绕线式异步电动机交流调速控制系统设计

合集下载

第二章--绕线式异步电动机串级调速系统

第二章--绕线式异步电动机串级调速系统

b.起动控制:控制逆变角,使在起动开始的瞬间,Ud与Uβ的差值能产生 足够大的 Id ,以满足所需的电磁转矩,但又不超过允许的电流值,这样电动 机就可在一定的动态转矩下加速起动。
随着转速的增高,相应地增大角以减小值 Uβ ,从而维持加速过程中动态 转矩基本恒定 。
30
(2)调速
a.调速原理:通过改 变角的大小调节电动机 的转速。
由于电机在 低于同步转速 下工作,故称 为次同步转速 的电动运行。
sn
0 n1
~
P1 Pm
(1-s)Pm
CU
sPm
10
次同步速度电动运行状态
sPm
Te
12
不断加大+Eadd, s n
就可提高电机的转 速。当接近额定转
1
2n1
SP
速时,如继续加大
+Eadd,电机将加
P
速到s<0的新的稳
Pm
态下工作,即电机
转子电流 I2 的增大,会引起交流电动机
拖动转矩的增大,设原来电机拖动转矩与负载 相等,处于平衡状态,串入附加电势引起电 动机升速,在升速的过程中,随着速度增加, 转差率S减小,分子中sE2减小,电流也减小, 使拖动转矩减小后再次与负载平衡,降速过程 最后会在某一个较高的速度下重新稳定运行。
* 这种向上调速的情况称为高于同步速的串级调速。(超同步串调) 9
一.串级调速的原理 二.串级调速的基本运行状态及功率关系 三.附加电动势的实现 四.次同步串级调速主电路
2
一. 串级调速的原理
转子串电阻调速方法有什么缺点?
我们知道,对于绕线转子异步电动机,可以在其 转子回路串入电阻来减小电流,增大转差率,从而改 变转速。这种方法就是转子串电阻调速方法。

交流电机调速原理和方法

交流电机调速原理和方法

交流电机简介“交流电机”是用于实现机械能和交流电能相互转换的机械。

由于交流电力系统的巨大发展,交流电机已成为最常用的电机。

交流电机与直流电机相比,由于没有换向器(见直流电机的换向),因此结构简单,制造方便,比较牢固,容易做成高转速、高电压、大电流、大容量的电机。

交流电机功率的覆盖范围很大,从几瓦到几十万千瓦、甚至上百万千瓦。

20世纪80年代初,最大的汽轮发电机已达150万千瓦。

交流电机是由美籍塞尔维亚裔科学家尼古拉·特斯拉发明的。

电机原理用单相电容式电机说明:单相电机有两个绕组,即起动绕组和运行绕组。

两个绕组在空间上相差90度。

在起动绕组上串联了一个容量较大的电容器,当运行绕组和起动绕组通过单相交流电时,由于电容器作用使起动绕组中的电流在时间上比运行绕组的电流超前90度角,先到达最大值。

在时间和空间上形成两个相同的脉冲磁场,使定子与转子之间的气隙中产生了一个旋转磁场,在旋转磁场的作用下,电机转子中产生感应电流,电流与旋转磁场互相作用产生电磁场转矩,使电机旋转起来。

调速原理额定转速n=60f/p(1-s)=同步转速N1(1-S)f电源频率p电机极对数s转差率1.利用变频器改变电源频率调速,调速范围大,稳定性平滑性较好,机械特性较硬。

就是加上额定负载转速下降得少。

属于无级调速。

适用于大部分三相鼠笼异步电动机。

2.改变磁极对数调速,属于有级调速,调速平滑度差,一般用于金属切削机床。

3.改变转差率调速。

(1)转子回路串电阻:用于交流绕线式异步电动机。

调速范围小,电阻要消耗功率,电机效率低。

一般用于起重机。

(2)改变电源电压调速,调速范围小,转矩随电压降大幅度下降,三相电机一般不用。

用于单相电机调速,如风扇。

(3)串级调速,实质就是就是转子引入附加电动势,改变它大小来调速。

也只用于绕线电动机,但效率得到提高。

交流电机调速方法一、变极对数调速方法:改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速。

串级调速系统

串级调速系统
4)涡流为交变涡流,它产生幅向脉动的电枢反应磁场, 与主磁通合成并产生转矩;
5)此电磁转矩驱动磁极跟着电枢同方向运动,磁极就 带着生产机械一同旋转。
3、电磁转差离合器的转速和转向
1)从动轴的转速n取决于励磁电流的大小; 2)从动轴的转向则取决于原动机的转向。 电磁转差离合器本身并不是一个电动机,它只是一种传 递功率的装置。
/
s
R2' / s)2 12 (Ll1
L'l 2 )2 ]
当s一定时,Te U12 ,改变U1得到一组不同的人为特性如 图4-1所示。在带恒转矩负载TL时,可得到不同的稳定转
速,如图中的A、B、C点。
Sn
0 n0
Sm
A
D
CB E
0.5U1N
风机类负载特性
0.7U1N
F
U1N
10
Te max Te
绕线式异步电动机串级调速、电磁转差离合器调速; 3)变频调速。
科学分类方法(根据对转差功率的处理方法分类)分为三类: (1)转差功率消耗型调速系统:转差功率全部转化成热能 而被消耗掉。
特点:系统的效率低,结构简单。调压调速、绕线式异步 电动机转子串电阻调速、电磁转差离合器调速系统属于此类。
(2)转差功率回馈型调速系统——转差功率的少部分被消 耗掉,大部分通过变流装置回馈给电网或者转化为机械能予 以利用。
根据上面的结论,可得出三相调压电路中各晶闸管触发 的次序为VT1 、VT2、VT3、VT4、VT5、VT6、VT1……, 相邻两个晶闸管的触发信号相位差为60°。
三、闭环控制的调压调速系统
(一)异步电动机调压调速时的机械特性
1、普通异步电动机调压调速时存在的问题 1)普通异步电动机调压时调速范围不大(恒转矩负

毕业设计(论文)-绕线式异步电动机的串级调速[管理资料]

毕业设计(论文)-绕线式异步电动机的串级调速[管理资料]

绕线式异步电动机的串级调速作者:摘要:本设计主要利用电力拖动控制设计出可靠安全且容易操作和维修。

主要介绍了机械和工艺对电器控制线路的要求,以及怎么设计出来的控制线路满足生产的要求,达到简单经济。

在设计电力拖动自动控制系统时,一般包括两部分内容,一是确定拖动方案和选择电动机,前者主要解决的是采用交流拖动方案还是直流拖动方案,后者主要解决的是选择电动机容量等问题。

根据电机学由异步电机转速公式n=60f1/Þ×(1-s p)可知异步电机的调速方法有改变定子频率、磁极对数和转差率等,而对于绕线式异步电机我们一般都采用的是改变转差率进行调速,而改变转差率实现异步电动机的调速方法有一:在绕线式异步电机的转子中串入不同的电阻实现电力拖动的速度调节,但这中方法存在着以下缺点:1)他是通过增大转子回路电阻来降低转速,当电机负载转矩恒定时,转速越低转差功率越大,这种方法是通过增大转差功率来降低转速的,但所增加的转差功率全部被转化为热量消耗掉了,这种调速方法效率岁调速的范围增大而降低。

2)调速时电机理想空载转速不变。

只能在额定转速以下调节,调速时机械特性变软,降低了静态调速精度,3)由于转子回来附加电阻的档数有限,无法实行无级调速,调速范围小。

二:串级调速,串级调速是通过绕线式异步电动机的转子回路引入附加电势而产生的。

它属于变转差率来实现串级调速的。

与转子串电阻的方式不同,串级调速可以将异步电动机的功率加以应用(回馈电网或是转化为机械能送回到电动机轴上),因此效率高。

它能实现无级平滑调速,低速时机械特性也比较硬。

特别是晶闸管低同步串级调速系统,技术难度小,性能比较完善,因而获得了广泛的应用。

关键词:异步电动机串级调速原理基本类型Abstract:The design of the main drag to control the use of electricity to design safe and reliable operation and maintenance easy. Introduces the process of mechanical and electrical control circuit, as well as how the control circuit designed to meet the requirements of the production to a simple economic. Automatic control in the design of electric drive system, generally comprises two parts, first drag the program to identify and select the motor, which is used mainly to solve the exchange program or drag drag DC program, which is the main solution is to choose electric machine capacity and so on.According to the study by the electric induction motor speed formula n = 60f1 / Þ × (1-sp) induction motor can see the speed control methods have to change the frequency of the stator, on the pole and a few slip, and so on, but for the winding - We induction motors generally used is to change the slip for governor, and change the slip of the induction motor to achieve a speed control methods: the wound-rotor induction motor in the string into a different resistance to realize the power delay Adjust the speed of the move, but there is method in the following shortcomings: 1) he is through loopincreased resistance to reduce the rotor speed, when the motor torque constant load, the lower the speed difference to the greater power, this approach is adopted Increasing deterioration of the power to reduce speed, but the increase in power all the difference to be converted into energy consumed, the efficiency of this method of speed-year-old governor to reduce the scope of the increase. 2) The speed at the same speed no-load motor ideal. Can only be rated below regulation speed, variable speed control when the mechanical properties of soft and reduce the static speed accuracy, 3) due to additional back rotor resistance limited number of stalls, unable to carry out stepless speed regulation, the small scope of the governor. Second: Cascade Speed, speed cascade through the wound-rotor induction motor circuit and the introduction of additional potential generated. It is a change to achieve slip cascade of speed. Rotor resistance and the string in different ways, can cascade speed asynchronous motor to power the application (or the power grid back into mechanical energy to send back to the motor shaft), so efficient. It can not achieve the smooth-class speed and low speed when the mechanical properties of relatively hard. Thyristor especially low speed synchronous cascade system, the technical difficulty of small, relatively perfect performance, which was widely used.Key words:asynchronous motor series of basic principles governing the type of一、串级调速的基本原理所谓串级调速就是在转子回路中串入与转子电动势E2同频率的附加电动势E add如图1—1所示。

浅谈绕线式三相异步电动机的调速控制

浅谈绕线式三相异步电动机的调速控制
功率绕线电机中多采用此启动器。 • 缺点:1、对电压稳定性要求高,稍低即难起动。
2、不能连续起动,连续启动时间间隔为1 分钟左右。
3、频敏包易烧毁,对绝缘要求高。
三、串极调速启动
串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机 的转差,达到调速的目的。 • 原速理前:后假转定子异电步流电近机似的保外持不加变电。源若电在压转E0子不回变路,中负引载入转一矩个都频不率变与,转则子电电机势在相调 同,而相位相同或相反的附加电势E1则转子电流I0为:
I0=(E0±E1)/ R0 (式4) R0= (R2+X0)1/2 E0-转子开路相电势;R2-转子回路电阻;X0-转子旋转时每相漏抗; 当机电的机一在个正常常数运,行所时以,改转变差附率加s电很势小E,1就故可R2以>改X0变,转忽差略率X0s,,上从式而中实,现E调0取速电。动 实际E0±E1≈常数(式四) 势同相步设位串当相级E反调1=时速0时,(电小E动1于为机额负运定,行转改于数变额)E定1(的转即大速s小>,,0即)可n,在=当n额0附,s定=件s转0电,数当势以附与下件转调电子速势相,与电这转势称子相为相位低电相 同时,E1为正,改变E1的大小,可在额定转数以上调速,这称为超同步串级 调速(大于额定转数)(即s<0)。
P
sP
M
KM
KM1
逆变器
整流器
R
图能实现无级平滑调 速,低速时机械特性也比较硬,但是在运行中也必须要注 意以下两点:
• 1、必须有严格的启动和切换顺序,由于硅原件的赖压 和额定电流的影响,必须保证电机转速达到规定的最低转 速以上时才允许切换至串级调速运行状态,启动顺序是: 给控制回路送电,接通逆变器主电源转子接入频敏变阻器 (起保护作用),接通定子电源,启动电机,电机加速至 规定转速时切换至串调运行,此后立即切断频敏变阻器。

第3章 第3节 绕线式异步电动机的调速

第3章 第3节 绕线式异步电动机的调速
3.3 绕线式异步电动机的调速
可直接控制转子回路内的滑差功率 实现转子串电阻调速和串级调速等调速方式 串级调速--变流装置在转子侧 调节滑差功率,调速装置容量小 3.3.1 绕线式异步电动机转子串电阻调速 1、转子串电阻调速原理 转子回路接三相附加电阻 机械特性从自然特性变为人工特性 最大转矩不变
临界转差率将随外加电阻的增大而增加
改变值,逆变器输出电压变化,实现调速
19
①第1工作区
( p 0
600 )
转子整流输出电压(考虑换流压降及电机转子侧电阻Rd):
U d 2.34sE 2 ( 3sX d

2 Rd ) I d
逆变电压:
U 2.34U 2T cos ( 3X T

2 RT )I d
1)亚同步系统--交直交 静止变流器作用: 回收利用转子绕组中的转差功 率--传递有功功率 二极管不可控整流桥把转差频率 的交流变成直流 有源逆变器把直流变成电网频 率的交流回馈电网 PCU—Power Converter Unit
2)超同步系统--交-交变流器
静止变流器能双向传递有功功率 既能运行于亚同步速度,又能运行 于超同步 同时相位能随意变化,传递无功 功率,改善功率因数
) cos1 (1
2X d Id 6 E2
)
Xd--转子不动时折算到转子侧的总漏抗 Id--负载电流即整流输出电流
E2--电机静止时转子绕组相电势
γ角与转差率s无关 随着负载电流Id的增加而增加
当 Id 6E2 4Xd 时
60
14
2、转子整流电路3种工作状态 ①第1工作状态 负载不很大,换流重叠角γ随负载上升而增大,变化范围:
忽略分母中 有

交流调压调速

交流调压调速

• 参数定义
Rs、Rr′ —定子每相电阻和折合到定子侧的 转子每相电阻;
Lls、Llr′ —定子每相漏感和折合到定子侧的 转子每相漏感;
Lm—定子每相绕组产生气隙主磁通的 等效电感,即励磁电感;
Us、1 —定子相电压和供电角频率;
s —转差率。
•电流公式 由图可以导出
式中
(2-1)
在一般情况下,LmLl1,则,C1 1 这相当于将上述假定条件的第③条改为忽 略铁损和励磁电流。这样,电流公式可简 化成
1.交流调压调速
第二篇 交流调速系统
交流调速系统的主要类型 交流变压调速系统 绕线转子异步电机串级调速系统 ——转差功率馈送型调速系统 交流变频调速系统
• 第一章 •
•概 述
要求
•掌握几种主要的交流调速方法
交流调速系统的主要类型
交流调速系统(AC Speed Regulating System):
• 交流力矩电机的机械特性
•s,n •0 •n0
•恒转矩负载特性 •A •B
•0.5UsN •C
•UsN
•0.7UsN
•1
•0 •TL
•Te
•图2-5 高转子电阻电动机(交流力矩电动机)
•在不同电压下的机械特性
2.3 闭环控制的变压调速系统及其静特性
采用普通异步电机的变电压调速时, 调速范围很窄,采用高转子电阻的力矩电 机可以增大调速范围,但机械特性又变软 ,因而当负载变化时静差率很大(见图2-5 ),开环控制很难解决这个矛盾。
•从定子传入转 子的电磁功率
•定义:转差功率 Ps= s Pem
•总机械功率 •转子铜耗 •(转差功率)
按照交流异步电机
的原理,从定子传入转

绕线转子异步电动机双馈调速系统

绕线转子异步电动机双馈调速系统
以上五种工况都就是异步电动机转子加入附加电 动势时得运行状态。在工况1,2,3中,转子回路输出 电功率,可以先把转子得交流电功率变换成直流,然 后再逆变至电网。
此时功率变换单元CU得组成如图7-3a所示,其中 CU1就是整流器,CU2就是有源逆变器。对于工况4 和5,电动机转子要从电网吸收功率,必须用一台变 频器与转子相连,其结构如图7-3b,CU2工作在可控 整流状态,CU1工作在逆变状态。
Er sEr0
(7-1)
式中s ——异步电动机得转差率;
Er0 ——绕线型异步电动机转子开路相电动势, 也就就是转子开路额定相电压值。
7、1、1 绕线转子异步电动机 转子附加电动势得作用
图7-1 绕线型异步电动机转子附加电动势得原理图
转子相电流
在转子短路情况பைடு நூலகம்,转子相电流得表达式为
Ir
sEr0 Rr2 (sX r0 )2
绕线转子异步电动机双馈调速方法早在20世纪30年 代就已被提出,到了60~70年代,当可控电力电子器 件出现以后,才得到更好得应用。
7、1 绕线转子异步电动机双馈 调速工作原理
异步电动机由电网供电并以电动状态运行时,她 从电网输入(馈入)电功率,而在其轴上输出机械 功率给负载,以拖动负载运行。
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交
11
7、1、2 绕线转子异步电动 机双馈调速得五种工况
在绕线型异步电动机转子侧引入一个可控得附加 电动势并改变其幅值,就可以实现对电动机转速 得调节。
可控附加电动势得引入必然在转子侧形成功率得 传送,既可以把转子侧得转差功率传输到与之相 连得交流电源或外电路中去,也可以就是从外面 吸收功率到转子中来。
7、2、1串级调速系统得工作原 理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

$绕线式异步电动机交流调速控制系统设计摘要本文主要通过对选择绕线式异步电机系统来控制造纸机,最终的选择串级调速控制系统,该系统是由异步电动机、转子整流器、频敏变阻器、有源逆变器、触发装置和信号检测等元件组成。

文章的重点就是系统参数的设计。

关键词:绕线式异步电动机调速控制系统ABSTRACTThis paper mainly through to choose wound rotor asynchronous motor system to control the paper machine, the final choice bunch_rank speed-control control system, this system is made asynchronous motor, rotor rectifier, frequency sensitivity rheostat, active inverter, triggering device and signal detection components. The article is to focus on the design of system parameters.Keywords: Wound rotor asynchronous motor Speed Control system@前言由于绕线式异步电动机要求启动转矩大,能平滑调速的场合。

所以它是工农业生产及国民经济各部门中应用最为广泛而且需要量最大的一种电机。

金属切削机床、轧钢设备、鼓风机、粉碎机、水泵、油泵、轻工机械、纺织机械、矿山机械等,绝大部分都采用绕线式异步电动机拖动。

绕线式异步电动机的控制方式可以分为3点:启动,调速与制动。

第 1 章系统方案的选择本论文的目的经过前言部分我们主要讲解了绕线式异步电机的使用场合和它的三种控制方式。

既然它的应用这么多,下面我来设计一种电动机在造纸机上的使用。

系统的选择)由于绕线式异步电动机, 相对于笼型异步电动机而言,具有起动电流小,起动转矩大的特点。

一般应用在大功率重载起动的情况下, 或者功率虽然不大, 但要求频繁起动、制动和反转的场合。

该电机的控制方式一般有两种:转子串电阻调速和串级调速。

而造纸机的要求是启动电流要小,启动转矩大。

还要求频繁的启动。

所以可以使用绕线式异步电机调速来控制造纸机。

至于转子串电阻和串级调速之间的选择:串级调速是通过绕线式异步电动机的转子回路引入附加电势而产生的。

它是变转差率来实现串级调速的。

与转子串电阻的方式不同,串级调速可以将异步电动机的功率加以应用,因此效率高。

串级调速能实现无级平滑调速,低速时机械特性也比较硬,它已经是克服了转子串电阻调速的缺点,具有高效率、无级平滑调速、较硬的低速机械特性等优点。

所以这里选择使用绕线式异步电机串级调速来控制造纸机。

第2章系统的组成与工作原理系统的组成在选择电机在满足工艺要求和保证生产质量的前提下我们要力求投资小,效益高,操作简单。

根据造纸机对电气传动系统的要求,由于调速范围小,所以采用晶闸管串级调速是较合理的方案。

本调速系统的主要组成部分有异步电动机、转子整流器、频敏变阻器、有源逆变器、触发装置和信号检测等元件。

整流器和逆变器是应采用三相桥式电路。

图1-1为本系统所采用方案的示意框图。

.为了减少串调装置的容量和满足使电动机能完全脱离调速装置而“高速”运转的要求,本系统不使用串调装置的直接起动,而是采用频敏变阻器进行起动。

起动完毕后,若需转入“调速”状态下低速工作,只需将接触器2KM接通,KM断开,即可切换至串级调速运行状态。

在调速装置发生障碍时,先经频敏变阻器升速,先经频敏变阻器升速,然后通过1KM触点短接转子,使电动机全速运行,这样可以调速装置进行检修而不中断生产。

补偿电容图 1-1 造纸机传动系统框图串级调速原理绕线式异步电动机的串级调速系统是引入一个附加电动势Eab ,且令Eab的频率和转子电动势的频率相等,则转子回路的总电动势即为转子电动势E2s 和附加电动势Eab的代数和,从而使转子电流随着二者的相互关系而变化。

如果对电动势的方向及数值加以控制,就会得到性能远比转子串电阻调速法优越的结果。

首先是节省了电阻上的热能损耗;其次是改变附加电动势的大小和方向十分灵活、方便,可做到平滑无级调速。

所以串接一个与转子电动势E ab 同频率的附加电动势ab E 如图2-1所示,通过改变ab E 值的大小和相位,同样也可实现调速。

产生附加电动势装置(图 2-1 转子串E ab 的串级调速原理图串级调速的基本原理可分析如下: 未串ab E 时,转子电流为:()222222sx r sE I +=当转子串入的ab E 与22sE E s =反相位时,电动机的转速下降。

因为反相位的ab E 串入后,立即引起子电流2I 的减少,即22222222222)(x s r sE E sx r E sE I ab ab +⎪⎪⎭⎫ ⎝⎛-=+-=当转子串入的ab E 与s E 2同相位时,电动机的转速升高。

同相位的ab E 串入后,立即使2I 增大,即 ¥()222222sx r E sE I ab ++=由上面分析可知,当ab E 与s E 2反相位时,可使电动机在同步转速以下调速,称为低同步串级调速。

E ab 与E 2s 同相位时,可使电动机朝着同步转速方向加速,E ab 幅值越大,电动机的稳定转速越高,当E ab 幅值足够大时,电动机的转速将达到甚至超过同步转速,这称为超同步串级调速。

晶闸管串级调速系统主电路设计图2-3 晶闸管串级调速系统主电路上图为晶闸管串级调速系统主电路图,M 为三相绕线转子异步电动机,其转子相电动势0r sE 经过三相不可控整流装置整流,输出直流电压d U 。

工作在有源逆变状态的三相可控整流装置除提供可调的直流电压i U 外还可将经整流装置整流输出的转差功率逆变,并回馈到交流电网。

转子整流器和产生附加直流反电动势的晶闸管有源逆变器,均采用三相桥式电路。

逆变器逆变电压i U 即为转子回路中串入的附加直流电动势。

直流回路电流I d 决定于拖动的负载转矩,当负载一定时,d I 为定植,改变逆变器的逆变角β,逆变电压i U 相应改变,便实现调速。

逆变变压器起到了电动机转子电压与电网电压匹配的作用,其二次侧电压2t U 不但与转子感应电势E 2有关,还与调速范围有关。

调速范围越大,要求2T 的值越高。

逆变变压器还能起到使电动机转子电路与交流电网之间电隔离的作用,减弱大功率晶闸管装置对电网波形的影响,并限制晶闸管的断态电压临界上升率/du dt 和通态电流临界上升率/di dt 。

转子回路中接入的电抗器L d ,可以使小负载时电流连续并限制电流脉动分量。

在大功率串级调速系统中还能限制逆变颠覆时短路电流上升率。

保护电路,交流侧采用阻容吸收和压敏电阻作为过电压保护电路,对于电路中晶闸管和二极管则采用阻容吸收和压敏快速熔断器做过电流保护。

异步电动机串级调速系统的转子整流电路转子整流电路采用三相桥式不可控整流电路,如下图所示:~图2-4 转子整流电路设电动机在某一转差率s 下稳定运行,当个整流器件依次道统时,必有器件见的换相过程,这时处于换相中的两相电动势同时起作用,产生换相重叠降。

换相重叠角为:0000arccos[1arccos[166D d D dr r sE E γ==- (2—7) 其中,X D0—— s=1时折算到转子侧的电动机钉子和转子每相漏抗。

由式(2—7)可知,换相重叠角γ随着整流电流I d 的增大而增大。

当I d 较小,在0度到60度之间时,整流电路中各整流器件都在对应相电压波形的自然换相点处换流,整流波形正常。

当负载电流I d 增大到按式(2—7)计算出来的γ角大于60时,器件在自然换相点处未能结束换流,从而迫使本该在自然换相点换流的器件推迟换流,出现了强迫换流现象,所延迟的角度称为强迫延时换相角p α。

强迫延时换相只说明在Id 超过某一值时,整流器件比自然换相点滞后p α角换流,但从总体上看,6个器件在360度内轮流工作,每一对器件的换流过程最多只能是60,也就是说,Id 再大,只能是γ=60不变。

由此可见,串级调速时的异步电动机转子整流电路在0,p γα≤≤=060,时转子处于正常的不可控整流工作状态。

由于整流电路的不可控整流状态是可控整流状态当控制角为零时的特殊情况,所以可以直接引用可控整流电路的有关分析式来表示串级调速时转子整流电路的电流和电压。

整流电流:00cos()])6p p p D D πααγα=-+=+D I (2—8) *整流电压:0cos cos()2.342232.34cos 2p p r D dD r p d D dsE R I sX sE I R I ααγαπ++=-=--d U (2—9)其中,',D s r R sR R =+ 是折算到转子侧的电动机定子和转子的每相等效电阻。

上两式中,当60γ≤时表示转子整流电路工作在正常的不可控整流工作状态,为第一种工作状态;而将360p αγ<<=00,时称为第二种工作状态。

异步电动机串级调速系统的逆变电路逆变电路采用工作在逆变状态的三相桥式整流电路,α为控制角,βπα=-为逆变角。

逆变时允许采用的最小逆变角'min βδγθ=++。

式中,δ为晶闸管的关断时间q t 折合的电角度;γ为换相重叠角;'θ为安全裕量角。

晶闸管的关断时间q t ,大的可达200~300us ,折算到电角度δ约4~5。

重叠角γ根据式子2cos cos()sind B I X mααγπ-+=计算可知γ约为15~20。

在三相桥式逆变电路中,触发器输出的六个脉冲,它们的相位角间隔不可能完全相等,不对称度一般可达5,若不设安全裕量角,偏后的那些脉冲相当于β变小,就可能小于min β,导致逆变失败。

根据一般中小型可逆拖动的经验,安全裕量角'θ约取10。

这样,一般取最小逆变角min β不小于30,使前后相晶闸管换相时间留有裕度。

第二章 |第三章系统性能分析第节 串级调速的机械特性由上述串级调速的原理可知,串级调速的机械特性如图3-1所示,当E ab 与E 2s 同相位时,机械特性基本上是向右上方移动;当E ab 与E 2s 反相位时,机械特性基本上是向左下方移动。

因此机械特性的硬度基本不变,但低速时的最大转矩和过载能力降低,起动转矩也减小。

串级调速的调速性能比较好,但获得附加电动势E ab 的装置比较复杂,成本较高,且在低速时电动机的过载能力较低,因此串级调速最适用于调速范围不太大(一般2~4)的场合。

图3-1 串级调速时的机械特性由上述说明得知:是由两部分组成,一部分为转子未串电动势E ab 产生的电流()222222sx r E sE I ad ++=;另一部分为转子外加电动势产生的电流222222)(sx r E sE I ab+±=,且式中 sE 2与E ab 反相时取负值,sE 2与E ab 同相时取正值。

相关文档
最新文档