)a b >>.由题意可得2222211914c a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩,解得24a =,23b =,故椭圆的方程22143x y +=.(1)设11(,)M x y ,22(,)N x y ,直线MN 的方程为1x my =+,由方程组221143x my x y =+⎧⎪⎨+=⎪⎩,消去x 整理得22(34)690m y my ++-=223636(34)0m m ∆=++>122634m y y m ∴+=-+,122934y y m =-+, 直线BM 的方程可表示为11(2)2y y x x =--, 将此方程与直线4x =成立,可求得点Q 的坐标为112(4,)2y x -, 22(2,)AN x y ∴=+,112(6,)2y AQ x =-, ()()()211212211622226222y x y x y y x x x --+-+=--()()()2112161221212y my y my my ⎡⎤⎡⎤+--++⎣⎦⎣⎦=+-()22121211964()6()463434011mm my y y y m m my my ----+++===--,//AN AQ ∴,向量AN 和AQ 有公共点A ,A ∴,N ,Q 三点在同一条直线上.【点睛】本题考查了椭圆的方程,直线与椭圆的关系,向量问题等基础知识,考查了运算求解能力,推理论证能力,化归与转化思想,应用意识,是中档题.20.在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶甲、乙两村各50户贫困户.为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况.子女受教育情况、危旧房情况、患病情况等进行调查.并把调查结果转化为各户的贫困指标x .将指标x 按照[)0,0.2,[)0.2,0.4,[)0.4,0.6,[)0.6,0.8,[]0.8,1.0分成五组,得到如图所示的频率分布直方图.规定若00.6x ≤<,则认定该户为“绝对贫困户”,否则认定该户为“相对贫困户”,且当0.8 1.0x ≤≤时,认定该户为“低收入户”;当00.2x ≤<时,认定该户为“亟待帮助户".已知此次调查中甲村的“绝对贫困户”占甲村贫困户的24%.(1)完成下面的列联表,并判断是否有90%的把握认为绝对贫困户数与村落有关:甲村 乙村 总计 绝对贫困户 相对贫困户 总计(2)某干部决定在这两村贫困指标处于[)00.4,的贫困户中,随机选取3户进行帮扶,用X 表示所选3户中“亟待帮助户”的户数,求X 的分布列和数学期望EX .附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥ 0.15 0.10 0.05 0.025 0k2.0722.7063.8415.024【答案】(1)列联表见解析,没有90%的把握认为绝对贫困户数与村落有关(2)详见解析 【解析】(1)根据频率分布直方图,通过计算,完成列联表,同时根据公式()()()()()22n ad bc K a b c d a c b d -=++++,计算出2K 的值,对照表格得出结果.(2)求出X 分别为0,1,2,3时的概率,求出X 的分布列,进而可求出数学期望EX . 【详解】解:(1)由题意可知,甲村中“绝对贫困户”有500.2412⨯=(户),甲、乙两村的绝对贫困户有()0.250.500.750.210030++⨯⨯=(户),可得出如下列联表:()221001232183812 2.706307050507K ⨯⨯-⨯==<⨯⨯⨯.故没有90%的把握认为绝对贫困户数与村落有关.(2)贫困指标在[)00.4,的贫困户共有()0.250.50.210015+⨯⨯=(户),“亟待帮助户”共有0. 250.21005⨯⨯=(户), 依题意X 的可能值为0,1,2,3,()31031524091C P X C ====,()2110531545191C C P X C ====,()1210531520291C C P X C ====,()353152391C P X C ====, 则X 的分布列为故24452020123191919191EX =⨯+⨯+⨯+⨯=. 【点睛】本题考查列联表的完善,独立性检验,以及分布列及数学期望,是中档题. 21.已知函数()2ln 2f x x x ax x =-+,a ∈R .(Ⅰ)若()f x 在()0,∞+内单调递减,求实数a 的取值范围; (Ⅱ)若函数()f x 有两个极值点分别为1x ,2x ,证明:1212x x a+>. 【答案】(Ⅰ)e ,4a ⎡⎫∈+∞⎪⎢⎣⎭(Ⅱ)见证明【解析】(I )先求得函数的导数,根据函数在()0,∞+上的单调性列不等式,分离常数a 后利用构造函数法求得a 的取值范围.(II )将极值点12,x x 代入导函数列方程组,将所要证明的不等式转化为证明12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+,利用构造函数法证得上述不等式成立. 【详解】(I )()ln 24f x x ax +'=-. ∴()f x 在()0,∞+内单调递减,∴()ln 240f x x ax =+-≤在()0,∞+内恒成立,即ln 24x a x x ≥+在()0,∞+内恒成立. 令()ln 2x g x x x =+,则()21ln xg x x --'=, ∴当10e x <<时,()0g x '>,即()g x 在10,e ⎛⎫⎪⎝⎭内为增函数;当1x e >时,()0g x '<,即()g x 在1,e ⎛⎫+∞ ⎪⎝⎭内为减函数. ∴()g x 的最大值为1g e e ⎛⎫= ⎪⎝⎭,∴e ,4a ⎡⎫∈+∞⎪⎢⎣⎭(Ⅱ)若函数()f x 有两个极值点分别为1x ,2x ,则()ln 240f x x ax =+-='在()0,∞+内有两根1x ,2x ,由(I ),知e 04a <<. 由1122ln 240ln 240x ax x ax +-=⎧⎨+-=⎩,两式相减,得()1212ln ln 4x x a x x -=-. 不妨设120x x <<,∴要证明1212x x a+>,只需证明()()121212142ln ln x x a x x a x x +<--. 即证明()1212122ln ln x x x x x x ->-+,亦即证明12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+. 令函数. ∴22(1)'()0(1)x h x x x --=≤+,即函数()h x 在(]0,1内单调递减. ∴()0,1x ∈时,有()()10h x h >=,∴2(1)ln 1x x x ->+. 即不等式12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+成立. 综上,得1212x x a+>. 【点睛】本小题主要考查根据函数的单调性求参数,考查利用导数研究函数极值点问题,考查利用导数证明不等式,考查利用构造函数法证明不等式,难度较大,属于难题. 22.在直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t x y t x =+⎧⎨=-+⎩(t 为参数,0απ<<),以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为()12cos28cos ρθθ-=.(1)判断直线l 与曲线C 的公共点的个数,并说明理由;(2)设直线l 与曲线C 交于不同的两点A B ,,点()11P -,,若1143PA PB -=,求tan α的值. 【答案】(1)两个,理由见解析;(2)43. 【解析】(1)先将曲线C 的极坐标方程化为直角坐标方程,再将直线的参数方程代入曲线C 的直角坐标方程,得到一元二次方程,根据判别式,即可判断出结果;(2)先由(1)设方程()22sin 2sin 4cos 30t t ααα⋅-+⋅-=的两根为12t t ,,得到1222sin 4cos sin ααα++=t t ,12230sin α-⋅=<t t ,再由1143PA PB -=,得到121224sin 2cos 33αα+=+=⋅t t t t ,求解即可得出结果. 【详解】(1)由()1cos28cos ρθθ-=得2sin 4cos ρθθ=,所以22sin 4cos ρθρθ=, 即24y x =,将直线l 的参数方程代入24y x =,得()()21sin 41cos t t αα-+=+, 即()22sin 2sin 4cos 30t t ααα⋅-+⋅-=,由0απ<<知2sin 0α>,()222sin 4cos 12sin 0ααα∆=++>,故直线l 与曲线C 有两个公共点;(2)由(1)可设方程()22sin2sin 4cos 30t t ααα⋅-+⋅-=的两根为12t t ,, 则1222sin 4cos sin ααα++=t t ,12230sin α-⋅=<t t , 故12121124sin 2cos 33PA PB t t PA PB PA t t αα-+-===+=⋅, ∴22sin 4sin cos 4cos 4αααα++=,即24sin cos 3sin ααα=, ∴4tan 3α=. 【点睛】本题主要考查极坐标方程与直角坐标方程的互化,以及由参数的方法判断直线与曲线位置关系,熟记极坐标与直角坐标的互化公式,以及参数方法研究曲线的弦长等即可,属于常考题型.23.已知函数()1f x x a x =++-.(1)当2a =时,求不等式()8f x x ≥+的解集;(2)若关于x 的不等式()5f x x ≤-的解集包含[]0,2,求实数a 的取值范围.【答案】(1)(][),37,x ∈-∞-+∞(2)40a -≤≤【解析】(1)按21,21,x x x ≤-≥-<<进行分类,得到等价不等式组,分别解出解集,再取并集,得到答案;(2)将问题转化为()15f x x a x x =++-≤-在[]0,2x ∈时恒成立,按[]0,1x ∈和(]1,2x ∈分类讨论,分别得到不等式恒成立时对应的a 的范围,再取交集,得到答案.【详解】解:(1)当2a =时,()218f x x x x =++-≥+等价于 1218x x x ≥⎧⎨+≥+⎩或2138x x -≤<⎧⎨≥+⎩或2218x x x <-⎧⎨--≥+⎩, 解得7x ≥或x ∈∅或3x ≤-,所以不等式的解集为:(][),37,x ∈-∞-+∞.(2)依题意即()15f x x a x x =++-≤-在[]0,2x ∈时恒成立,当[]0,1x ∈时,15x a x x ++-≤-,即4x a +≤,所以44a x a --≤≤-对[]0,1x ∈恒成立 ∴4014a a --≤⎧⎨≤-⎩,得43a -≤≤; 当(]1,2x ∈时,15x a x x ++-≤-, 即62x a x +≤-,6226x a x x ≤+≤-- 所以636a x x a-⎧≤⎪⎨⎪≤+⎩对任意(]1,2x ∈恒成立,∴62326a a-⎧≤⎪⎨⎪≤+⎩,得04a a ≤⎧⎨≥-⎩∴40a -≤≤, 综上,40a -≤≤.【点睛】本题考查分类讨论解绝对值不等式,分类讨论研究不等式恒成立问题,属于中档题.。
最新版河南省豫南九校高一上学期期末联考数学试题Word版含答案

豫南九校2017-2018学年上期期末联考高一数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}2,1{=A ,则集合},|),{(A y A x y x B ∈∈=中元素的个数为( ) A .1 B . 2 C .3 D .42.已知P :直线01:1=-+y ax l 与直线0:22=++a ay x l 平行,则a 的值为( ) A .1 B . -1 C . 0 D .-1或13.函数⎪⎩⎪⎨⎧>≤=0,log 0,)21()(2x x x x f x,则=))81((f f ( )A .41 B . 4 C . 81D . 8 4.设βα,是两个不同的平面,m 是直线且α⊂m ,β//m ,若使βα//成立,则需增加条件( )A . n 是直线且α⊂n ,β//nB .m n ,是异面直线,β//n C. m n ,是相交直线且α⊂n ,β//n D .m n ,是平行直线且α⊂n ,β//n 5.已知函数32)(2--=ax x x f 在区间]2,1[上是单调增函数,则实数a 的取值范围为( ) A . )1,(-∞ B . ]1,(-∞ C. ),2(+∞ D .),2[+∞6.已知矩形ABCD ,6=AB ,8=BC ,沿矩形的对角线AC 将平面ACD 折起,若D C B A ,,,四点都在同一球面上,则该球面的面积为( )A .π36B .π64 C. π100 D .π2007.设)(x f 是定义在实数集上的函数,且)()2(x f x f =-,若当1≥x 时,x x f ln )(=,则有( )A .)2()0()1(f f f =<-B .)2()0()1(f f f =>- C. )2()0()1(f f f <<- D .)2()0()1(f f f >>-8.已知bx ax x f +=2)(是定义在]2,1[a a -上的偶函数,那么)(x f 的最大值是( ) A . 0 B .31 C. 274 D .1 9.某四面体的三视图如图,则该四面体的体积是( )A . 1B .34 C. 23D .2 10.已知实数y x ,满足方程01422=--+x y x ,则x y 2-的最小值和最大值分别为( ) A . -9,1 B .-10,1 C. -9,2 D .-10,211.已知函数12)(2+-=x ax x f ,若对一切]2,21[∈x ,0)(>x f 都成立,则实数a 的取值范围为( )A . ),21[+∞B .),21(+∞ C. ),1(+∞ D .)1,(-∞12.已知BD AC ,为圆922=+y x O :的两条互相垂直的弦,且垂足为)2,1(M ,则四边形ABCD 面积的最大值为( )A . 10B .13 C.15 D .20二、填空题(每题5分,满分20分,将答案填在答题纸上)13.函数)1(log )(221-=x x f 的单调递增区间为 .14.已知集合}6)2()1(|),{(22=++-=y x y x A ,}052|),{(=-+=y x y x B ,则集合B A 中子集个数是 .15.如图,已知圆柱的轴截面11A ABB 是矩形,AB AA 21=,C 是圆柱下底面弧AB 的中点,1C 是圆柱上底面弧11B A 的中点,那么异面直线1AC 与BC 所成角的正切值为 .16.已知函数⎩⎨⎧≥+-<+-=1,241|,1|1)(2x x x x x x f ,则函数12)()2()(+--=x x f x x g 的零点个数为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知全集R U =,集合}1log 0|{3<<=x x A ,集合}12|{m x m x B -<<=. (1)当1-=m 时,求B A ,B A C U )(; (2)若A B A = ,求实数m 的取值范围.18. 已知直线0)()2(:=-+++-b a y b a x b a l 及点)3,1(P . (1)证明直线l 过某定点,并求该定点的坐标; (2)当点P 到直线l 的距离最大时,求直线l 的方程. 19. 设)(x f 是定义在R 上的奇函数,当0>x 时,xxx f 31)(-=. (1)求)(x f 的解析式; (2)解不等式8)(x x f -<. 20. 已知圆C 经过点)1,2(-A ,)3,0(-B 和直线1=+y x 相切. (1)求圆C 的方程;(2)若直线l 经过点)0,2(B ,并且被圆C 截得的弦长为2,求直线l 的方程.21. 如图,四面体PABC 中,⊥PA 平面ABC ,1=PA ,1=AB ,2=AC ,3=BC .(1)求四面体PABC 的四个面的面积中,最大的面积是多少? (2)证明:在线段PC 上存在点M ,使得BM AC ⊥,并求MCPM的值. 22.已知函数x x f 3log 23)(-=,x x g 3log )(=.(1)当]9,1[∈x 时,求函数)(]1)([)(x g x f x h ∙+=的值域;(2)如果对任意的]9,1[∈x ,不等式k x f x f >∙)()(2恒成立,求实数k 的取值范围; (3)是否存在实数a ,使得函数)(]2)([)(x f x ag x F ∙+=的最大值为0,若存在,求出a 的值,若不存在,说明理由.豫南九校2017—2018学年上期期末联考高一数学参考答案一、选择题(本大题共12小题,每题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1.解析:选D 集合B 中元素有(1,1),(1,2),(2,1),(2,2),共4个.2.解析:选A 由于直线l 1:ax +y -1=0与直线l 2:x +ay +2a =0平行所以012=-a ,即=a -1或1,经检验1=a 成立。
河南省豫南九校2020-2021学年高一数学上学期第三次联考试题

河南省豫南九校2020-2021学年高一数学上学期第三次联考试题年级:姓名:河南省豫南九校2020-2021学年高一数学上学期第三次联考试题一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设直线l 与平面α平行,直线m 在平面α上,那么( ) A .直线l 不平行于直线mB .直线l 与直线m 异面C .直线l 与直线m 没有公共点D .直线l 与直线m 不垂直2.已知集合{}1,2,3,4,5A =,(){},,,B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为( ) A .3В.6С.8D .103.下列说法不正确的是( )A .若棱柱被一平面所截,则分成的两部分不一定是棱柱B .当球心到平面的距离小于球面半径时,球面与平面的交线总是一个圆C .平行于圆台底面的平面截圆台,截面是圆面D .直角三角形绕它的一边旋转一周形成的曲面围成的几何体是圆锥 4.将下面的展开图恢复成正方体后,ABC ∠的度数为( )A .22.5°B .45°C .60°D .90°5.一水平放置的平面四边形OABC 用斜二测画法绘制的直观图O A B C ''''如图所示,其中O C x '''⊥,A B x '''⊥,//B C y ''',四边形OABC 的面积为( )A .322B .32C .3D .326.已知函数()()ln 1,0,0x x f x x x +≥⎧⎪=⎨<⎪⎩,若()()423f x f x -<-,则实数x 的取值范围是( )A .()1,-+∞B .[)2,+∞C .3,2⎛⎫+∞ ⎪⎝⎭D .[)4,+∞7.函数()()2log 1f x ax =-在区间[]1,3上单调递增,则a 的取值范围是( )A .10,3⎛⎫⎪⎝⎭B .()0,+∞C .1,3⎛⎫+∞ ⎪⎝⎭D .()1,+∞8.沙漏是我国古代的一种计时工具,是用两个完全相同的圆锥顶对顶叠放在一起组成的(如图),在一个圆锥中装满沙子,放在上方,沙子就从顶点处漏到另一个圆锥中,假定沙子漏下来的速度是恒定的(沙堆的底面是水平的).已知一个沙漏中沙子全部从一个圆锥中漏到另一个圆锥中需用时10分钟,那么经过5分钟后,沙漏上方圆锥中的沙子的高度与下方圆锥中的沙子的高度之比是( )A .12∶B .()211+∶C .12∶D .()3121-∶9.已知函数()f x 的图象关于原点对称,且满足()()40f x f x ++-=,且当()2,4x ∈时,f ()()12log 1f x x m =--+,若()()2021112f f -=-,则m =( )A .43B .34C .43-D .34-10.如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=︒,2BC AD =,PAB △和PAD △都是等边三角形,则异面直线CD 与PB 所成角的大小为( )A .90°B .75°C .60°D .45°11.已知奇函数()f x 在R 上是增函数,()()g x xf x =.若()2log 5.1a g =-,()0.82b g =,()3c g =,则a ,b ,c 的大小关系为( )A .a b c <<B .c b a <<C .b a c <<D .b c a <<12.如图,在正方体1111ABCD A BC D -中,E ,F ,G 分别为棱CD ,1CC ,11A B 的中点,用过点E ,F ,G 的平面截正方体,则位于截面以下部分的几何体的侧(左)视图为( )ABCD二、填空题(本大题共4小题)13.正方体1111ABCD A BC D -中,与面ABCD 的对角线AC 异面的棱有______条.14.已知一个圆柱的轴截面为正方形,其侧面积为1S ,与该圆柱等底等高的圆锥的侧面积为2S ,则21S S 的值为______. 15.若函数()2log 2a y x ax =-+在区间(],1-∞上为减函数,则a 的取值范围是______.16.若正三棱锥A BCD -的侧棱长为8,底面边长为4,E ,F 分别为AC ,AD 上的动点(如图),则截面BEF △的周长最小值为______.三、解答题(本大题共6小题,解答应写出文字说明、证明过程或演算步骤)17.如图,S 是圆锥的顶点,AB 是圆锥底面圆O 的直径,点C 在圆锥底面圆O 上,D 为BC 的中点.若SAB △为正三角形,且24BC AC ==,设三棱锥S ABC -的体积为1V ,圆锥的体积为2V ,求21V V .18.已知不等式()()22log 1log 72x x +≤-. (1)求不等式的解集A ;(2)若当x A ∈时,不等式1114242x xm -⎛⎫⎛⎫-+≥ ⎪⎪⎝⎭⎝⎭总成立,求m 的取值范围. 19.如图,一个侧棱长为l 的直三棱柱111ABC A B C -容器中盛有液体(不计容器厚度).若液面恰好分别过棱AC ,BC ,11B C ,11AC 的中点D ,E ,F ,G . (1)求证:平面//DEFG 平面11ABB A ; (2)当底面ABC 水平放置时,求液面的高.20.已知函数()()4log 41x f x kx =++与()44log 23x g x a a ⎛⎫=⋅- ⎪⎝⎭,其中()f x 是偶函数.(1)求实数k 的值;(2)若函数()()()F x f x g x =-只有一个零点,求实数a 的取值范围.21.若函数()y f x =自变量的取值区间为[],a b 时,函数值的取值区间恰为22,b a ⎡⎤⎢⎥⎣⎦,就称区间[],a b 为()y f x =的一个“和谐区间”.已知函数()g x 是定义在R 上的奇函数,当()0,x ∈+∞,()3g x x =-+.(1)求()g x 的解析式;(2)求函数()g x 在()0,+∞内的“和谐区间”;(3)若以函数()g x 在定义域内所有“和谐区间”上的图象作为函数()y h x =的图象,是否存在实数m ,使集合()(){}(){}2,,x y y h x x y y xm =⋂=+恰含有2个元素.若存在,求出实数m 的取值集合;若不存在,说明理由. 22.【选考题】请考生在模块一、模块二两题中任选一题作答,注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分. 【模块一】如图,在四棱锥P ABCD -中,BP ⊥平面PDC ,四边形ABCD 是一个直角梯形,//AD BC ,90ABC ∠=︒,12AD AB BC ==. (1)求证:CD ⊥平面PBD ;(2)若AB BP PA ==,且162P ABCD V -=,求三棱锥P ABD -的侧面积.【模块二】如图所示,三棱柱111ABC A B C -的底面是边长为2的正三角形,侧棱1A A ⊥底面ABC ,点E ,F 分别是棱1CC ,1BB 上的点,点M 是线段AC 上的动点,22EC FB ==. (1)当点M 在何位置时,//BBM 平面AEF ?(2)若//BM 平面AEF ,判断BM 与EF 的位置关系,说明理由;并求BM 与EF 所成的角的余弦值.。
河南省豫南九校2019-2020学年高一上学期期末联考数学试题含答案

A. f( 1) f (0) f (2) B f( 1) f(0) f(2)C. f( 1)f(0) f (2) f( 1) f(0) f(2)豫南九校2019-2020学年上期期末联考高一数学试题、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项 中,只有一项是符合题目要求的1.已知集合 A {1,2},则集合B {(x, y)|x A, y A}中元素的个数为(5 .已知函数f(x) x 2 2ax 3在区间[1,2]上是单调增函数,则实数 a 的取值范围为(6 .已知矩形ABCD , AB 6, BC 8,沿矩形的对角线 AC 将平面ACD 折起,若A,B,C, D 四点都在同一球面上,则该球面的面积为()8 .已知f(x) ax 2 bx 是定义在[a 1,2a]上的偶函数,那么 f (x)的最大值是()A. 0 B , - C.4- D . 1A. 1 B2 C .3 D .42 .已知P :直线11 : ax y 10与直线l 2: x ay a 2 0平行,则a 的值为(A. 1 B . -1 C . 0 D . -1 或 1一 3:x 0 13 .函数 f(x) (2,则 f(f(1))8log 2 x, x 0A. 1 B . 4 C .1D48 4.设,是两个不同的平面, m 是直线且 m8,m// ,若使 //成立,则需增加条件( )A. n 是直线且n , n // B . n, m 是异面直线,n //C. n, m 是相交直线且n , n //D . n, m 是平行直线且n , n //A (,1) B (,1] C. (2, ) D . [2,)A. 36 B . 64 C.100 D . 2007.设f(x)是定义在实数集上的函数,且f (2 x) f(x),若当 x 1 时,f (x) lnx,则有3 279 .某四面体的三视图如图,则该四面体的体积是( )正线图M槐图A. 1 B .4 C. 3D . 2 3 210 .已知实数x,y满足方程x2 y2 4x 1 0,则y 2x的最小值和最大值分别为( )A. -9,1 B . -10 , 1 C. -9 , 2 D .-10,21 _ ................................... 11.已知函数f(x) ax2 2x 1,若对一切x [—,2], f(x) 0都成立,则实数a的取值2范围为( )- 1 1A 匚,)B . (-, ) C. (1, ) D . ( ,1)2 212 .已知AC,BD为圆O: x2 y2 9的两条互相垂直的弦,且垂足为M (1,2),则四边形ABCD面积的最大值为( )A. 10 B . 13 C.15 D . 20二、填空题(每题5分,满分20分,将答案填在答题纸上)13 .函数f(x) log1(x21)的单调递增区间为 .22 214 .已知集合A {( x, y)|(x 1) (y 2) 6} , B {( x, y) 12x y 5 0},则集合A B中子集个数是.15 .如图,已知圆柱的轴截面ABB〔A是矩形,AA 2AB, C是圆柱下底面弧AB的中点,g是圆柱上底面弧A4的中点,那么异面直线AG与BC所成角的正切值为1 | X 1|,x 116 .已知函数f(x) 2 ,则函数g(x) (x 2)f(x) 2x 1的零点个数x24x 2, x 1为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17 .已知全集U R,集合A {x|0 log3x 1},集合B {x|2m x 1 m}.(1)当m 1 时,求A B, (C U A) B ;(2)若A B A,求实数m的取值范围.18 .已知直线l:(2a b)x (a b)y a b 0及点P(1,3).(1)证明直线l过某定点,并求该定点的坐标;(2)当点P到直线l的距离最大时,求直线l的方程.x19 .设f(x)是定义在R上的奇函数,当x 0时,f(x) .1 3x(1)求f (x)的解析式;x(2)解不等式f(x) x.820 .已知圆C经过点A(2, 1), B(0, 3)和直线x y 1相切.(1)求圆C的方程;(2)若直线l经过点B(2,0),并且被圆C截得的弦长为2,求直线l的方程.21 .如图,四面体PABC 中,PA 平面ABC, PA 1, AB 1, AC 2, BC 33 .(1)求四面体PABC的四个面的面积中,最大的面积是多少?(2)证明:在线段PC上存在点M ,使得AC BM ,并求强的值. MC22 .已知函数f(x) 3 2log3x, g(x) log3x.(1)当x [1,9]时,求函数h(x) [f (x) 1]?g(x)的值域;(2)如果对任意的x [1,9],不等式f(x2)?f(/x) k恒成立,求实数k的取值范围;(3)是否存在实数a,使得函数F(x) [ag(x) 2]?f(x)的最大值为0,若存在,求出a的值,若不存在,说明理由.豫南九校2017—2018学年上期期末联考高一数学参考答案一、选择题(本大题共12小题,每题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1 .解析:选D集合B中元素有(1,1) , (1,2) , (2,1) , (2,2),共4个.2 .解析:选A 由于直线11:ax+y—1 = 0与直线12:x + ay+a2= 0平行所以a2 1 0 , 即a — 1或1,经检验a 1成立。
河南省中原名校(即豫南九校)2020学年高二数学上学期第二次联考试题 文(含解析)

豫南九校2020学年上期第二次联考高二数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知命题:,,则为()A. ,B. ,C. ,D. ,【答案】B【解析】全称命题的否定为存在命题,命题:,,则为,,选B.2. 在中,角,,所对边分别是,,,若,,,则角()A. B. C. D.【答案】C【解析】根据余弦定理,,选C. 3. 在中,角,,所对边分别是,,,若,,且,满足题意的有()A. 0个B. 一个C. 2个D. 不能确定【答案】B【解析】,,,为锐角,且, b,满足题意的有一个,选B.4. 设是等差数列的前项和,若,则()A. B. C. D.【答案】D【解析】是等差数列的前项和,,选D.5. 设的内角,,所对的边长分别为,,,若,,,则()A. B. C. D. 或【答案】C【解析】,则为锐角,根据正弦定理,,则,则,选C.6. 设为等比数列,若,,,,则是的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】根据等比数列的性质设为等比数列,若,,,,则,反过来设数列为常数列1,1,1,1……,任意两项的积相等,但项数和不等,所以不必要,那么为等比数列,若,,,,则是的充分不必要条件,选A.7. 已知关于的不等式的解集为,则实数的取值范围是()A. B. C. D.【答案】B【解析】时,符合题意,时,关于的不等式的解集为,只需,综上可知实数的取值范围是,选B.8. 在中,内角,,所对的边分别是,,,且,,则的取值范围是()A. B. C. D.【答案】B【解析】,,,,,,,,选B.9. 设是等比数列的前项和,若,则()A. B. C. D.【答案】D【解析】设等比数列首项为,公比为,,,则,,,,选D.10. 在中,内角,,所对的边分别是,,,已知,,则()A. B. C. D.【答案】B【解析】,,,,,,选B. 11. 椭圆()的两个焦点是,,若为其上一点,且,则此椭圆离心率的取值范围是()A. B. C. D.【答案】C【解析】,,则,则,,,又,椭圆离心率的取值范围是,选C.12. 已知变量,满足约束条件则目标函数()的最大值为16,则的最小值为()A. B. C. D.【答案】A【解析】...............第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 100以内的正整数有__________个能被7整除的数.【答案】14【解析】它们分别为,共计14个.14. 等比数列的前项和,若,为递增数列,则公比的取值范围__________.【答案】【解析】时,有,恒成立,若,,即成立,若只要,若,需要恒成立,当时,恒成立,当时,也恒成立,当时,若为偶数时,也不可能恒成立,所以的取值范围为15. 在中,,,是的中点,,则等于__________.【答案】【解析】延长至N,使,连接,则四边形为平行四边形,,在中,,在中,,,.16. 设,实数,满足若,则实数的取值范围是__________.【答案】【解析】根据题意得可行域所围成的三角形必在两平行线和之间,由图可知,实数的取值范围是,填.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知:,:(),若是的充分不必要条件,求实数的取值范围.【答案】【解析】试题分析:首先落实集合A与B,解一元二次不等式求出集合A,由于解一元二次不等式得出集合B,根据p找出非p,由于若是的充分不必要条件,说明非p对应的集合是q对应的集合的真子集,借助集合的包含关系列出不等式,解出a的范围;试题解析:由得,由得.又因为是的充分不必要条件,所以解得.【点睛】有关充要条件问题有两种解释,第一是从逻辑关系的角度去解决,若,但推不出,则是的充分不必要条件;第二从命题所对应的集合的包含关系的角度去解决,是的充分不必要条件说明对应的集合是所对应的集合的真子集.18. 为数列的前项和,已知,.(1)求数列的通项公式;(2)设,记数列的前项和为,求证:.【答案】(1);(2)见解析.【解析】试题分析:当数列提供与之间的递推关系时,一般把原式中的n替换为n+1得到另一个式子,然后两式作差,从而把与的关系转化为与的关系,然后在求通项公式,第二步为数列求和问题,由于通项公式符合使用裂项相消法,所以借助裂项相消法求和后证明不等式.试题解析:(1),两式作差得:,成等差数列又当时,.(2)由可知则故.【点睛】当数列提供与之间的递推关系时,常规方法是把原式中的n替换为n+1得到另一个式子,然后两式作差,从而把与的关系转化为与的关系,然后在求通项公式,第二步为数列求和问题,常规方法有倒序相加法、错位相减法、裂项相消法、分组求和法. 19. 设:实数满足,其中;:实数满足(1)若,且为真,为假,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.【答案】(1);(2).【解析】试题分析:第一步首先把a=1代入求出p所表示的含义,解不等式组搞清q的含义,根据为真,为假,求出x的范围,第二步是的充分不必要条件的等价关系为,说明所表示的集合是所表示的集合的真子集,针对为正、负两种情况按要求讨论解决.试题解析:(1)当为真时,当为真时,因为为真,为假,所以,一真一假,若真假,则,解得;若假真,则,解得,综上可知,实数的取值范围为.(2)由(1)知,当为真时,,因为是的充分不必要条件,所以是的必要不充分条件,因为为真时,若,有且是的真子集,所以,解得:,因为为真时,若,有且是的真子集,所以,不等式组无解.综上所述:实数的取值范围是.【点睛】解含参一元二次不等式时,若已知参数值可代入后求解,若不知参数值需要讨论后求解,涉及含有逻辑联结词的命题的真假问题需要按照真值表考虑简单命题的真、假,按照要求求出参数的范围,当遇到是的充分不必要条件时,要按照互为逆否命题同真假去转化为等价关系为,然后再去解决.20. 已知在中,,,分别为角,,所对的边长,且.(1)求角的值;(2)若,求的取值范围.【答案】(1);(2).【解析】试题分析:第一步利用正弦定理进行“边转角”化为三角函数关系,借助两角和公式进行恒等变形,求出角A的余弦值,进而求出角A;第二步利用余弦定理,转化为b+c与bc的关系,然后利用基本不等式“等转不等”,求出b+c的范围,再根据三角形两边之和大于第三边,求出范围.试题解析:(1)依题意由正弦定理可得:又.(2)由余弦定理知:(当且仅当时成立),又故的取值范围是.【点睛】有关解斜三角形问题,常用正弦定理、余弦定理、面积公式等,多用正弦定理和余弦定理进行“边角转化”,求范围或最值问题常用方法有两种,第一边化角,利用三角函数式恒等变形转化为某个角的三角函数式,根据角的范围研究函数值的范围,另一种方法是化边,利用基本不等式求范围或最值.21. 已知数列的前项和为.(1)求数列的通项公式;(2)令,求数列的前项和.【答案】(1);(2).【解析】试题分析:已知数列的前n项和,求通项公式分两步,第一步n=1 时,求出首项,第二步,当时利用前n项和与前n-1项和作差求出第n项,若首项满足后者,则可书写统一的通项公式,若首项不满足,则通项公式要写成分段函数形式,本题第二步数列求和,由于通项公式符合使用错位相减法,所以利用错位相减法求出数列的和.试题解析:(1)当时,,当时,当时,不满足上式,故(2),令①②①—②得:,.【点睛】已知数列的前n项和,求通项公式分两步,第一步n=1 时,求出首项,第二步,当时利用前n项和与前n-1项和作差求出第n项,若首项满足后者,则可书写统一的通项公式,若首项不满足,则通项公式要写成分段函数形式,有关数列求和问题,主要方法有倒序相加法、错位相减法、分组求和法、公式法等,要根据数列通项的形式特点采用相应的方法求和.22. 已知椭圆:()的离心率为,左焦点为,斜率为1的直线与椭圆交于,两点,以为底边作等腰三角形,顶点为.(1)求椭圆的方程;(2)求的面积.【答案】(1);(2).【解析】试题分析:首先利用椭圆的离心率和焦点坐标列方程求出a,b写出椭圆方程,第二步设出直线方程和直线与椭圆的交点坐标,利用设而不求思想解题,联立方程组,代入整理后写出根与系数关系,求出弦AB中点的坐标,根据等腰三角形三线合一,底边的中线也是高线,根据垂直关系列出等式求出参数,利用弦长公式求出底边长,计算出面积.试题解析:(1)由已知得,,解得,又所以椭圆E的方程为.(2)设直线的方程为,由消去得设的坐标分别为,AB中点为,,因为AB是等腰的底边,所以,所以的斜率,此时又点P到直线AB:的距离所以的面积.【点睛】求椭圆的标准方程基本方法就是到顶系数法,利用椭圆的离心率和焦点坐标列方程求出a,b写出椭圆方程,直线和椭圆相交问题,一般都是利用设而不求思想解题,联立方程组,代入整理后,第一是判别式大于零,第二是写出根与系数关系,有时需要求出弦长,然后根据题意借助坐标处理问题.。
2019-2020学年豫南九校高一上学期第二次联考数学试题(解析版)

2019-2020学年豫南九校高一上学期第二次联考数学试题一、单选题1.集合{}2|690x x x -+=中的所有元素之和为( ) A .0 B .3 C .6 D .9【答案】B【解析】解一元二次方程求得集合的元素,由此求得所有元素之和为 【详解】由()226930x x x -+=-=,解得3x =,故所有元素之和为3. 故选:B. 【点睛】本小题主要考查一元二次方程的解法,考查集合的元素,属于基础题.2.已知集合{1,2,3,4,5,6,7}U =,{|3,}A x x x N =≥∈,则U C A =( ) A .{1,2} B .{3,4,5,6,7}C .{1,3,4,7}D .{1,4,7}【答案】A【解析】{}{}1,2,3,4,5,6,7,{|3,}3,4,5,6,7,U A x x x N ==≥∈=Q{}1,2.U C A ∴=故选A.3.函数()1f x x =-的定义域是( ) A .[1,1)- B .[1,1)(1,)-⋃+∞ C .[1,)-+∞D .(1,)+∞【答案】B【解析】根据分式分母不为零,偶次方根被开方数为非负数列不等式组,解不等式组求得函数()f x 的定义域. 【详解】 依题意1010x x +≥⎧⎨-≠⎩,解得1x ≥-且1x ≠.故函数()f x 的定义域为[1,1)(1,)-⋃+∞.故选:B. 【点睛】本小题主要考查具体函数定义域的求法,属于基础题.4.设函数f (x )=21,1,2,1,x x x x⎧+≤⎪⎨>⎪⎩则f (f (3))=( )A .15B .3C .23D .139【答案】D 【解析】【详解】()231,33f >∴=Q , 22213((3))()()1339f f f ==+=,故选D.5.函数y =x -1x在[1,2]上的最大值为( ) A .0 B .32C .2D .3【答案】B 【解析】y =x -1x 在[1,2]上单调递增,所以当x=2时,取最大值为32,选B. 6.已知()f x 是一次函数,且满足()31217f x x +=+,则()f x =( ). A .253x + B .213x + C .23x - D .21x +【答案】A【解析】设出一次函数()f x 的解析式,利用()31217f x x +=+,得到等式,列出方程组,解方程组即可求出()f x 的解析式. 【详解】因为()f x 是一次函数,所以设()()0f x ax b a =+≠, 由()31217f x x +=+,得()31217a x b x ⎡⎤++=+⎣⎦. 整理得()33217ax a b x ++=+,所以()32317a a b =⎧⎨+=⎩,解得235a b ⎧=⎪⎨⎪=⎩.故选:A.【点睛】本题考查了用待定系数法求函数解析式,考查了数学运算能力. 7.设23a <<,则244(2)(3)a a -+-化简的结果为( ) A .1 B .-1 C .25a - D .52a -【答案】A【解析】根据2,0,0x x x x x x ≥⎧==⎨-<⎩,结合a 的取值范围,化简所求表达式.【详解】由于23a <<,所以20,30a a -<->,所以244(2)(3)23231a a a a a a -+-=-+-=-+-=.故选:A. 【点睛】本小题主要考查根式的化简,考查绝对值的运算,属于基础题.8.已知a =30.2,b =0.2-3,c =(-3)0.2,则a ,b ,c 的大小关系为( ). A .a >b >c B .b >a >c C .c >a >b D .b >c >a 【答案】B【解析】试题分析:;,,.故B 正确.【考点】1指数函数的运算;2指数函数的单调性;3比较大小. 9.函数()125x f x x -=+-的零点所在的区间为( )A .()0,1B .()1,2C .()2,3D .()3,4【答案】C【解析】由函数的零点存在性定理即可判断. 【详解】 函数()125x f x x -=+-在R 上单调递增,19(0)20502f -=+-=-<, 0(1)21530f =+-=-<,1(2)22510f =+-=-< ,2(3)23520f =+-=>所以(2)(3)0f f ⋅<,由零点存在性定理可知函数的零点所在的区间为()2,3 故选:C 【点睛】本题主要考查零点存在性定理,需掌握零点存在性定理的内容,属于基础题. 10.函数2()45f x x x =-+在区间[0,]m 上的最大值是5,最小值是1,则m 的取值范围是( ) A .[2,)+∞ B .[2,4] C .(,2]-∞ D .[0,2]【答案】B【解析】先用配方法找出函数的对称轴,明确单调性,找出取得最值的点,得到m 的范围. 【详解】函数2()45f x x x =-+转化为2()(2)1f x x =-+, 因为对称轴为2x =,(2)1f =,(0)(4)5f f ==,又因为函数2()45f x x x =-+在区间[0,]m 上的最大值为5,最小值为1所以m 的取值为[2,4],故选:B . 【点睛】本题以二次函数为背景,已知函数值域求参数的取值范围,注意利用数形结合思想进行分析问题,及对称轴和区间的位置关系.11.已知函数()()22log 3f x x ax a =-+在区间[)2,+∞上是增函数,则a 的取值范围是( ) A .(],4-∞ B .(],2-∞ C .[]4,4- D .(]4,4-【答案】D【解析】根据复合函数的单调性“同增异减”以及函数在增区间上有意义即可求解. 【详解】由函数()()22log 3f x x ax a =-+在区间[)2,+∞上是增函数,所以224230a a a ⎧≤⎪⎨⎪-+>⎩ 解得44a -<≤, 所以实数a 的取值范围是(]4,4-, 故选:D 【点睛】本题主要复合函数的单调区间求参数的取值范围,复合函数的单调性法则“同增异减”, 注意求解是函数在单调区间要有意义.12.若()f x 满足对任意的实数a ,b 都有()()()f a b f a f b +=⋅且(1)2f =,则(2)(4)(6)(2018)(1)(3)(5)(2017)f f f f f f f f ++++=L ( ) A .1008 B .1009C .2017D .2018【答案】D【解析】利用()()()()()()111f a f a f f f a f a +⋅==,求得表达式的值. 【详解】由于()()()f a b f a f b +=⋅,所以()()()()()()111f a f a f f f a f a +⋅==.所以 (2)(4)(6)(2018)(1)(3)(5)(2017)f f f f f f f f ++++=L ()10091100922018f ⨯=⨯=. 故选D. 【点睛】本小题主要考查抽象函数运算,考查分析、思考与解决问题的能力,考查化归与转化的数学思想方法,属于基础题.二、填空题13.已知集合U =R ,集合{|2A x x =<-或4}x >,{|33}B x x =-≤≤,则()C U A B ⋂=________.【答案】{}|23x x -≤≤【解析】先求得U C A ,然后求得()C U A B ⋂.【详解】依题意,{}|24U C A x x =-≤≤,所以(){}C |23U A B x x ⋂=-≤≤. 故答案为:{}|23x x -≤≤. 【点睛】本小题主要考查集合交集、补集的概念和运算,属于基础题. 14.函数y =______.【答案】()(],00,1-∞U【解析】根据二次根式的性质及分母不为0,列不等式求解即可。
河南省豫南九校2020-2021学年高一上学期第三次联考试题 化学 Word版含答案

豫南九校2020-2021学年上期第三次联考高一化学试题(考试时间:90分钟 试卷满分:100分)可能用到的相对原子质量:H 1 C 12 O 16 N 14 Na23 Mg 24 S 32 Cl 35.5 Cu 64 Fe 56 Ag 108一、选择题(本大题共17小题每小题3分,共51分。
每个小题只有一个选项符合题意)1.2020年7月23日我国首个火星探测器“天问一号”发射成功。
火星车所涉及的下列材料中属于金属材料的是A.探测仪镜头材料——二氧化硅B.车轮材料——钛合金C.温控涂层材料——聚酰胺D.太阳能电池复合材料——石墨纤维和硅2.《天工开物》记载:每炉甘石十斤,装载入一泥罐内,发火煅红,罐中炉甘石熔化成团,冷定毁罐取出,即倭铅也。
该过程主反应为:ZnCO 3+2C 高温Zn +3CO ↑。
下列说法错误的是A.C 被还原B.ZnCO 3是氧化剂C.该反应是置换反应D.CO 既是氧化产物又是还原产物3.下列有关物质的性质与用途具有对应关系的是A.铝的金属活泼性强,可用于制作铝金属制品B.氧化铝熔点高,可用作电解冶炼铝的原料C.氢氧化铝受热分解,可用于中和过多的胃酸D.明矾溶于水并水解形成胶体,可用于净水4.金属元素的焰色呈现不同颜色,与核外电子跃迁时吸收、释放能量有关。
下列说法正确的是A.焰色反应为化学变化B.清洗铂丝时采用硫酸C.氯化钙固体所做焰色反应为砖红色D.铂丝没有焰色,是因为加热时其电子不能发生跃迁5.下列有关胶体的叙述正确的是A.明矾溶于水容易形成氢氧化铝胶体,进而对水进行消毒、杀菌B.氯化铁溶液混合氢氧化钠溶液,可得氢氧化铁胶体C.渗析操作与胶体粒子的颗粒度大小有关D.可以通过丁达尔效应来区别稀的淀粉溶液与稀豆浆6.NaCl是我们生活中必不可少的物质。
将NaCl溶于水配成1 mol·L-1的溶液,溶解过程如图所示,下列说法正确的是A.Cl-与Na+所含的电子数相同B.溶液中含有N A个Na+C.水合Na+离子的图示不科学D.将58.5 g NaCl溶解在1 L水中即得到1 mol·L-1溶液7.铊(Tl)盐与氰化钾(KCN)被列为A级危险品,已知下列反应在一定条件下能够发生:①Tl3++2Ag=Tl++2Ag+,②Ag++Fe2+=Ag+Fe3+,③Fe+2Fe3+=3Fe2+,下列离子氧化性的比较,顺序正确的是A.Tl3+>Fe3+>Ag+B.Tl3+>Ag+>Fe3+C.Tl+>Ag+>Fe2+D.Fe3+>Ag+>Tl3+8.下列各组的两种物质在溶液中的反应,可用同一离子方程式表示的是A.氢氧化钠与盐酸;氢氧化钠与醋酸B.BaCl2溶液与Na2SO4溶液;Ba(OH)2溶液与NaHSO4溶液C.Na2CO3溶液与盐酸;NaHCO3与盐酸D.石灰石与硝酸;石灰石与盐酸9.氢化钙固体是登山运动员常用的能源提供剂。
2020-2021学年豫南九校高一上学期期末数学试卷(含解析)

2020-2021学年豫南九校高一上学期期末数学试卷一、单选题(本大题共11小题,共55.0分)1.已知两平行直线3x−4y+1=0和3x−4y−4=0,则两直线的距离为()A. 1B. 2C. 3D. 42.圆x2+y2=4被直线y=x+2截得的劣弧所对的圆心角的大小为()A. 30°B. 45°C. 90°D. 120°3.已知函数y=ax2+bx+c的图象如图所示,则的值为()A. 2bB. a−b+cC. −2bD. 04.设l,m,n是三条不同的直线,α,β是两个不重合的平面,则下列命题正确的是()A. α//β,l⊂α,n⊂β⇒l//nB. l⊥n,l⊥α⇒n//αC. l⊥α,l//β⇒α⊥βD. α⊥β,l⊂α⇒l⊥β5.在锐角三角形ABC中,下列各式恒成立的是()A. log cosC cosAsinB >0 B. log sinC cosAcosB>0C. log sinC sinAsinB >0 D. log cosC sinAcosB>06.直线l:x⋅cos0+y+1=0的倾斜角大小为()A. 3π4B. π2C. π4D. 07.已知直线:y=kx−k+1与曲线C:x2+2y2=m有公共点,则m的取值范围是()A. m≥3B. m≤3C. m>3D. m<38.如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 2B. 43C. 23D. 839.过点P(3,4)作圆x 2+y 2=4的两条切线,切点分别为A ,B ,则|AB|=( )A. 5−√3B. 5−√2C. 2√215D. 4√21510. 已知f(x)是定义在(−∞,+∞)上的偶函数,且在(−∞,0]上是减函数,设a =f(log 4(17)),b =f(log 2(13)),c =f(21.1),则a ,b ,c 的大小关系是( )A. c <a <bB. c <b <aC. b <c <aD. a <b <c11. 如图所示的三棱柱ABC −A 1B 1C 1,其中AC ⊥BC ,若AA 1=AB =2,当四棱锥B −A 1ACC 1体积最大时,三棱柱ABC −A 1B 1C 1外接球的体积为( )A.163πB. 4√23πC. 8√23π D. 43π二、多选题(本大题共1小题,共5.0分)12. 已知集合A =[−1,0],B =(−1,0),则下列结论正确的是( )A. ∁R A ⊆∁R BB. A ∩B =AC. A ∪B =BD. (∁R A)∩B =⌀三、单空题(本大题共4小题,共20.0分) 13. 给出定义:则叫做离实数最近整数,的图像关于直线______ _对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.设 是定义在实数集上的函数,且 ,若当 时, ,则有()
A. B.
C. D.
8.已知 是定义在 上的偶函数,那么 的最大值是()
A.0B. C. D.1
9.某四面体的三视图如图,则该四面体的体积是( )
A.1B. C. D.2
10.已知实数 满足方程 ,则 的最小值和最大值分别为()
14.已知集合 , ,则集合 中子集个数是__________.
15.如图,已知圆柱的轴截面 是矩形, , 是圆柱下底面弧 的中点, 是圆柱上底面弧 的中点,那么异面直线 与 所成角的正切值为__________.
16.已知函数 ,则函数 的零点个数为__________.
三、解答题
17.已知全集 ,集合 ,集合 .
10.A
【解析】
即为
y-2x可看作是直线y=2x+b在y轴上的截距,
当直线y=2x+b与圆相切时,纵截距b取得最大值或最小值,此时 ,解得b=-9或1.所以y-2x的最大值为1,最小值为-9.
故选A.
11.C
【解析】
由题意得,对一切 ,f(x)>0都成立,
即 ,
而 ,
则实数a的取值范围为 .
故选C.
【解析】
由f(2-x)=f(x)可知函数f(x)的图象关于x=1对称,所以 ,
,又当x≥1时,f(x)=lnx单调递增,所以 ,
故选B.
8.C
【解析】
∵f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,∴a-1+2a=0,∴a= .
又f(-x)=f(x),∴b=0,∴ ,所以 .
故选C.
9.B
3.函数 ,则 ( )
A. B.4C. D.8
4.设 是两个不同的平面, 是直线且 , ,若使 成立,则需增加条件()
A. 是直线且 , B. 是异面直线,
C. 是相交直线且 , D. 是平行直线且 ,
5.已知函数 在区间 上是单调增函数,则实数 的取值范围为()
A. B. C. D.
6.已知矩形 , , ,沿矩形的对角线 将平面 折起,若 四点都在同一球面上,则该球面的面积为()
A.-9,1B.-10,1C.-9,2D.-10,2
11.已知函数 ,若对一切 , 都成立,则实数 的取值范围为()
A. B. C. D.
12.已知 为圆 的两条互相垂直的弦,且垂足为 ,则四边形 面积的最大值为()
A.10B.13C.15D.20
二、填空题
13.函数 的单调递增区间为__________.
(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.
(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.
在区间 上是单调增函数,
区间 在对称轴 的右面,即 ,
实数 的取值范围为 .
故选B.
【点睛】
本题考查二次函数的图象与性质,明确二次函数的对称轴、开口方向与函数的单调性的关系是解题关键.
6.C
【解析】
矩形ABCD,AB=6,BC=8,矩形的对角线AC=10为该球的直径,所以该球面的面积为 .
故选C.
7.B
(2)若直线 经过点 ,并且被圆 截得的弦长为2,求直线 的方程.
21.如图,四面体 中, 平面 , , , , .
(Ⅰ)求四面体 的四个面的面积中,最的面积是多少?(Ⅱ)证明:在线段 上存在点 ,使得 ,并求 的值.
22.已知函数 , .
(1)当 时,求函数 的值域;
(2)如果对任意的 ,不等式 恒成立,求实数 的取值范围;
(1)当 时,求 , ;
(2)若 ,求实数 的取值范围.
18.已知直线 及点 .
(1)证明直线 过某定点,并求该定点的坐标;
(2)当点 到直线 的距离最大时,求直线 的方程.
19.设 是定义在 上的奇函数,当 时, .
(1)求 的解析式;
(2)解不等式 .
20.已知圆 经过点 , 和直线 相切.
(1)求圆 的方程;
点睛:函数问题经常会遇见恒成立的问题:
(1)根据参变分离,转化为不含参数的函数的最值问题;
(2)若 就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为 ,若 恒成立 ;
(3)若 恒成立,可转化为 (需在同一处取得最值).
(1)确定集合的元素是什么,即确定这个集合是数集还是点集.
(2)看这些元素满足什么限制条件.
(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性.
2.A
【解析】
由于直线l1:ax+y-1=0与直线l2:x+ay+ =0平行所以 ,
即 -1或1,经检验 成立.
故选A.
(3)是否存在实数 ,使得函数 的最大值为0,若存在,求出 的值,若不存在,说明理由.
参考答案
1.D
【分析】
由题意,集合 是由点作为元素构成的一个点集,根据 ,即可得到集合 的元素.
【详解】
由题意,集合B中元素有(1,1),(1,2),(2,1),(2,2),共4个.故选D.
【点睛】
与集合元素有关问题的思路:
【解析】
在正方体ABCDA1B1C1D1中还原出三视图的直观图,其是一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D1BCB1,如图所示,该四面体的体积为 .
故选B.
点睛:三视图问题的常见类型及解题策略
(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.
3.D
【解析】
∵ ,∴ .
故选D
4.C
【详解】
要使 成立,需要其中一个面的两条相交直线与另一个面平行,
是相交直线且 , , , ,
由平面和平面平行的判定定理可得 .
故选C.
5.B
【解析】
【分析】
根据二次函数的图象与性质,可知区间 在对称轴 的右面,即 ,即可求得答案.
【详解】
函数 为对称轴 开口向上的二次函数,
河南省中原名校(即豫南九校)【最新】高一上学期期末联考数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合 ,则集合 中元素的个数为()
A.1B.2C.3D.4
2.已知直线 与直线 平行,则 的值为
A.1B.-1C.0D.-1或1