新人教版八年级下册勾股定理知识点及练习答案教师版
人教版八年级下册第17章勾股定理考点和答案

勾股定理考点及答案1701 勾股定理一.选择题(共4 小题)〖案例分析〗如图,在Rt△ABC 中,∠BAC=90°.ED 是BC 的垂直平分线,BD 平分∠ABC,AD=〖课后巩固〗则CD 的长为()A.6 B.5 C.4 D.3〖课堂练习〗如图,在△ABC 中,∠ACB=90°,CD⊥AB 于D,若AC=2,BC=,则CD 为()A.B.2 C.D.3〖课后巩固〗如图,在Rt△ABC 中,∠ACB=90°,AE 为△ABC 的角平分线,且ED⊥AB,若AC=6,BC=8,则BD 的长()A.2 B.3 C.4 D.5〖考前再练〗在Rt△ABC 中,∠B=90°,AB=5,BC=4,则AC 的长是()A.3 B.4 C.3 或D.一.解答题(共 4 小题)1702 勾股定理的证明〖案例分析〗如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC 中,∠ACB =90°,BC =a ,AC =b ,AB =c ,正方形 IECF 中,IE =EC =CF =FI = x(1) 小明发明了求正方形边长的方法:由题意可得 BD =BE =a ﹣x ,AD =AF =b ﹣x因为 AB =BD +AD ,所以 a ﹣x +b ﹣x =c ,解得 x =(2) 小亮也发现了另一种求正方形边长的方法:利用 S △ABC =S △AIB +S △AIC +S △BIC 可以得到 x 与 a 、b 、c 的关系,请根据小亮的思路完成他的求解过程:(3) 请结合小明和小亮得到的结论验证勾股定理.〖课堂练习〗阅读理解:【问题情境】教材中小明用 4 张全等的直角三角形纸片拼成图 1,利用此图,可以验证勾股定理吗?【探索新知】从面积的角度思考,不难发现:大正方形的面积=小正方形的面积+4 个直角三角形的面积从而得数学等式:;(用含字母 a 、b 、c 的式子表示)化简证得勾股定理:a 2+b 2=c 2 【初步运用】(1) 如图 1,若 b =2a ,则小正方形面积:大正方形面积= ;(2)现将图1 中上方的两直角三角形向内折叠,如图2,若a=4,b=6 此时空白部分的面积为;【迁移运用】如果用三张含60°的全等三角形纸片,能否拼成一个特殊图形呢?带着这个疑问,小丽拼出图3 的等边三角形,你能否仿照勾股定理的验证,发现含60°的三角形三边a、b、c 之间的关系,写出此等量关系式及其推导过程.知识补充:如图4,含60°的直角三角形,对边y:斜边x=定值k.〖课后巩固〗(1)我国著名的数学家赵爽,早在公元3 世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图1),这个矩形称为赵爽弦图,验证了一个非常要的结论:在直角三角形中两直角边a、b 与斜边c 满足关系式a2+b2=c〖课堂练习〗称为勾股定理.证明:∵大正方形面积表示为S=c2,又可表示为S=∴=c2∴.即直角三角形两直角边的平方和等于斜边的平方.(2)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图2),也能验证这个结论,请你帮助小明完成验证的过程,(3)如图3 所示,∠ABC=∠ACE=90°,请你添加适当的辅助线证明结论a2+b2=c〖课堂练习〗〖考前再练〗阅读材料,并完成相应任务.2000 多年来,人们对勾股定理的证明颇感兴趣,不但因为这个定理重要、基本,还因为这个定理贴近人们的生活实际,所以很多人都探讨、研究它的证明,新的证法不断出现.下面的图形是传说中毕达哥拉斯的证明图形:证明:①在图1 中,∵S 大正方形=(a+b)2,S 大正方形=4 个直角三角形的面积+两个正方形的面积=4×+ + .②在图2 中,∵S 大正方形=(a+b)2,S 大正方形=4 个直角三角形的面积+正方形的面积=4×+ .∴4×+ + =4×+.整理得:2ab+a2+b2=2ab+c2∴.任务:(1)将材料中的空缺部分补充完整;(2)如图3,在△ABC 中,∠A=60°,∠ACB=75°,CD⊥AB,AC=4,求BC 的长.1703 勾股定理的逆定理一.解答题(共4 小题)〖案例分析〗如图,在四边形ABCD 中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,连接AC.(1)求AC 的长度.(2)求证△ACD 是直角三角形.(3)求四边形ABCD 的面积?〖课堂练习〗在四边形ABCD 中,AC⊥DC,AD=13cm,DC=12cm,AB=3cm,BC=4cm,求四边形ABCD 的面积.〖课后巩固〗如图所示,四边形ABCD,∠B=90°,AB=3cm,BC=4cm,CD=12cm,AD =13cm.(1)求证:AC⊥CD;(2)求四边形ABCD 的面积.〖考前再练〗如图,每个小正方形的边长都为 1(1) 求四边形 ABCD 的周长;(2) 求∠BCD 的大小.一.选择题(共 4 小题)1704 勾股数〖案例分析〗下列给出的四组数中,是勾股数的一组是()A .1,2,3B .2,3,4C .2,4,5D .5,12,13〖课堂练习〗下列各组数为勾股数的是( )A .7,12,13B .3,4,7C .0.3,0.4,0.5D .8,15,17〖课后巩固〗下列各组数中,为勾股数的是()A .1,2,3B .3,4,5C .1.5,2,2.5D .5,10,12〖考前再练〗下列各组数中,是勾股数的是( )A .1,2,3B .0.3,0.4,0.5C . , ,D .7,24,251705 勾股定理的应用一.解答题(共4 小题)〖案例分析〗如图,某校有一块四边形空地ABCD,现计划在该空地上种草皮,经测量∠B =90°,AB=3m,BC=4m,CD=12m,DA=13m,求这块场地的面积.〖课堂练习〗一块土地的形状如图所示,∠B=90°,AB=20m,BC=15m,CD=7m,AD =24m,求这块地的面积.〖课后巩固〗如图,一架2.5m 长的梯子AB 斜靠在墙AC 上,梯子的顶端A 离地面的高度为2.4m,如果梯子的底部B向外滑出1.3m后停在DE位置上,则梯子的顶部下滑多少米?〖考前再练〗如图,在吴中区上方山动物园里有两只猴子在一棵树CD 上的点B 处,且BC =5m,它们都要到池塘A 处吃东西,其中一只猴子甲沿树爬至C 再沿CA 走到离树24m 处的池塘A 处,另一只猴子乙先爬到树顶D 处后再沿缆绳DA 线段滑到A 处.已知猴子甲所经过的路程比猴子乙所经过的路程多2m,设BD 为xm.(1)请用含有x 的整式表示线段AD 的长为m;(2)求这棵树高有多少米?参考答案1701 勾股定理参考答案与试题解析一.选择题(共4 小题)〖案例分析〗如图,在Rt△ABC 中,∠BAC=90°.ED 是BC 的垂直平分线,BD 平分∠ABC,AD=〖课后巩固〗则CD 的长为()A.6 B.5 C.4 D.3【解答】解:∵BD 是∠ABC 的平分线,∴∠DBC=∠ABD,∵ED 是BC 的垂直平分线,∴CD=BD,∴∠C=∠CBD,∵∠A=90°,∴∠C+∠ABC=90°,∴∠C=30°;∵∠C=∠ABD=∠CBD=30°,∠A=90°,AD=3,∴CD=BD=2AD=6,故选:A.〖课堂练习〗如图,在△ABC 中,∠ACB=90°,CD⊥AB 于D,若AC=2,BC=,则CD 为()A.B.2 C.D.3【解答】解:在Rt△ABC 中,AC=2 ,BC=,根据勾股定理得:AB==3 ,∵△ABC 中,∠C=90°,CD⊥AB,=AC•BC=AB•CD,即AC•BC=AB•CD,∴S△ABC∴CD==2,故选:B.〖课后巩固〗如图,在Rt△ABC 中,∠ACB=90°,AE 为△ABC 的角平分线,且ED⊥AB,若AC=6,BC=8,则BD 的长()A.2 B.3 C.4 D.5【解答】解:∵在Rt△ABC 中,∠ACB=90°,AC=6,BC=8,∴AB=,∵AE 为△ABC 的角平分线,ED⊥AB,∴AD=AC=6,∴BD=10﹣6=4,故选:C.〖考前再练〗在Rt△ABC 中,∠B=90°,AB=5,BC=4,则AC 的长是()A.3 B.4 C.3 或D.【解答】解:∵∠B=90°,AB=5,BC=4,∴AB2+BC2=AC2,∴AC==,故选:D.1702 勾股定理的证明参考答案与试题解析一.解答题(共4 小题)〖案例分析〗如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC 中,∠ACB=90°,BC=a,AC=b,AB=c,正方形IECF 中,IE=EC=CF=FI=x(1)小明发明了求正方形边长的方法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)小亮也发现了另一种求正方形边长的方法:利用S△ABC=S△AIB+S△AIC+S△BIC 可以得到x 与a、b、c 的关系,请根据小亮的思路完成他的求解过程:(3)请结合小明和小亮得到的结论验证勾股定理.【解答】解:(2)因为S△ABC=S△ABI+S△BIC+S△AIC=cx+ ax+ bx所以x=.答:x 与a、b、c 的关系为x=.(3)根据(1)和(2)得:x==.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.〖课堂练习〗阅读理解:【问题情境】教材中小明用 4 张全等的直角三角形纸片拼成图1,利用此图,可以验证勾股定理吗?【探索新知】从面积的角度思考,不难发现:大正方形的面积=小正方形的面积+4 个直角三角形的面积从而得数学等式:;(用含字母a、b、c的式子表示)化简证得勾股定理:a2+b2=c2【初步运用】(1)如图1,若b=2a,则小正方形面积:大正方形面积=5:9 ;(2)现将图1 中上方的两直角三角形向内折叠,如图2,若a=4,b=6 此时空白部分的面积为28 ;【迁移运用】如果用三张含60°的全等三角形纸片,能否拼成一个特殊图形呢?带着这个疑问,小丽拼出图3 的等边三角形,你能否仿照勾股定理的验证,发现含60°的三角形三边a、b、c 之间的关系,写出此等量关系式及其推导过程.知识补充:如图4,含60°的直角三角形,对边y:斜边x=定值k.【解答】解:[探索新知]由题意:大正方形的面积=(a+b)2=c2+4× ab,∴a2+2ab+b2=c2+2ab,∴a2+b2=c2【初步运用】(1)由题意:b=2a,c=a,∴小正方形面积:大正方形面积=5a2:9a2=5:9,(a+b)2=c2+4×ab4× ab +(b ﹣a )2,4× ab +(b ﹣a )2 故故答案为 5:9.(2)空白部分的面积为=52﹣2× ×4×6=28. 故答案为 28.[迁移运用]结论:a 2+b 2﹣ab =c 2.理由:由题意:大正三角形面积=三个全等三角形面积+小正三角形面积 可得: (a +b )×k (a +b )=3× ×b ×ka + ×c ×ck , ∴(a +b )2=3ab +c 2 ∴a 2+b 2﹣ab =c 2.〖课后巩固〗(1)我国著名的数学家赵爽,早在公元 3 世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图 1),这个矩形称为赵爽弦图,验证了一个非常要的结论:在直角三角形中两直角边 a 、b 与斜边 c 满足关系式 a 2+b 2=c 2.称为勾股定理.证明:∵大正方形面积表示为 S =c 2,又可表示为 S =∴ =c 2∴ a 2+b 2=c 2 .即直角三角形两直角边的平方和等于斜边的平方.(2) 爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图 2),也能验证这个结论,请你帮助小明完成验证的过程,(3) 如图 3 所示,∠ABC =∠ACE =90°,请你添加适当的辅助线证明结论 a 2+b 2=c 2.【解答】(1)证明:∵大正方形面积表示为 S =c 2,又可表示为 S =4×ab+(b ﹣a )2, ∴4× ab +(b ﹣a )2=c 2.∴2ab+b2﹣2ab+a2=c2,∴a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方.故答案为:4×ab+(b﹣a)2,4×ab+(b﹣a)2,a2+b2=c2;(2)证明:由图得,大正方形面积=×ab×4+c2=(a+b)×(a+b),整理得,2ab+c2=a2+b2+2ab,即a2+b2=c2;(3)解:如图3,过A 作AF⊥AB,过E 作EF⊥AF 于F,交BC 的延长线于D,则四边形ABDF 是矩形,∵△ACE 是等腰直角三角形,∴AC=CE=c,∠ACE=90°=∠ACB+∠ECD,∵∠ACB+∠BAC=90°,∴∠BAC=∠ECD,∵∠B=∠D=90°,∴△ABC≌△CDE(AAS),∴CD=AB=b,DE=BC=a,S矩形ABDF=b(a+b)=2×ab+c2+(b﹣a)(a+b),∴a2+b2=c2.〖考前再练〗阅读材料,并完成相应任务.2000 多年来,人们对勾股定理的证明颇感兴趣,不但因为这个定理重要、基本,还因为这个定理贴近人们的生活实际,所以很多人都探讨、研究它的证明,新的证法不断出现.下面的图形是传说中毕达哥拉斯的证明图形:证明:①在图1 中,∵S 大正方形=(a+b)2,S 大正方形=4 个直角三角形的面积+两个正方形的面积=4×ab + a2 + b2 .②在图2 中,∵S 大正方形=(a+b)2,S 大正方形=4 个直角三角形的面积+正方形的面积=4×ab + c2 .∴4×ab + a2 + b2 =4×ab + c2.整理得:2ab+a2+b2=2ab+c2∴a2+b2=c2.任务:(1)将材料中的空缺部分补充完整;(2)如图3,在△ABC 中,∠A=60°,∠ACB=75°,CD⊥AB,AC=4,求BC 的长.【解答】解:(1)①,②,,,a2+b2=c2故答案为:①,②,,,a2+b2=c2;(2)∵CD⊥AB,∴∠ADC=∠BDC=90°,∵∠A=60°,∴∠ACD=30°,∵AC=4,∴AD=2,在Rt△ACD 中,CD=,又∵∠ACB=75°,∴∠DCB=∠ACB﹣∠ACD=45°,∴∠B=45°,∴BD=CD=,在Rt△BCD 中,BC=.1703 勾股定理的逆定理参考答案与试题解析一.解答题(共4 小题)〖案例分析〗如图,在四边形ABCD 中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,连接AC.(1)求AC 的长度.(2)求证△ACD 是直角三角形.(3)求四边形ABCD 的面积?【解答】(1)解:在直角△ABC 中,AC 为斜边,且AB=BC=2,则AC===2 .(2)证明:∵AD=1,CD=3,AC=2∴AC2+AD2=CD2,即△ACD 为直角三角形,且∠DAC=90°,(3)解:四边形ABCD 的面积=S+S△ACD=AB×BC+ AD×AC=×2×2+ ×△ABC××1×2 =2+ .答:四边形ABCD 的面积为2+ .〖课堂练习〗在四边形ABCD 中,AC⊥DC,AD=13cm,DC=12cm,AB=3cm,BC=4cm,求四边形ABCD 的面积.【解答】解:在Rt△ACD 中,AC===5cm,在△ABC 中,∵AB2+BC2=9+16=25,AC2=52=25,∴AB2+BC2=AC2,∴△ABC 是直角三角形,∴四边形ABCD 的面积=AB•BC+ AC•CD=×3×4+ ×5×12=36cm2.〖课后巩固〗如图所示,四边形ABCD,∠B=90°,AB=3cm,BC=4cm,CD=12cm,AD =13cm.(1)求证:AC⊥CD;(2)求四边形ABCD 的面积.【解答】(1)证明:∵在△ABC 中,∠B=90°,AB=3cm,BC=4cm,∴由勾股定理得:AC==5cm,∵CD=12cm,AD=13cm,∴AC2+DC2=AD2,∴∠ACD=90°,∴AC⊥CD;(2)解:S四边形ABCD+S△ACD=S△ABC=+=3cm×4cm+ 12cm=36cm2,即四边形ABCD 的面积式36cm2.〖考前再练〗如图,每个小正方形的边长都为1(1)求四边形ABCD 的周长;(2)求∠BCD 的大小.【解答】解:(1)由勾股定理得:DC==,BC==2,AD==,AB==,所以四边形ABCD 的周长为AB+BC+cd+ad=+2 + + =+3 + ;(2)连接BD,由勾股定理得:BD==5,∵DC=,BC=2 ,∴DC2+BC2=BD2,∴∠BCD=90°.1704 勾股数参考答案与试题解析一.选择题(共4 小题)〖案例分析〗下列给出的四组数中,是勾股数的一组是()A.1,2,3 B.2,3,4 C.2,4,5 D.5,12,13 【解答】解:A、因为32≠12+22,所以它们不是勾股数,故本选项错误;B、因为42≠32+22,所以它们不是勾股数,故本选项错误;C、因为52≠42+22,所以它们不是勾股数,故本选项错误;D、因为132=52+122,所以它们是勾股数,故本选项正确;故选:D.〖课堂练习〗下列各组数为勾股数的是()A.7,12,13 B.3,4,7C.0.3,0.4,0.5 D.8,15,17【解答】解:A、不是勾股数,因为72+122≠132;B、不是勾股数,因为32+42≠72;C、不是勾股数,因为不是正整数;D、是勾股数,因为82+152=172;,且8,15,17是正整数.故选:D.〖课后巩固〗下列各组数中,为勾股数的是()A.1,2,3 B.3,4,5 C.1.5,2,2.5 D.5,10,12 【解答】解:A、∵12+22≠32,∴这组数不是勾股数;B、∵32+42=52,∴这组数是勾股数;C、∵1.52+22≠2.52,∴这组数不是勾股数;D、∵52+102≠122,∴这组数不是勾股数.故选:B.〖考前再练〗下列各组数中,是勾股数的是()A.1,2,3 B.0.3,0.4,0.5C.,,D.7,24,25【解答】解:A、∵12+22≠32,∴这组数不是勾股数;B、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;C、∵+ ≠,∴这组数不是勾股数;D、∵72+242=252,∴这组数是勾股数.故选:D.1705 勾股定理的应用参考答案与试题解析一.解答题(共4 小题)〖案例分析〗如图,某校有一块四边形空地ABCD,现计划在该空地上种草皮,经测量∠B =90°,AB=3m,BC=4m,CD=12m,DA=13m,求这块场地的面积.【解答】解:在Rt△ABC 中,AC2=AB2+BC2=32+42=52,∴AC=5.在△DAC 中,CD2=122,AD2=132,而122+52=132,即AC2+CD2=AD2,∴∠DCA=90°,△DAC 为直角三角形,∴S=S△BAC+S△DAC=•BC•AB+ DC•AC,四边形ABCD=×4×3+×12×5=36(m2);答:空地ABCD 的面积为36m2.〖课堂练习〗一块土地的形状如图所示,∠B=90°,AB=20m,BC=15m,CD=7m,AD =24m,求这块地的面积.【解答】解:如图,连接AC,如图所示.∵∠B=90°,AB=20m,BC=15m,∴AC===25m.∵AC=25m,CD=7m,AD=24m,∴AD2+DC2=AC2,∴△ACD 是直角三角形,且∠ADC=90°,∴S=×AB×BC=×20×15=150m2,S△ACD=×CD×AD=×7×24=84m2,△ABC∴S=S△ABC+S△ACD=234m2.四边形ABCD∴这块地的面积是234m2.〖课后巩固〗如图,一架2.5m 长的梯子AB 斜靠在墙AC 上,梯子的顶端A 离地面的高度为2.4m,如果梯子的底部B向外滑出1.3m后停在DE位置上,则梯子的顶部下滑多少米?【解答】解:由题意得,AB=DE=2.5,AC=2.4,BD=1.3,∵∠C=90°,∴BC===0.7,∴CD=BC+BD=2,∵CE===1.5,∴AE=AC﹣CE=2.4﹣1.5=0.9,答:梯子的顶部下滑0.9 米.〖考前再练〗如图,在吴中区上方山动物园里有两只猴子在一棵树CD 上的点B 处,且BC =5m,它们都要到池塘A 处吃东西,其中一只猴子甲沿树爬至C 再沿CA 走到离树24m 处的池塘A 处,另一只猴子乙先爬到树顶D 处后再沿缆绳DA 线段滑到A 处.已知猴子甲所经过的路程比猴子乙所经过的路程多2m,设BD 为xm.(1)请用含有x 的整式表示线段AD 的长为27﹣x m;(2)求这棵树高有多少米?【解答】解:(1)设BD为x米,且存在BD+DA=BC+CA﹣2,即BD+DA=27,DA=27﹣x,故答案为:27﹣x;(2)∵∠C=90°∴AD2=AC2+DC2∴(27﹣x)2=(x+5)2+242∴x=2∴CD=5+2=7,答:树高7 米。
初二数学下册(人教版)第十七章勾股定理17.2知识点总结含同步练习及答案

2
2
4. 五根小木棒,其长度分别为 7, 15, 20, 24, 25 ,现将他们摆成两个直角三角形,其中正确的是 (
A.
B.
C.
D.
答案: C 解析: 勾股定理判断各个三角形.
高考不提分,赔付1万元,关注快乐学了解详情。
四、课后作业
(查看更多本章节同步练习题,请到快乐学)
1. 下列能构成直角三角形三边长的是 ( A.1 、 2 、 3
答案: C
)
C.3 、 4 、 5 D.4 、 5 、 6
B.2 、 3 、 4
2. 下列说法中,不正确的是 (
)
A.三个角的度数之比为 1 : 3 : 4 的三角形是直角三角形 B.三个角的度数之比为 3 : 4 : 5 的三角形是直角三角形 C.三条边的长度之比为 3 : 4 : 5 的三角形是直角13 的三角形是直角三角形
3. 下列各组数据中的三个数,可作为三边长构成直角三角形的是 ( A.1, 2, 3
答案: C 解析: 因为
2
)
D.√3 , √3 , √5
B.3 2 , 4 2 , 5 2
C.√1 , √2 , √3
(√1 ) + (√2 ) = (√3 ) ,故选C. )
1.勾股定理逆定理 描述: 勾股定理的逆定理 如果三角形的三边长 a ,b ,c 满足 a2 + b 2 = c 2 ,那么这个三角形是直角三角形. 例题: 已知三组数据:① 2 ,3 ,4 ;② 3 ,4 ,5 ;③ 1 ,√3 ,2 .分别以每组数据中的三个数为三角 形的三边长,构成直角三角形的有( ) A. ② B. ①② C. ①③ D. ②③ 解:D. 一艘轮船向东北方向走了 80 千米后,另一艘轮船沿另一个方向行驶了 60 千米,此时两个轮船 相距 100 千米.那么你能推测出另一艘轮船行驶的方向吗? 解:因为 802 + 602 = 100 2 , 所以说明两艘轮船行驶方向的夹角是 90∘ , 所以另一艘轮船的行驶方向是东南方向 或者西北方向.
人教版八年级下册数学 17.1 勾股定理 同步习题(含答案)

17.1 勾股定理同步习题知识点1 勾股定理1.如图,以直角三角形的三边a,b,c为边或直径,分别向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形个数是()A.1B.2C.3D.42.若一个直角三角形的两直角边的长分别为a,b,斜边长为c,则下列关于a,b,c的关系式中不正确的是()A.b2=c2-a2B.a2=c2-b2C.b2=a2-c2D.c2=a2+b23.一直角三角形的两边长分别为3和4,则第三边长为()A.5B. 7C.2D.5或74.如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5B.6C.8D.105.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10B.8C.6或10D.8或106.在△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8B.4.8或3.8C.3.8D.5知识点2 勾股定理与面积的关系7.如图,字母B所代表的正方形的面积是()A.12B.13C.144D.1948.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,则b的面积为()A.3B.4C. 5D.79.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.8010.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13B.26C.47D.94易错点考虑问题不全面而漏解(分类讨论思想)11.若一个直角三角形的三边长分别为a,b,c,且a2=9,b2=16,则c2为()A.25B.7C.7或25D.9或16提升训练考查角度1 利用勾股定理求直角三角形中的边长12.如图,在△ABC中,CD⊥AB于D,AC=4,BC=3,DB=.(1)求DC的长;(2)求AB的长.考查角度2 利用勾股定理求三角形的面积13.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.如图,作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形面积探究培优拔尖角度1 利用勾股定理解非直角三角形问题(倍长中线法)14.如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)求△ABC中BC边上的高.拔尖角度2 利用勾股定理解四边形问题(补形法)15.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=6,CD=4,求: (1)AB的长;(2)四边形ABCD的面积.参考答案解:因为直角三角形的三边为a,b,c,所以应用勾股定理可得a2+b2=c2.第一个图形中,首先根据等边三角形的面积的求法,表示出3个等边三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第二个图形中,首先根据圆的面积的求法,表示出3个半圆形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积,然后根据a2+b2=c2,可得S1+S2=S3.2.【答案】C3.【答案】D解:当两直角边长分别为3和4时,斜边长为=5;当斜边长为4时,另一条直角边长为=.故选D.4.【答案】C5.【答案】C解:根据题意画出图形,如图①所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得BD==8,CD==2,此时BC=BD+CD=8+2=10;如图②所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得BD==8,CD==2,此时BC=BD-CD=8-2=6,则BC的长为6或10.故选C.6.【答案】A解:如图,过A点作AF⊥BC于F,连接AP,因为在△ABC中,AB=AC=5,BC=8,所以BF=4,所以在Rt△ABF中,AF2=AB2-BF2=9,所以AF=3,所以×8×3=×5×PD+×5×PE,即12=×5(PD+PE),解得PD+PE=4.8.7.【答案】C8.【答案】D解:利用勾股定理求出正方形的边长为10,阴影部分的面积为正方形面积与直角三角形面积之差.10.【答案】C11.错解:A诊断:容易忽略a,c为直角边长,b为斜边长这种情况,故很容易错选A.正解:C解题策略:解答此题要用分类讨论思想.此题有两种情况:a,b为直角边长,c为斜边长和a,c为直角边长,b为斜边长,利用勾股定理即可求解.12.解:(1)在Rt△BCD中,DC2=BC2-BD2=32-=,所以DC=.(2)在Rt△ACD中,AD2=AC2-CD2=42-=,所以AD=,所以AB=AD+BD=+=5.13.解:在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14-x,由勾股定理得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,所以152-x2=132-(14-x)2,解得x=9.在Rt△ABD中,AD===12.所以S△ABC=BC·AD=×14×12=84.14.解:(1)∵DB⊥BC,BC=4,CD=5,∴BD==3.(2)如图,延长BD至E,使DE=BD,连接AE.∵D是AC的中点,∴AD=DC.在△BDC和△EDA 中,∴△BDC≌△EDA(SAS),∴∠DAE=∠DCB,∴AE∥BC.∵BD⊥BC,∴BE⊥AE.∴BE为△ABC中BC边上的高,∴BE=2BD=6.15.解:(1)如图,延长AD,BC交于点E,在Rt△ABE中,∠A=60°,∴∠E=30°.在Rt△CDE中,CD=4,∴CE=2CD=8,∴BE=BC+CE=6+8=14.设AB=x,则有AE=2x,根据勾股定理得:x2+142=(2x)2,解得x=,则AB=.(2)在Rt△CDE中,∠CDE=90°,∴DE===4.∴S=S△ABE-S△CDE 四边形ABCD =·AB·BE-·CD·DE=××14-×4×4=.。
(精练)人教版八年级下册数学第十七章 勾股定理含答案

人教版八年级下册数学第十七章勾股定理含答案一、单选题(共15题,共计45分)1、在中,∠C=90°,sinA= ,则tanA=()A. B. C.1 D.2、如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1B.C.D.3、如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=4,AB=1,F为AD的中点,则F到BC的距离是().A.1B.2C.4D.84、直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.90B.120C.121D.不能确定5、如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.若CD=3,BC+AB=16,则△ABC的面积为()A.16B.18C.24D.326、在平面直角坐标系中,点A,B的坐标分别为(-6,0),(0,8). 以点A为圆心,以AB长为半径画弧交x轴于点C,则点C的坐标为().A.(6,0)B.(4,0)C.(6,0)或(-16,0)D.(4,0)或(-16,0)7、如图,平面直角坐标系中,A点坐标为,点在直线上运动,设的值为,则下面能够大致反映w与m的函数关系的图象是()A. B. C.D.8、如图,已知由16个边长为1的小正方形拼成的图案中,有五条线段PA、PB、PC、PD、PE,其中长度是有理数的有()A.1条B.2条C.3条D.4条9、在直角三角形ABC中,斜边AB=1,则AB²+BC²+AC²=()A.2B.4C.6D.810、如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.2B.C.D.11、一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以到达该建筑物的最大高度是( )A.12米B.13米C.14米D.15米12、小明从一根长6m的钢条上截取一段后,截取的钢条恰好与两根长分别为3m、5m的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.4mB. mC.4m或mD.6m13、如图,点E在y轴上,⊙E与x轴交于点A,B,与y轴交于点C,D,若C (0,9),D(0,﹣1),则线段AB的长度为()A.3B.4C.6D.814、小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( )A.2.7 米B.2.5 米C.2.1 米D.1.5 米15、已知下列三角形的各边长:①3、4、5,②5、12、13,③3、4、6,④5、11、12其中直角三角形有()A.4个B.3个C.2个D.1个二、填空题(共10题,共计30分)16、已知,点O为数轴原点,数轴上的A,B两点分别对应,,以AB 为底边作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为________.17、如图,已知圆柱的底面周长为6,高AB=3,小虫在圆柱表面爬行,从C点爬到对面的A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为________.18、如图,扇形中,. 为弧上的一点,过点作,垂足为,与交于点,若,则该扇形的半径长为________19、图中是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若最大的正方形E的边长为3则正方形的面积之和为________.20、如图,一扇卷闸门用一块宽18cm,长80cm的长方形木板撑住,用这块木板最多可将这扇卷闸门撑起________cm高.21、如图,在一次测绘活动中,某同学站在点A处观测停放于B、C两处的小船,测得船B在点A北偏东75°方向150米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为________米(精确到0.1 ).22、如图,在等腰中,,,则边上的高是 ________ .23、如图,在Rt△ABC中,∠ACB=90,AC=3,BC=4,分别以AB、AC、BC为边在AB同侧作正方形ABEF,ACPQ,BDMC,记四块阴影部分的面积分别为S1、S2、S 3、S4,则S1+S2+S3+S4=________.24、学校操场边上一块空地(阴影部分)需要绿化,测出CD=6m,AD=8m,BC=24m,AB=26m,AD⊥CD,那么需要绿化部分的面积为________.25、勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是把图1放入长方形内得到的,,AB=3,AC=4,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为________.三、解答题(共5题,共计25分)26、如图,中,于D.求及的长.27、如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长.28、证明:斜边和一条直角边对应相等的两个直角三角形全等.29、已知如图,.求四边形的面积.30、如图,在△ABC中,AC=5,BC=12,AB=13,D是BC的中点,求AD的长和△ABD的面积.参考答案一、单选题(共15题,共计45分)1、D2、C3、B4、A5、C6、D7、A8、B9、A10、D11、A12、C13、C14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
2023年人教版八年级下册数学第十七章勾股定理第1课时勾股定理(1)

(2)∵在aRt△ABC中,∠C=90°,a=3,c=7,
∴b= 72-32=2 10.
·数学
·数学
9.【例3】(北师8上P4)求斜边长为17 cm、一条直角边长为15 cm的直角三角形的面积. 解:另一条直角边长= 172-152=8(cm), 故直角三角形的面积为15×8÷2=60(cm2). 小结:掌握勾股定理与直角三角形的面积公式.
解:E的面积=(A的面积+B的面积)+(C的 面积+D的面积)=(122+162)+(92+122)= 400+225=625.
·数学 8.【例2】(人教8下P24)设直角三角形的两条直角边长分别为 a和b,斜边长为c. (1)已知a=6,c=10,求b; (2)已知a=5,b=12,求c; (3)已知c=25,b=15,求a. 解:(1)b= c2-a2= 102-62=8.
在Rt△ABD中,∠B=45°,AB= 2,
∴AD2+BD2=AB2=2,AD=BD,
∴AD=1,
在Rt△ADC中,∠C=30°, ∴AC=2AD=2.
答案图
·数学
知识点四:勾股定理的简单计算
在Rt△ABC中,∠C=90°,a,b,c是△ABC的三边.
a2+b2
(1)c=
(已知a,b,求c);
c2-b2
(2)a=
(已知b,c,求a);
(3)b= c2-a2 (已知a,c,求b).
6.写出下列直角三角形中未知边的长度.
(1)
(2)
2 13
53
·数学
·数学
a2 + b2 = c2 . 用图形表示为:
·数学
2.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5,则 AB的长为 13 .
人教版八年级下册数学重点知识点练习和答案解析——勾股定理

人教版八年级下册数学重点知识点练习及答案解析——勾股定理一、选择题1.若直角三角形的两条直角边个扩大一倍,则斜边扩大A.不变B.一倍C.两倍D.无法确定【答案】B【解析】设一直角三角形直角边为a、b,斜边为c,则a2+b2=c2;a、b扩大1倍后,直角三角形直角边为2a、2b=2c.即直角三角形两直角边同时扩大1倍,则斜边扩大1倍.故选B.2.如图,将一根长为24 cm的筷子,置于底面直径为5 cm,高为12 cm的圆柱水杯中,设筷子露在杯子外面的长度为h cm,则h的取值范围是A.12 cm≤h≤19 cm B.12 cm≤h≤13 cmC.11 cm≤h≤12 cm D.5 cm≤h≤12 cm【答案】C【解析】如图,当筷子与杯底垂直时h最大,h最大=24–12=12 cm.当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB=13 cm,故h=24–13=11 cm.故h的取值范围是11 cm≤h≤12 cm.故选C.BC=,则点M表示的数是3.如图,四边形ABCD是矩形,1A.2 B1C D1【答案】D【解析】AC=,AM=AC,点M-1.故选D.4.如图,在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为A.2 B.2.6C.3 D.4【答案】D【解析】在Rt△ABC中,根据勾股定理,AB13=,又∵AC=12,BC=5,AM=AC,BN=BC,∴AM=12,BN=5,∴MN=AM+BN–AB=12+5–13=4.故选D.5.如图,已知1号,4号两个正方形的面积和为7,2号,3号两个正方形的而积和为4,则a,b,c三个方形的面积和为A.10 B.13C.15 D.22【答案】C【解析】利用勾股定理可得S a=S1+S2,S b=S2+S3,S c=S3+S4,所以S a+S b+S c=S1+S2+S2+S3+S3+S4=7+4+4=15.故选C.二、填空题6.如图,一棵大树被风吹断,已知折断处距地面5米,树的折断部分与地面成45°的角,这棵大树有__________米.【答案】()【解析】如图,把题中图形抽象成如下图:∵∠BAC=45°,∠BCA=90°,∴AC=BC=5,∴AB∴这棵大树在折断前的高度为AB+BC=()米.故答案为:().7.10个外直径为1米的钢管以如图方式堆放,为了防雨,需要搭建防雨棚,这个防雨棚的高度最低应为__________米.【解析】如图,由题意可知:等边△ABC 的边长AB =AC =BC =3 m , 过点A 作AD ⊥BC 于点D ,则BD =DC =32m ,∴AD 2,. 8.如图,四边形ABCD 的对角线AC 与BD 互相垂直,若AB =3,BC =4,CD =5,则AD 的长为__________.【答案】【解析】如图,在Rt △AOB 中,2 AO =2AB −2BO ;Rt △DOC 中可得:2DO =2DC −2CO ,∴2AD =2AO +2DO=2AB –2BO +2 DC −2CO=22AB DC +–2(BO +2)CO=22 AB DC +–2BC=18,即可得AD .故答案为:. 三、解答题9.超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l 的距离为100米的P 处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A 处行驶到B 处所用的时间为3秒,并测得∠APO =60°,∠BPO =45°,试判断此车是否超过了每小时80千米的限制速度?【解析】在Rt △APO 中,∠APO =60°,则∠PAO =30°. ∴AP =2OP =200 m ,AO (m ).在Rt △BOP 中,∠BPO =45°, 则BO =OP =100 m .∴AB =AO -BO 100≈73(m ).∴从A 到B 小车行驶的速度为73÷3≈24.3(m /s )=87.48 km /h >80 km /h . ∴此车超过每小时80千米的限制速度.10.如图,一架梯子AB长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了5米,那么梯子的底端在水平方向滑动了多少米?【解析】(1)根据勾股定理:所以梯子距离地面的高度为:AO(米).答:这个梯子的顶端距地面有12米高.(2)梯子下滑了1米即梯子距离地面的高度为OA′=12﹣5=7(米),根据勾股定理:OB∴BB′=OB′﹣OB=(5)米,答:当梯子的顶端下滑1米时,梯子的底端水平后移了(5)米.。
人教版八年级下册数学第十七章 勾股定理含答案

人教版八年级下册数学第十七章勾股定理含答案一、单选题(共15题,共计45分)1、在正方形网格中,∠AOB如图所示放置,则sin∠AOB的值为()A. B. C. D.2、一直角三角形三边长分别为a,a,c,那么由an,an,cn(n为自然数)为三边组成的三角形一定是()A.等腰三角形B.等腰直角三角形C.钝角三角形D.任意三角形3、如图,△AB C的顶点是正方形网格的格点,则sinA的值为()A. B. C. D.4、直角三角形中,有两条边长分别为3和4,则第三条边长是()A.1B.5C.D.5或5、如图,点A在双曲线上,且OA=4,过A作AC⊥ 轴,垂足为C,OA 的垂直平分线交OC于B,则△ABC的周长为()A.4B.5C.D.6、在我国古代数学名著《算法统宗》里有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和身高为5尺的人一样高,秋千的绳索始终是拉直的,试问绳索有多长?”设绳索长为x尺,则x满足的方程为()A.x 2=10 2+(x-5-1)2B.x 2=(x﹣5)2+10 2C.x 2=10 2+(x+1-5)2 D.x 2=(x+1)2+10 27、如图,四边形中,,在边上确定一点使得则()A. B. C. D.8、已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m 2+2mn+n 2=0B.m 2﹣2mn+n 2=0C.m 2+2mn﹣n 2=0D.m 2﹣2mn﹣n 2=09、给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;③三角形的三边a、b、c满足a2+c2=b2,则△ABC是∠C为直角的直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个10、小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他制了如图2所示的图形,图2中留个形状大小都相同的四边形围成一个圆的内接六边和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为,则该圆的半径为()cm.A. B. C.7 D.811、如图,在正方形网格中,以格点为顶点的的面积等于3,则点A到边BC的距离为()A. B. C.4 D.312、下列三角形中,是直角三角形的是( )A.三角形的三边满足关系a+b=cB.三角形的三边长分别为2、3、4 C.三角形的一边等于另一边的一半 D.三角形的三边长为7、24、2513、如图,BD为矩形ABCD的对角线,将△BCD沿BD翻折得到,与边AD交于点E.若AB=x1, BC=2x2, DE=3,其中x1、x2是关于x的方程x2﹣4x+m=0的两个实根,则m的值是()A. B. C.3 D.214、如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,若点A在数轴上表示的数是-1,则对角线AC、BD的交点在数轴上表示的数为()A.5.5B.5C.6D.6.515、如图,有一张直角三角形的纸片,两直角边,,现将直角边沿直线折叠,使它落在斜边上且与重合,则的长为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为________.17、如图,点C是⊙O优弧ACB上的中点,弦AB=6cm,E为OC上任意一点,动点F从点A出发,以每秒1cm的速度沿AB方向向点B匀速运动,若y=AE2﹣EF2,则y与动点F的运动时间x(0≤x≤6)秒的函数关系式为________.18、如图,在直角坐标系中,的圆心A的坐标为,半径为1,点P 为直线上的动点,过点P作的切线,切点为Q,则切线长PQ的最小值是________.19、如图,在中,,,,点、分别在、上,将沿翻折,使与的中点重合,则的长为________.20、如图,在中,,为的角平分线,且于D,若,则的长为________.21、若a、b、c满足(a-5)2+ + =0,则以a,b,c为边的三角形面积是________.22、如图,中,,、分别在、边上,,、相交于点,且,若,,则的长为________.23、△ABC中,AB= ,AC=8,∠ACB=30°,则BC的长为________.24、如图,已知在Rt△ABC中,∠ACB=90°,AB=10,分别以AC,BC为直径作半圆,面积分别记为S1, S2,则S1+S2=________.25、将长方形纸片ABCD沿对角线BD折叠,点C落在点处,交AD于点E.若,对角线,则________.三、解答题(共5题,共计25分)26、在Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a、b、c.若a∶c=15∶17,b=24,求a.27、如图,在同一平面内,有一组平行线l1、l2、l3,相邻两条平行线之间的距离均为4,点O在直线l1上,⊙O与直线l3的交点为A、B,AB=12,求⊙O的半径.28、如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=900.小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?29、有一块土地,如图所示,已知AB=8,∠B=90°,BC=6,CD=24,AD=26,求这块土地的面积.30、如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、D5、C6、C7、A8、C9、B10、D11、D12、D14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、。
(word完整版)新人教版八年级数学下册勾股定理知识点和典型例习题1,文档

新人教版八年级下册勾股定理全章知识点和典型例习题一、基础知识点:1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:若是直角三角形的两直角边分别为a ,b ,斜边为c ,那么 a 2b 2c 2勾股定理的由来: 勾股定理也叫商高定理, 在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦. 早在三千多年前,周朝数学家商高就提出了 “勾三,股四, 弦五 〞形式的勾股定理,此后代们进一步发现并证了然直角三角形的三边关系为:两直角边的平方和等于斜边的平方2 .勾股定理的证明勾股定理的证明方法很多,常有的是拼图的方法用拼图的方法考据勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②依照同一种图形的面积不相同的表示方法,列出等式,推导出勾股定理常有方法以下:1方法一: 4 SS 正方形 EFGH S 正方形 ABCD , 4 ab (b a)2c 2,化简可证.方法二:DCHEG F b aA cBb aacbccbcaab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三AaD角形的面积与小正方形面积的和为S 4 1ab c 22ab c 2大正方形面2积 为 S (a b)2 a 2 2ab b 2所 以 a 2 b 2c 2 方 法 三 :bcE ca B bCS 梯形1 ( a b) (a b) ,S 梯形 2S ADE S ABE2 1 ab 1 c 2 ,化简得证2223 .勾股定理的适用范围勾股定理揭穿了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形, 关于锐角三角形和钝角三角形的三边就不拥有这一特色, 所以在应用勾股定理时, 必定了然所察看的对象是直角三角形4.勾股定理的应用 ①直角三角形的任意两边长,求第三边在 ABC 中, C 90 ,那么ca 2b 2 , bc 2 a 2 , ac 2 b 2 ②知道直角三角形一边,可得别的两边之间的数量关系③可运用勾股定理解决一些实责问题 5 .勾股定理的逆定理若是三角形三边长 a , b , c 满足 a 2 b 2 c 2 ,那么这个三角形是直角三角形,其中c 为 斜边 ①勾股定理的逆定理是判断一个三角形是否是直角三角形的一种重要方法,它经过“数转化为形 〞来确定三角形的可能形状,在运用这必然理时,可用两小边的平方和a 2b 2 与较长 边的平方c 2 作比较,假设它们相等时,以 a , b , c 为三边的三角形是直角三角形;假设222,时,以 a ,b, c 为三边的三角形是钝角三角形;222,时,以 a ,b,a b c假设 a b c c为三边的三角形是锐角三角形;②定理中 a ,b,边长 a ,b, c 满足斜边c 及 a2b2c2可是一种表现形式,不能认为是唯一的,如假设三角形三a2c2b2,那么以 a ,b, c 为三边的三角形是直角三角形,但是 b 为③勾股定理的逆定理在用问题描述时,不能够说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6 .勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即 a2b2c2中, a ,b,c 为正整数时,称 a ,b, c 为一组勾股数②记住常有的勾股数能够提高解题速度,如3,4,5 ; 6,8,10 ; 5,12,13 ; 7,24,25 等③用含字母的代数式表示n 组勾股数:n21,2n, n2 1 〔 n2,n 为正整数〕;2n1,2n22n,2n22n1n为正整数〕m2n2 ,2 mn,m2n2〔 m n,m,n为正整数〕〔7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必定掌握直角三角形的前提条件,认识直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应想法增加辅助线〔平时作垂线〕,构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们经过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在详细计算过程中,应用两短边的平方和与最长边的平方进行比较,切不能不加思考的用两边的平方和与第三边的平方比较而获得错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实责问题或详细的几何问题中,是密不能分的一个整体.平时既要经过逆定理判断一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常CA B D见图形:C CC30°A B A D B B D A10、互抗命题的看法若是一个命题的题设和结论分别是另一个命题的结论和题设,命题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17章勾股定理知识点及例题知识点一:勾股定理如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。
(2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。
(3)理解勾股定理的一些变式:c2=a2+b2, a2=c2-b2,b2=c2-a2,c2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。
图(1)中,所以。
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。
图(2)中,所以。
方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。
在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。
,所以。
知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;4.利用勾股定理,作出长为的线段。
2. 在理解的基础上熟悉下列勾股数满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。
熟悉下列勾股数,对解题是会有帮助的:①3、4、5 ②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。
经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=总结升华:有一些题目的图形较复杂,但中心思想还是化为直角三角形来解决。
如:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差或和。
举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.总结升华:利用勾股定理计算线段的长,是勾股定理的一个重要应用. 当题目中没有垂直条件时,也经常作垂线构造直角三角形以便应用勾股定理.举一反三【变式1】如图,已知:,,于P. 求证:.思路点拨: 图中已有两个直角三角形,但是还没有以BP为边的直角三角形. 因此,我们考虑构造一个以BP为一边的直角三角形. 所以连结BM. 这样,实际上就得到了4个直角三角形. 那么根据勾股定理,可证明这几条线段的平方之间的关系.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。
解析:延长AD、BC交于E。
∵∠A=∠60°,∠B=90°,∴∠E=30°。
∴AE=2AB=8,CE=2CD=4,∴BE2=AE2-AB2=82-42=48,BE==。
∵DE2= CE2-CD2=42-22=12,∴DE==。
∴S四边形ABCD=S△ABE-S△CDE=AB·BE-CD·DE=类型三:勾股定理的实际应用(一)用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。
(1)求A、C两点之间的距离。
(2)确定目的地C在营地A的什么方向。
思路点拨:把实际问题中的角度转化为图形中的角度,利用勾股定理求解。
解析:(1)过B点作BE//AD∴∠DAB=∠ABE=60°∵30°+∠CBA+∠ABE=180°∴∠CBA=90°即△ABC为直角三角形由已知可得:BC=500m,AB=由勾股定理可得:所以(2)在Rt△ABC中,∵BC=500m,AC=1000m∴∠CAB=30°∵∠DAB=60°∴∠DAC=30°即点C在点A的北偏东30°的方向总结升华:本题是一道实际问题,从已知条件出发判断出△ABC是直角三角形是解决问题的关键。
本题涉及平行线的性质和勾股定理等知识。
举一反三【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH.如图所示,点D在离厂门中线0.8米处,且CD⊥AB,与地面交于H.解:OC=1米(大门宽度一半),OD=0.8米(卡车宽度一半)在Rt△OCD中,由勾股定理得:CD===0.6米,CH=0.6+2.3=2.9(米)>2.5(米).因此高度上有0.4米的余量,所以卡车能通过厂门.(二)用勾股定理求最短问题4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.思路点拨:解答本题的思路是:最省电线就是线路长最短,通过利用勾股定理计算线路长,然后进行比较,得出结论.解析:设正方形的边长为1,则图(1)、图(2)中的总线路长分别为AB+BC+CD=3,AB+BC+CD=3图(3)中,在Rt△ABC中同理∴图(3)中的路线长为图(4)中,延长EF交BC于H,则FH⊥BC,BH=CH由∠FBH=及勾股定理得:EA=ED=FB=FC=∴EF=1-2FH=1-∴此图中总线路的长为4EA+EF=3>2.828>2.732∴图(4)的连接线路最短,即图(4)的架设方案最省电线.总结升华:在实际生产工作中,往往工程设计的方案比较多,需要运用所学的数学知识进行计算,比较从中选出最优设计.本题利用勾股定理、等腰三角形的判定、全等三角形的性质.举一反三【变式】如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.解:如图,在Rt△ABC中,BC=底面周长的一半=10cm,根据勾股定理得(提问:勾股定理)∴AC===≈10.77(cm)(勾股定理).答:最短路程约为10.77cm.类型四:利用勾股定理作长为的线段5、作长为、、的线段。
思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作。
作法:如图所示(1)作直角边为1(单位长)的等腰直角△ACB,使AB为斜边;(2)以AB为一条直角边,作另一直角边为1的直角。
斜边为;(3)顺次这样做下去,最后做到直角三角形,这样斜边、、、的长度就是、、、。
总结升华:(1)以上作法根据勾股定理均可证明是正确的;(2)取单位长时可自定。
一般习惯用国际标准的单位,如1cm、1m等,我们作图时只要取定一个长为单位即可。
举一反三【变式】在数轴上表示的点。
解析:可以把看作是直角三角形的斜边,,为了有利于画图让其他两边的长为整数,而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。
作法:如图所示在数轴上找到A点,使OA=3,作AC⊥OA且截取AC=1,以OC为半径,以O为圆心做弧,弧与数轴的交点B即为。