201203学期《离散数学》开篇导学
(完整word版)《离散数学》教案详解

《离散数学》教案第一章集合与关系集合是数学中最基本的概念,又是数学各分支、自然科学及社会科学各领域的最普遍采用的描述工具。
集合论是离散数学的重要组成部分,是现代数学中占有独特地位的一个分支。
G. Cantor(康脱)是作为数学分支的集合论的奠基人。
1870年前后,他关于无穷序列的研究导致集合论的系统发展。
1874年他发表了关于实数集合不能与自然数集合建立一一对应的有名的证明。
1878年,他引进了两个集合具有相等的“势”的概念。
然而,朴素集合论中包含着悖论。
第一个悖论是布拉利-福尔蒂的最大序数悖论。
1901年罗素发现了有名的罗素悖论。
1932年康脱也发表了关于最大基数的悖论。
集合论的现代公理化开始于1908年策梅罗所发表的一组公理,经过弗兰克尔的加工,这个系统称为策梅罗-弗兰克尔集合论(ZF),其中包括1904年策梅罗引入的选择公理。
另外一种系统是冯·诺伊曼-伯奈斯-哥德尔集合论。
公理集合论中一个有名的猜想是连续统假设(CH)。
哥德尔证明了连续统假设与策梅罗-弗兰克尔集合论的相容性,科恩证明了连续统假设与策梅罗-弗兰克尔集合论的独立性。
现在把策梅罗-弗兰克尔集合论与选择公理一起称为ZFC系统。
一、学习目的与要求本章目的是介绍集合的基本概念,讲授集合运算的基本理论,关系的定义与运算。
通过本章的学习,使学生了解集合是数学的基本语言,掌握主要的集合运算方法和关系运算方法,为学习后续章节打下良好基础。
二、知识点1.集合的基本概念与表示方法;2.集合的运算;3.序偶与笛卡尔积;4.关系及其表示、关系矩阵、关系图;5.关系的性质,符合关系、逆关系;6.关系的闭包运算;7.集合的划分与覆盖、等价关系与等价类;相容关系;8.序关系、偏序集、哈斯图。
三、要求1.识记集合的层次关系、集合与其元素间的关系,自反关系、对称关系、传递关系的识别,复合关系、逆关系的识别。
2.领会领会下列概念:两个集合相等的概念几证明方法,关系的闭包运算,关系等价性证明。
《离散数学教案》课件

《离散数学教案》课件第一章:离散数学简介1.1 离散数学的定义与意义离散数学的定义离散数学在计算机科学中的应用1.2 离散数学的基本概念集合逻辑函数图论1.3 离散数学的研究方法形式化方法归纳法构造法第二章:集合与逻辑2.1 集合的基本概念与运算集合的定义与表示方法集合的运算(并、交、差、补)2.2 逻辑基本概念命题与联结词逻辑推理规则(蕴涵、逆否、德摩根定律)2.3 命题逻辑与谓词逻辑命题逻辑的形式化表示与推理谓词逻辑的形式化表示与推理第三章:函数与图论3.1 函数的基本概念与性质函数的定义与表示方法函数的单调性、连续性、奇偶性3.2 图的基本概念与运算图的定义与表示方法图的运算(节点、边、路径、连通性)3.3 树的基本概念与应用树与图的关系树的结构性质与应用(二叉树、堆、平衡树)第四章:组合数学4.1 组合数学的基本概念排列组合的定义与公式组合数学的应用(计数原理、图论)4.2 组合数学的计算方法直接法、间接法、递推法、函数法4.3 组合数学在计算机科学中的应用算法设计与分析(动态规划、贪心算法)程序语言中的组合类型(类型系统、类型检查)第五章:数理逻辑与计算复杂性5.1 数理逻辑的基本概念命题逻辑的数学模型(布尔代数、逻辑函数)谓词逻辑的数学模型(一阶逻辑、描述逻辑)5.2 计算复杂性的基本概念与分类计算复杂性的定义与度量(时间复杂性、空间复杂性)计算复杂性的分类(P与NP问题、整数分解问题)5.3 离散数学在算法设计与分析中的应用算法设计与分析的基本原则离散数学在算法优化与分析中的作用第六章:关系与映射6.1 关系的基本概念关系的定义与性质关系的类型(对称性、传递性、反身性)6.2 关系的闭包与简化关系的闭包概念关系的简化与规范化6.3 函数与二元关系函数与关系的联系与区别二元组与二元关系的应用第七章:代数结构7.1 代数结构的基本概念群、环、域的定义与性质代数结构在计算机科学中的应用7.2 群与群作用群的定义与运算群作用与群同态7.3 环与域环的定义与性质域的特殊性质与应用第八章:数理逻辑与计算理论8.1 数理逻辑的进一步应用命题逻辑与谓词逻辑的推理规则数理逻辑在计算机科学中的应用8.2 计算理论的基本概念计算模型的定义与分类计算复杂性的理论基础8.3 离散数学在计算理论中的应用计算理论中的逻辑与证明离散数学在算法设计与分析中的作用第九章:组合设计与计数原理9.1 组合设计的基本概念组合设计的定义与类型组合设计在编码理论中的应用9.2 计数原理的基本概念鸽巢原理、包含-排除原理函数的方法与应用9.3 图论与网络流图的遍历与路径问题网络流与最优化问题第十章:离散数学的综合应用10.1 离散数学在计算机科学中的应用算法设计与分析数据结构与程序语言设计10.2 离散数学在数学与应用数学中的作用组合数学在概率论与数论中的应用图论在网络科学与社会网络分析中的应用10.3 离散数学在未来科技发展中的展望量子计算与离散数学与逻辑推理重点和难点解析重点环节一:集合的基本概念与运算集合的表示方法(列举法、描述法)集合的运算(并、交、差、补)重点环节二:逻辑基本概念与推理命题与联结词(且、或、非)逻辑推理规则(蕴涵、逆否、德摩根定律)重点环节三:函数的基本概念与性质函数的定义与表示方法函数的单调性、连续性、奇偶性重点环节四:图的基本概念与运算图的定义与表示方法图的运算(节点、边、路径、连通性)重点环节五:组合数学的基本概念与计数原理排列组合的定义与公式组合数学的应用(计数原理、图论)重点环节六:关系与映射关系的定义与性质关系的类型(对称性、传递性、反身性)重点环节七:代数结构的基本概念群、环、域的定义与性质代数结构在计算机科学中的应用重点环节八:数理逻辑与计算理论数理逻辑的推理规则计算理论的基本概念(计算模型、计算复杂性)重点环节九:组合设计与计数原理组合设计的定义与类型计数原理的应用(鸽巢原理、包含-排除原理)重点环节十:离散数学的综合应用离散数学在计算机科学中的应用(算法设计与分析、数据结构与程序语言设计)离散数学在数学与应用数学中的作用(组合数学在概率论与数论中的应用、图论在网络科学与社会网络分析中的应用)全文总结和概括:本《离散数学教案》课件涵盖了离散数学的基本概念、逻辑推理、函数与图论、组合数学、数理逻辑与计算理论、组合设计与计数原理等多个重要环节。
离散数学讲义(第1章)

1-2 联结词(续)
例:P:上海是一个大城市。 P:上海并不是一个大城市。 或 P:上海是一个不大的城市。
这两个命题具有相同的含义,因此用 同一个符号表示。
17
1-2 联结词(续)
P与 P的真值关系:
P
T F
PHale Waihona Puke F T否定是一个一元运算。
18
1-2 联结词(续)
(2)合取 设P,Q是两个命题,新命题“P并且Q”是 一个复合命题,称为命题P,Q的合取。记作: P∧Q 如:P:北京是中国的首都。 Q:北京是一个故都。 P∧Q:北京是中国的首都并且是一个 故都。
5
趣味逻辑数学题-巧猜围棋子
用数理逻辑学方法解题
P表示:“棋子为白色” Q表示:“甲说的是真话” 数理逻辑运算符: (非),(与),(或)
问题答案:S=(PQ)(PQ)
6
第一篇
数理逻辑
7
数理逻辑
数理逻辑是用数学方法来研究推理 过程的科学。主要是指引进一套符 号体系的方法,因此数理逻辑一般 又叫符号逻辑。 基本内容是:命题逻辑(演算)和 谓词逻辑(演算)。
22
1-2 联结词(续)
P∨Q的真值关系:
P T T F F Q T F T F P∨Q T T T F
析取是一个二元运算。
23
1-2 联结词(续)
注意:析取联结词∨与汉语中的“或”的意义不 完全相同。汉语中的“或”既可以表示“排斥 或”,也可以表示“可兼或”。
例如: P:今天晚上我在家看电视或去剧场看戏。 Q:他可能是100米或400米赛跑的冠军。
28
1-2 联结词(续)
在命题演算中,五个联结词的含义由真值表唯一确定。
离散数学文档第一章

离散数学引论《离散数学》是现代数学的一个重要分支,是计算机科学基础理论的核心课程,其内容一直随着计算机科学的发展而不断地扩充与更新。
它所研究的对象是离散数据结构及相互关系。
由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系,因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着对离散结构建立相应的数学模型、将已用连续数量关系建立起来的数学模型离散化问题。
在计算机科学中由于普遍采用了离散数学中的基本概念、基本思想和方法,从而使得离散数学成了不可少的理论工具。
离散数学的主要内容为:集合论、数理逻辑、近世代数、图论和组合数学等。
离散数学不仅为数据结构、操作系统、编译原理、算法分析、人工智能、形式语言与自动机提供了重要的数学理论基础,而且通过对它的学习可以使我们熟悉和习惯抽象的符号表示和演算形式,培养和训练我们掌握使用数学语言或符号系统处理问题的基本方法,提高我们的抽象思维和逻辑推理的能力。
参考书目:《离散数学》,耿素云等著,清华大学出版社;《离散数学》,陈莉等著,高等教育出版社;《离散数学》,孙吉贵等著,高等教育出版社;《离散数学及其应用》,傅彦等著,电子工业出版社;第一章数理逻辑数理逻辑又称符号逻辑,是逻辑学的一个重要分支。
逻辑学是研究人的思维形式的科学。
数理逻辑是用数学方法研究推理、利用符号体系研究推理过程中前提和结论之间的关系。
1.1 命题符号化及联结词1.1.1命题命题是一个非真即假的陈述句。
因此不能判断真假的陈述句、疑问句、祈使句和感叹句都不是命题。
(1)一个命题的真或假称为命题的真值。
真用T或1表示,假用F或0表示;(2)原子命题(简单命题):最简单的命题,通常用大写字母p,q,r表示;几个简单命题用联结词连接起来得到的命题叫复合命题。
(3)一个陈述句有真值与是否知道它的真假是两回事。
[例1.1.1]判断下列语句是不是命题?若是,给出命题的真值:(1)2是素数。
离散数学教案

滁州学院计算机与信息工程学院课程教案课程名称:离散数学授课教师:赵欢欢授课对象:11级网络工程专业3、4班授课时间:2012年9月-2012年12月滁州学院计算机科学与信息工程学院2012年8月《离散数学》教学大纲(Discrete Mathematic)课程代码:学时:48 学分:3一、课程简介本大纲根据2009版应用型人才培养方案制订。
(一)教学对象:网络工程、计算机科学与技术专业本科学生(二)开课学期:第三学期(三)课程类别:专业基础课(四)考核方式:考试(五)参考教材:《离散数学》第2版邓辉文清华大学出版社2010.主要参考书目:[1]邵学才,叶秀明. 离散数学[M].北京电子工业出版社,2009.[2]邵志清,虞慧群. 离散数学[M].北京电子工业出版社,2003.[3]屈婉玲. 离散数学习题解析[M].北京大学出版社,2008.本课程的先修课程是高等数学、线性代数,后续课程包含数据结构、数据库原理及应用、操作系统、数字逻辑、人工智能、算法分析与设计等。
二、教学基本要求与内容安排(一)教学目的与要求离散数学是研究离散量的结构及其相互关系的学科,它在各学科领域特别在计算机科学领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程必不可少的先行课程。
本课程的教学目的旨在通过对离散数学的教学,让学生不但可以掌握处理如集合、代数结构和图等离散结构的描述工具和方法,为后续课程的学习创造条件,而且为学生今后提高专业理论水平,从事计算机行业的实际工作提供必备的抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。
(教学要求:A—熟练掌握;B—掌握;C—了解)三、实验内容本课程无实验制订人(签字):审核人(签字):教学进度表系主任签名:院长签名:年月日年月日说明:1.本教学进度表由主讲教师负责填写,于每学期开学第一周内送交教师所在系,经领导审定、签字后备查。
2.此表一式三份,其中,任课教师一份,教师所在系一份,教务处一份。
离散数学教程

离散数学教程离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、物理学、化学等众多领域都有着广泛的应用。
这门学科主要研究离散对象的结构及其相互关系,为解决实际问题提供了强大的理论支持和工具。
首先,让我们来了解一下集合论。
集合是离散数学中最基本的概念之一。
简单来说,集合就是一些确定的、不同的对象的总体。
比如一个班级里所有同学就可以构成一个集合。
集合的运算包括并集、交集、差集等。
并集就是把两个集合中的所有元素合并在一起;交集则是两个集合中共同拥有的元素组成的集合;差集是从一个集合中去掉另一个集合中的元素。
接着是关系。
关系描述了集合中元素之间的某种联系。
比如在一个班级中,同学之间的朋友关系就是一种关系。
关系可以用矩阵或者图来表示,这使得关系的性质和特点能够更加直观地展现出来。
关系有着自反性、对称性、传递性等重要性质。
然后是函数。
函数可以看作是一种特殊的关系,对于定义域中的每一个元素,在值域中都有唯一的元素与之对应。
函数在计算机程序设计、密码学等领域都有重要的应用。
图论也是离散数学的重要组成部分。
图由顶点和边组成,可以用来表示各种实际问题,比如交通网络、通信网络等。
图的遍历算法,如深度优先搜索和广度优先搜索,是解决许多问题的关键。
还有最短路径问题,如何在图中找到两个顶点之间的最短路径,这在物流配送、网络路由等方面有着重要的应用。
数理逻辑在离散数学中同样不可或缺。
它包括命题逻辑和谓词逻辑。
命题逻辑研究简单的陈述句及其组合的真假情况;谓词逻辑则进一步考虑了语句中的主语和谓语等成分。
通过逻辑运算和推理规则,可以判断命题的真假,进行逻辑证明。
在代数结构方面,群、环、域等概念为我们提供了对抽象运算和结构的深入理解。
比如,在密码学中,有限域的理论就被广泛应用于加密算法的设计。
学习离散数学,不仅能够培养我们的逻辑思维能力,还能够帮助我们更好地理解和解决实际问题。
比如在计算机编程中,我们可以利用离散数学的知识来优化算法、设计数据结构;在数据库设计中,关系模型就是基于离散数学中的关系理论。
离散数学第一章知识点总结

离散数学第一章知识点总结离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、物理学等领域都有着广泛的应用。
第一章通常是对离散数学的基础概念和预备知识进行介绍,为后续的学习打下坚实的基础。
以下是对离散数学第一章知识点的详细总结。
一、集合的基本概念集合是由一些确定的、不同的对象所组成的整体。
集合中的对象称为元素。
我们通常用大写字母来表示集合,用小写字母表示元素。
如果一个元素 a 属于集合 A,记作 a ∈ A;如果一个元素 b 不属于集合 A,记作 b ∉ A。
集合有两种常见的表示方法:列举法和描述法。
列举法是将集合中的元素一一列举出来,例如 A ={1, 2, 3, 4, 5}。
描述法是通过描述元素的共同特征来表示集合,例如 B ={x | x 是大于 0 小于 10 的整数}。
集合之间的关系包括子集、真子集和相等。
如果集合 A 中的所有元素都属于集合 B,那么 A 是 B 的子集,记作 A ⊆ B。
如果 A 是 B 的子集,且 B 中存在元素不属于 A,那么 A 是 B 的真子集,记作 A ⊂ B。
如果 A 和 B 包含相同的元素,那么 A 和 B 相等,记作 A = B。
二、集合的运算集合的基本运算有并集、交集和差集。
集合 A 和集合 B 的并集,记作 A ∪ B,是由属于 A 或者属于 B 的所有元素组成的集合。
集合 A 和集合 B 的交集,记作A ∩ B,是由同时属于 A 和 B 的所有元素组成的集合。
集合 A 与集合 B 的差集,记作 A B,是由属于 A 但不属于 B 的所有元素组成的集合。
此外,还有补集的概念。
如果给定一个全集 U,集合 A 的补集记作A,是由属于 U 但不属于 A 的所有元素组成的集合。
集合运算满足一些重要的定律,如交换律、结合律、分配律等。
例如,A ∪ B = B ∪ A(并集的交换律),A ∩ B =B ∩ A(交集的交换律),(A ∪ B) ∪ C = A ∪(B ∪ C)(并集的结合律),(A ∩B) ∩ C =A ∩ (B ∩ C)(交集的结合律)等。
《离散》导学案(含答案)

《离散》导学案(含答案)离散导学案(含答案)一、基础概念1. 什么是离散数学?- 离散数学是研究离散结构和离散对象的数学学科。
2. 离散数学的主要分支有哪些?- 离散数学的主要分支包括集合论、图论、逻辑、代数结构、组合数学等。
3. 什么是集合?- 集合是由一些确定的对象构成的整体。
4. 什么是元素?- 元素是构成集合的个体或对象。
二、集合1. 集合的表示方法有哪些?- 集合的表示方法包括列举法、描述法和图形法。
2. 集合之间的关系有哪些?- 集合之间的关系包括相等关系、包含关系和交集关系。
3. 集合的运算有哪些?- 集合的运算包括并集、交集和补集。
4. 集合的性质有哪些?- 集合的性质包括空集、全集、互斥集和互补集。
三、图论1. 什么是图?- 图是由若干个点和连接这些点的边组成的数学模型。
2. 图的表示方法有哪些?- 图的表示方法包括邻接矩阵和邻接表。
3. 图的性质有哪些?- 图的性质包括连通性、度、路径和回路。
四、逻辑1. 什么是命题?- 命题是可以判断真假的陈述句。
2. 什么是命题逻辑?- 命题逻辑是研究命题之间逻辑关系的学科。
3. 命题逻辑的运算有哪些?- 命题逻辑的运算包括与、或、非和蕴含。
4. 什么是真值表?- 真值表是列出命题所有可能取值的表格。
五、代数结构1. 什么是代数结构?- 代数结构是由一组元素和一组运算构成的结构。
2. 代数结构的主要类型有哪些?- 代数结构的主要类型包括群、环、域和格。
六、组合数学1. 什么是组合数学?- 组合数学是研究离散结构中各种可能的排列和选择问题的数学学科。
2. 组合数学的主要分支有哪些?- 组合数学的主要分支包括排列组合、图论和数论。
以上是《离散》导学案的内容概要及答案。
请根据导学案内容进行学习和练习,如有问题及时向老师请教。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《离散数学》开篇导学材料
一、课程的性质和任务
《离散数学》是现代数学的一个分支,是计算机专业的重要专业基础课,是计算机专业必修课程之一,通过本课程的学习,培养学生的抽象思维和严格的逻辑推理能力,并使他们掌握处理离散结构所必需的描述工具和方法,为进一步学习“数据结构”、“数据库原理与应用”、“操作系统”等专业课打好基础,同时也为学生今后从事计算机开发和应用工作提供必要的数学工具。
二、关于学习方法
远程教育学生以学生自主学习为主,教师导学为辅。
同学们在学习中,应以教材为基本依据,认真学习教材,并完成教材中的练习题等,以达到各章学习目标;课件光盘可在学习过程中顺序收看,也可以根据自己的学习情况有选择地收看,目的是增强学习效果,加深理解。
网上辅导以在线答疑为主。
我们将按照教学要求,于学期初布置4次作业,请留意相关通知,认真按时完成。
每次辅导提纲都将放在网上,供查阅和下载。
希望大家充分利用网络学习平台进行学习和答疑,完成教学要求。
本课程内容比较多,学生本学期学习周期内,必须有针对性地进行学习,全面系统地领会本课程的学习要点,才能很好得学好这门课。
在学习的过程中,应该注意以下方面:
1、根据老师建议的课程教学实施计划,结合自己的实际情况,制订合理的学习
计划,并严格地执行。
由于本课程的内容较多,作业量也较大,因此,建议学生在制定了计划以后,要坚决执行,当期的学习任务一定要当期完成,当期的难题要当期解决。
2、认真学习课件、教材,尤其对课件中的案例分析要作深入理解。
本课程知识
体系的脉络是十分清晰的,把握住这些,再学习各个部分的知识,就能做到全局在胸,知著见微。
同时,在学习过程中,还必须做到手脑并用。
对于重点的概念、基本原理、知识要点,必须在理解的基础上做好笔记。
通过记笔记,可以加深理解所学的课程内容,增强记忆。
3、认真按时完成作业。
本课程涉及到许多概念以及操作应用问题。
课程中设计
的作业题,学生必须要自己独立完成。
即便有些问题似乎一看就懂,也要动手去做。
要知道看懂了不一定会做。
做作业具有强化的作用,只有通过做作业,才能真正理解和掌握所学的知识。
而且,做作业的过程实质上也是一个分析思考的过程,既可以帮助学生加深理解所学的知识,又锻炼了分析问题和解决问题的能力,也相应提高了应试能力。
三、重点、难点的把握
仔细阅读课程实施方案,把握方案和教材体系,明确教材和课件之间的关系,应该注意以下几点:
1、课程实施方案对课程内容的掌握程度分为几个层次:了解、理解、掌握、熟
练掌握,学生应根据教材、课程实施方案以及课件,对此细心加以体会、理解,对要求掌握的内容,尤其要加强学习,务必弄懂弄透。
具体章节的重点、难点,辅导老师会在网上发布教学辅导资料帮助学生学习。
所以学生对导学一定要重视。
2、教材与课件的关系:如果课件与教材存在不一致,以教材为准。
在学习过程
中,同学们一定要认真听一听,必要时要做笔记。
四、应该注意的其他问题
1、在全面理解中把握重点。
课程都有学习和掌握的重点,对这些章节进行重点
把握,能够提高复习的效率和效果,并不是说只考这些章节或只要掌握这些章节就一定能通过考试。
因此,要在全面理解的基础上把握重点,而不应孤立地去猜重点、押考题,然后死记硬背。
只有在全面复习的基础上,才能真正理解哪些问题重要,哪些部分是重点。
2、作业要认真做。
尽管咱们都是在线作业,按要求作业题型只能出成单选题、
判断题、填空题和问答题等题型,但根据课程考试试卷命题工作要求,考试时题型可能有填空题、单选题、多选题、判断题、简答/计算题、问答/综合题六种,希望大家要注意这一点。
3、在做作业和考试的过程中,要注意审清题意,认真细致,做完以后还要检查
核对。
如果能做到练习和考试一样认真地对待,那么到考试时,就会和平时做练习一样的轻松。
4、要经常登陆课程学习平台,多学多问,勤于思考,在理解中记忆。
对平时布
置的作业能认真做完,不会没关系,关键是在做题中发现自己的不足之处,使自己离散数学方面的知识体系更加完整。
预祝大家顺利完成这门课的学习&最后取得满意的成绩!。