北师大版2017初中二年级(下册)数学2.4第1课时一元一次不等式的解法46(PPT课件)

合集下载

2023学年北师大版八年级数学下册《2-6解一元一次不等式组》同步能力达标测评(附答案)

2023学年北师大版八年级数学下册《2-6解一元一次不等式组》同步能力达标测评(附答案)

2022-2023学年北师大版八年级数学下册《2.6一元一次不等式组——解一元一次不等式组》同步能力达标测评(附答案)(共20小题,每小题6分,满分120分)1.解不等式组:.2.解不等式组,并将解集在数轴上表示出来.3.求不等式组的正整数解.4.解不等式组:,并求出所有整数解的和.5.解不等式组,并写出它的所有非负整数解.6.解不等式组:.请结合题意填空,完成本题的解答.(1)解不等式(1),得;(2)解不等式(2),得;(3)把不等式(1)和(2)的解集在数轴上表示出来;(4)原不等式组的解集为.7.在平面直角坐标系中,已知点M(a+1,2a﹣4).根据下列条件回答问题:(1)当点M在x轴,y轴上时,分别求出点M的坐标;(2)当点M在第四象限的角平分线上时,求a的值;(3)若经过点M,N(b+1,4)的直线与x轴平行,且MN=5,求点M,N的坐标.8.解不等式组.(1)将不等式组的解集在数轴上表示出来;(2)求出最小整数解与最大整数解的和.9.已知方程组的解中,x为非正数,y为负数(1)求a的取值范围;(2)当a为何整数时,不等式2ax﹣x>2a﹣1的解集为x<1?(直接写出答案)10.若方程组的解满足﹣1<x+y<1,求k的取值范围.11.已知方程组,当m为何值时,x>y且2x<3y,并化简|3m+2|﹣|m﹣5|.12.若不等式组的解集为1≤x≤5.求方程ax+3b=0的解.13.已知关于a,b的方程组.(1)若原方程组的解也是二元一次方程2a﹣3b=7的一个解,求m的值;(2)若原方程组的解a,b满足a+2b<12,求不等式组的解集.14.已知方程组的解x≤0,y<0.(1)求a的取值范围;(2)化简|a﹣3|+|a+4|;(3)在a的取值范围中,a为何整数时,不等式2ax+x>2a+1的解为x<1?15.阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解:因为x﹣y=2,所以y+2=x.又因为x>1,所以y+2>1,所以y>﹣1.又y<0,所以﹣1<y<0⋯⋯①.同理得:1<x<2⋯⋯②由①+②得﹣1+1<y+x<0+2,所以x+y的取值范围是0<x+y<2.请按照上述方法,完成下列问题:(1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是多少.(2)已知关于x,y的方程组的解都为正数.①求a的取值范围;②已知a﹣b=4,求a+b的取值范围.16.已知关于x、y的方程组(实数m是常数).(1)若x+y=1,求实数m的值;(2)若﹣1<x﹣y<5,求m的取值范围;(3)若不等式2x≥a﹣1的解包含第(2)中的m的所有整数解,求a的取值范围.17.已知关于x、y的方程组的解满足x≤0,y<0.(1)用含m的代数式分别表示x和y;(2)求m的取值范围;(3)在m的取值范围内,是否存在一个整数使不等式2mx﹣1<2m﹣x的解集为x>1.若不存在,请说明理由,若存在,请求出这样的整数值m.18.【发现问题】已知,求4x+5y的值.在求解这个题目时发现可以不解方程组,将①×2﹣②,就可以直接求出4x+5y的值.【分析问题】爱思考的小明同学为了得到这种解题方法的通用方式,发现可以将①×m+②×n,可得(3m+2n)x+(2m﹣n)y=4m+6n.令等式左边(3m+2n)x+(2m﹣n)y=4x+5y,比较系数可得,求得.【解决问题】(1)对于方程组,利用上述方法,求3x+6y的值;【迁移应用】(2)已知,求x﹣3y的取值范围.19.自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:<0;>0等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:(1)若>0,则或.(2)若<0,则或.(3)根据上述规律,求不等式>0的解集.(4)试求不等式<3的解集.20.阅读以下例题:解不等式:(x+4)(x﹣1)>0,解:①当x+4>0,则x﹣1>0,即可以写成:,解不等式组得:.②当若x+4<0,则x﹣1<0,即可以写成:,解不等式组得:.综合以上两种情况:不等式解集:x>1或x<﹣4.以上解法的依据为:当ab>0,则a>0,b>0或a>0,b>0.(1)若ab<0,则a>0,b0或a<0,b0.(2)请你模仿例题的解法,解不等式:①(x+2)(x﹣3)>0;②(x+1)(x﹣2)<0.参考答案1.解:由3x﹣4>11得:x>5,由5(x+1)>4x得:x>﹣5,∴不等式组的解集为x>5.2.解:,解:解不等式①,得x>﹣2.解不等式②,得x≤3,把不等式①和②的解集在数轴上表示出来:所以原不等式组解集为﹣2<x≤3.3.解:,解不等式①得:x>﹣2,解不等式②得:x≤5,∴不等式组的解集为:﹣2<x≤5,其中正整数解是1,2,3,4,5.4.解:由2+x>7﹣4x,得:x>1,由x<,得:x<4,则不等式组的解集为1<x<4,所有整数解的和为2+3=5.5.解:,解不等式①得,x≤1,解不等式②得,x>﹣3,所以不等式组的解集是﹣3<x≤1,所以不等式组的非负整数解是0、1.故答案为:0、1.6.解:,解不等式①,得x>﹣2;解不等式②,得x≤﹣1;并把不等式①,②解集在数轴上表示出来;原不等式组的解集为﹣2<x≤﹣1.故答案为:x>﹣2;x≤﹣1;﹣2<x≤﹣1.7.解:(1)若M(a+1,2a﹣4)在x轴上,则2a﹣4=0,∴a=2,∴M(3,0),若M(a+1,2a﹣4)在y轴上,则a+1=0,∴a=﹣1,∴M(0,﹣6),∴M在x轴上,M的坐标是(3,0);M在y轴上,M的坐标是(0,﹣6);(2)∵M(a+1,2a﹣4)在第四象限的角平分线上,∴(a+1)+(2a﹣4)=0,解得a=1,∴a的值为1;(3)∵经过点M(a+1,2a﹣4),N(b+1,4)的直线与x轴平行,∴2a﹣4=4,解得a=4,∴M(5,4),∵MN=5,∴|b+1﹣5|=5,解得b=9或b=﹣1,∴N(10,4)或N(0,4).8.解:(1)解不等式①,得:x>﹣4,解不等式②,得:x≤2,则不等式组的解集为﹣4<x≤2,将不等式组的解集表示在数轴上如下:(2)该不等式的最小整数解为﹣3,最大整数解为2,所以最小整数解与最大整数解的和为﹣3+2=﹣1.9.解:(1)由方程组,得,∵x为非正数,y为负数,∴,解得,﹣2<a≤3,即a的取值范围是﹣2<a≤3;(2)由不等式2ax﹣x>2a﹣1,得(2a﹣1)x>2a﹣1,∵不等式2ax﹣x>2a﹣1的解集为x<1,∴2a﹣1<0,得a<0.5,又∵﹣2<a≤3且a为整数,∴a=﹣1,0,即a的值是﹣1或0.10.解:①+②得:4x+4y=k+4∴x+y=,而﹣1<x+y<1∴﹣1<<1,∴﹣8<k<0.11.解:,②×2﹣①得:x=m﹣3③,将③代入②得:y=﹣m+5,∴得,∵x>y且2x<3y,∴,解得,4<m<,∴|3m+2|﹣|m﹣5|=3m+2﹣(5﹣m)=4m﹣3.12.解:,解不等式①得:,解不等式②得:x≤1﹣a,∵不等式组的解集为:1≤x≤5,∴,解得,∴﹣4x+3×2=0,解得.13.解:(1)解方程组得,根据题意知2(3m+2)﹣3(m+1)=7,解得:m=2;(2)由题意知3m+2+2(m+1)<12,解得:m<,解不等式x﹣m<0,得:x<m,解不等式4x+3>2x﹣1,得:x>﹣2,若m≤﹣2,则不等式组无解,若﹣2,则不等式组的解集为﹣2<x<m.14.解:(1),①+②得:2x=﹣6+2a,即x=﹣3+a,①﹣②得:2y=﹣7﹣a﹣1﹣3a,即y=﹣4﹣2a,根据题意得:,解得:﹣2<a≤3;(2)∵﹣2<a≤3,∴a﹣3≤0,a+4>0,则原式=3﹣a+a+4=7;(3)不等式变形得:(2a+1)x>2a+1,由解集为x<1,得到2a+1<0,解得:a<﹣,则满足题意的a为﹣1.15.解:(1)∵x﹣y=3,∴x=y+3,∵x>2,∴y+3>2,∴y>﹣1,又∵y<1,∴﹣1<y<1①,同理可得2<x<4②,由①+②得:﹣1+2<x+y<1+4,∴x+y的取值范围为1<x+y<5(2)解:①解方程组,得,∵该方程组的解都是正数,∴x>0,y>0,∴,解不等式组得:a>1,∴a的取值范围为:a>1;②∵a﹣b=4,∴a=b+4,∵a>1①,∴b+4>1,∴b>﹣3②,∴①+②得a+b>1﹣3,∴a+b的取值范围为a+b>﹣2.16.解:(1),由①+②得:3x+3y=6m+1,即3(x+y)=6m+1,∴,∵x+y=1,∴,解得:;(2),由①﹣②得:x﹣y=2m﹣1,∵﹣1<x﹣y<5,∴﹣1<2m﹣1<5,解得:0<m<3;(3)2x≥a﹣1,解得:,∵不等式2x≥a﹣1的解包含第(2)中的m的所有整数解,∴,解得:a≤3.17.解:(1),①+②得2x=2m﹣6,所以,x=m﹣3;①﹣②得2y=﹣4m﹣8,所以,y=﹣2m﹣4,故含m的代数式分别表示x和y为;(2)∵x≤0,y<0,∴,解得﹣2<m≤3;(3)不等式变形为:(2m+1)x<2m+1,∵原不等式的解集是x>1,∴2m+1<0,∴m<﹣,又∵﹣2<m≤3∴﹣2<m<﹣,∵m为整数,∴m=﹣1.18.解:(1)将①×m+②×n,可得(7m+9n)x+(4m+3n)y=2m+n,令等式左边(7m+9n)x+(4m+3n)y=3x+6y,比较系数可得,解得,∴3x+6y=2m+n=6﹣2=4;(2)令,将①×m+②×n,可得(2m+3n)x+(m+2n)y,令(2m+3n)x+(m+2n)y=x﹣3y,比较系数可得,解得,∴①×11为11<22x+11y<33③,②×(﹣7)为﹣28<﹣21x﹣14y<﹣14④,∴③+④得﹣17<x﹣3y<19.19.解:(2)∵<0,∴或,故答案为:,;(3)∵>0,∴①或②,解不等式组①得:不等式组无解;解不等式组②得:﹣<x<3,∴>0的解集是﹣<x<3;(4)<3,整理得:﹣3<0,即<0,所以①或②,解不等式组①得:x>4,解不等式组②得:x<1,所以不等式<3的解集是x>4或x<1.20.解:(1)若ab<0,则a>0,b<0或a<0,b>0.故答案为:<;>;(2)①∵(x+2)(x﹣3)>0,∴或,解得x>3或x<3;②∵(x+1)(x﹣2)<0,∴或,解得﹣1<x<2.。

北师大版八年级下册数学:一元一次不等式的解法课件(共16张PPT)

北师大版八年级下册数学:一元一次不等式的解法课件(共16张PPT)
移项得:3x-4x ≥ -2-6;
合并同类项得:-x ≥ -8; (2)2(x+5)≤3(x-5);
系数化为1得:x≤8.
(3)x 1 < 2 x 5 ;
将解集用数轴表示为:
7
3
08
(1)5x+15>4x-1; 解:移项得:5x-4x>-1-15; 合并同类项得:x>-16; 将解集用数轴表示为:
-16 0
(2)2(x+5)≤3(x-5); 解:去括号得:2x+10≤3x-15;
移项得:2x-3x≤-15-10; 合并同类项得:-x≤-25; 系数化为1得:x≥25 . 将解集用数轴表示为:
0 25
(3)x 1 <2 x 5 ; 73
解:去分母得:3(x-1)<7(2x+5);
去括号得:3x-3<14x+35;
明朝未及,我只有过好每一个今天,唯一的今天。
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选

北师大版八年级数学下册第二章2.4第1课一元一次不等式的解法(2)

北师大版八年级数学下册第二章2.4第1课一元一次不等式的解法(2)

合并同类项得:-x>5
合并同类项得:-x=5
两边都除以-1得:x<-5
两边都除以-1得:x=-5
解不等式 2x 5 3x 2 2,并将其解集表示在数轴上. 64
解:去分母:2(2x-5)≤3(3x+2)-24 去括号:4x-15≤9x+9-24 移项:4x-9x≤9-24+10 合并同类项:-5x≤-5 系数化为1:x≥1 解集表示如下:
类型二:已知解集求字母系数的取值范围
若关于x的不等式(m+1)x<m+1的解集是x<1,
则m满足的条件是__m__>__-___1
解:不等式两边同除以(m+1)时,不等号的方向不变, 根据不等式性质知(m+1)为正数, 即m+1>0, 解得m>-1
类型二:已知解集求字母系数的取值范围
已知不等式 3x-a≤0 的正整数解恰是1,2,3,则a 的取值范围
∴最大正整数x=2
5.
已知方程组3x+x+3yy==11+-3mm
①, ② 的解满足 x+y>0,
求 m 的取值范围.
解:由①+②得:(3x+y)+(x+3y)=(1+3m) +(1-m)
即4(x+y)=2+2m ∵x+y>0 ∴4(x+y)>0 ∴2+2m>0 ∴m>-1
6. 若关于 x 的方程(x-2)+3k=x+3 k的解是非负数,则 k
2.4 一元一次不等式
第2课时 一元一次不等式的解法(二)
复习回顾
1、不等式的性质:
不等式的性质1:不等式两边同时加上或减去同一个数(式),不等号的方向 不变;
不等式的性质2:不等式两边同时乘以或除以一个正数,不等号的方向不变; 不等式的性质3:不等式两边同时乘以或除以一个负数,不等号的方要改变。

北师大版(2019)数学必修第一册《一元二次不等式及其解法》教案

北师大版(2019)数学必修第一册《一元二次不等式及其解法》教案

一元二次不等式及其解法【教材分析】本节课内容的地位体现在它的基础性,作用体现在它的工具性.一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合、函数等知识的巩固和运用具有重要作用,也与后面的线形规划、直线与圆锥曲线以及导数等内容密切相关,许多问题的解决都会借助一元二次不等式的解法.因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用.【教学目标】1.正确理解一元二次方程、二次函数与一元二次不等式的关系,掌握一二次不等式的解法.2.通过看图象找解集,培养学生“从形到数”的转化能力和从“特殊到一般”的归纳能力.【核心素养】1.数学抽象:一元二次不等式的概念.2.逻辑推理:经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法.3.数学运算:解一元二次不等式.4.直观想象:利用二次函数图像分析一元二次不等式的解集,直观的解释不等式解集的正确性.5.数学建模:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想.【教学重难点】1.教学重点:一元二次不等式的解法2.教学难点:理解一元二次方程、二次函数与一元二次不等式的关系【课前准备】PPT【教学过程】1.知识引入汽车在行驶过程中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,一般称这段距离为“刹车距”.刹车距S (单位:m )与车速弑单位:km/h )之间具有确定的函数关系,不同车型的刹车距函数不同.它是分析交通事故的一个重要依据.甲、乙两辆汽车相向而行,由于突发情况,两车相撞.交警在现场测得甲车的刹车距接近但未超过12 m ,乙车的刹车距刚刚超过10 m .已知这两辆汽车的刹车距函数如下:200101s x x =+甲..,20005005s x x =+乙..,车速超过40 km/h 属违章.试问:哪一辆车违章超速行驶?由题意,只需分另解出使不等式20.010.112x x +≤和20.0050.0510x x +>成立的x 的取值范围,再确认两车的行驶速度,就可以判断哪一辆车违章超速行驶.一般地,只含有一个未知数,并且未知数的最高次数是2的不等式叫作一元二次不等式.通常,它们都可以化为20ax bx c ++>的形式,其中a ,b ,c 均为常数,且0a ≠.使一元二次不等式成立的所有未知数的值组成的集合叫作这个一元二次不等式的解集.类比初中数学中用一次函数的图象求解一次不等式,我们可以利用一元二次函数的图象求一元二次不等式的解集.以不等式2230x x --<为例,画出一元二次函数223y x x =--的图象(如图1一21)并观察,可知它与x 轴交点的横坐标分别是1-和3.即当11x =,23x =时2230x x --=.进而,当13x -<<时,一元二次函数223y x x =--的图象在x 轴的下方,满足0y <.也就是说,一元二次不等式2230x x --<的解集是{}1|3x x -<<.2.知识总结概括:当0a >时,解形如()200ax bx c ++≥>或()200ax bx c ++≤<的一元二次不等式,其基本思路是确定20ax bx c ++=时的自变量x 的取值,借助图象,写出原不等式的解集.图1-223.思考交流完成以下表格学生动手:请学生仿照以上方法,画出当0a <时的求解思路 例2:求不等式29610x x -+>的解集.解:因为2(6)4910∆=--⨯⨯=,所以方程29610x x -+=.有两个相等的实数根,解得1213x x ==画出一元二次函数2961y x x =-+的图象(如图1-23),可知该函数的图象是开口向上的抛物线,且与x 轴仅有一个交点1(,0)3观察图象可得原不等式的解集为1{|}3x x ≠ 例3求不等式23520x x +->的解集. 解法1因为()254320=-⨯⨯->.,所以方程23520x x +-=有两个不相等的实数根,解得12x =-,213x =画出一元二次函数2352y x x =+-的图象(如图1-24),可知该函数的图象是开口向上的抛物线,且与x 轴有两个交点(20)-,和1(,0)3.观察图象可得原不等式的解集为1{|2}3x x x -<或> 解法二:将原不等式可以转化为:()2310x x +-()>即:20310x x +⎧⎨-⎩>>,或20310x x +⎧⎨-⎩<> 所以不等式的解集:1{|2}3x x x -<或>思考交流:根据不等式23520x x +->的解集,你能得出不等式23520x x +-≤的解集吗? 例4求关于x 的不等式2(1)0x a x a +--<的解集,其中a 是常数. 解依题意知方程2(1)0x a x a +--=的根为11x =-,2x a =,且一元二次函数()21y x a x a =+--的图象是开口向上的抛物线.当1a -<时,如图1-25,一元二次函数()21y x a x a =+--的图象与x 轴从左至右有两个交点(),0a 与()1,0-.所以原不等式的解集为(),1a -.当1a =-时,如图1-26,一元二次函数()21y x a x a =+--的图象与x 轴只有一个交点()1,0-.所以原不等式的解集为∅.当1a ->时,如图1-27,一元二次函数()21y x a x a =+--的图象与x 轴从左至右有两个交点()1,0-与(),0a .所以原不等式的解集为()1,a -.综上所述,当1a -<时,原不等式的解集为(),1a -; 当1a =-时,原不等式的解集为∅: 当1a ->时,原不等式的解集为()1,a -4.知识同步练习:求不等式22220x x m m -+->的解集. 解:当1m >时,解集为2x x m x m -{|<,或>}; 当1m =时,解集为{|1}x x ∈≠R ;当1m <时,解集为{}2xx m x m -|<,或>. 5.题型扩充(1)已知不等式220ax bx ++>的解为1123x -<<,求a ,b 值.解:方法一:显然0a <,由11023x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭<, 得2610x x +-<,变形得212220x x --+>, 故12a =-,2b =-.方法二:利用韦达定理:12x =与13x =是220ax bx ++=的两根,故有20422093a b a b ⎧-+=⎪⎨⎪++=⎩;解得122a b =-⎧⎨=-⎩ (2)已知()()2224f x x a x =+-+.(1)如果对一切x ∈R ,()0f x >恒成立,求实数a 的取值范围.(2)如果对()3,1x ∈-,()0f x >成立,求实数a 的取值范围. 解:()f x 的图像开口向上.(1)对一切实数x ,()0f x >,则0<,即()2240a --<, ∴04a <<;(2)当()31x ∈-,时,()0f x >,对称轴2a -可在区间内,也可在区间外, ∴23(3)0a f --⎧⎨-⎩<>或21(1)0a f -⎧⎨⎩>>或321(2)0a f a -≤-≤⎧⎨-⎩> 解得142a -<<【教学反思】1.一元二次不等式这一概念;2.解一元二次不等式20ax bx c ++>、200ax bx c a ++<(>)的步骤是: (1)化成标准形式200ax bx c a ++>(>),200ax bx c a ++<(>)(2)判定∆与0的关系,并求出方程20ax bx c ++=的实根:(3)写出不等式的解集.。

北师大版数学八年级下册2.4 第1课时 一元一次不等式的解法

北师大版数学八年级下册2.4 第1课时 一元一次不等式的解法

2.4一元一次不等式第1课时一元一次不等式的解法1.理解一元一次不等式、不等式的解集、解不等式等概念;2.掌握一元一次不等式的解法.(重点,难点)一、情境导入1.什么叫一元一次方程?2.解一元一次方程的一般步骤是什么?要注意什么?3.如果把一元一次方程中的等号改为不等号,怎样求解?二、合作探究探究点一:一元一次不等式的概念【类型一】一元一次不等式的识别下列不等式中,是一元一次不等式的是( )A.5x-2>0 B.-3<2+1xC.6x-3y≤-2 D.y2+1>2解析:选项A是一元一次不等式,选项B中含未知数的项不是整式,选项C中含有两个未知数,选项D中未知数的次数是2,故选项B,C,D都不是一元一次不等式,所以选A.方法总结:如果一个不等式是一元一次不等式,必须满足三个条件:①含有一个未知数,②未知数的最高次数为1,③不等号的两边都是整式.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】根据一元一次不等式的概念求值已知-13x 2a -1+5>0是关于x 的一元一次不等式,则a 的值是________.解析:由-13x 2a -1+5>0是关于x 的一元一次不等式得2a -1=1,计算即可求出a 的值,故a =1.方法总结:利用一元一次不等式的概念列出相应的方程求解即可.注意:如果未知数的系数中有字母,要检验此系数可不可能为零.变式训练:见《学练优》本课时练习“课堂达标训练”第2题探究点二:一元一次不等式的解法 【类型一】 一元一次不等式的解或解集下列说法:①x =0是2x -1<0的一个解;②x =-3不是3x -2>0的解;③-2x +1<0的解集是x >2.其中正确的个数是( )A .0个B .1个C .2个D .3个解析:①x =0时,2x -1<0成立,所以x =0是2x -1<0的一个解;②x =-3时,3x -2>0不成立,所以x =-3不是3x -2>0的解;③-2x +1<0的解集是x >12,所以不正确.故选C.方法总结:判断一个数是不是不等式的解,只要把这个数代入不等式,看是否成立.判断一个不等式的解集是否正确,可把这个不等式化为“x >a ”或“x <a ”的形式,再进行比较即可.【类型二】 解下列一元一次不等式,并在数轴上表示:(1)2(x +12)-1≤-x +9;(2)x -32-1>x -53.解析:按照解一元一次不等式的基本步骤求解:去分母、去括号、移项、合并同类项、两边都除以未知数的系数.解:(1)去括号,得2x +1-1≤-x +9, 移项、合并同类项,得3x ≤9, 两边都除以3,得x ≤3;(2)去分母,得3(x-3)-6>2(x-5),去括号,得3x-9-6>2x-10,移项,得3x-2x>-10+9+6,合并同类项,得x>5.方法总结:解一元一次不等式的基本步骤:去分母、去括号、移项、合并同类项、两边都除以未知数的系数,这些基本步骤与解一元一次方程是一样的,但一元一次不等式两边都除以未知数的系数时,一定要注意这个数是正数还是负数,如果是正数,不等号方向不变;如果是负数,不等号的方向改变.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型三】根据不等式的解集求待定系数已知不等式x+8>4x+m(m是常数)的解集是x<3,求m的值.解析:先解不等式x+8>4x+m,再列方程求解.解:因为x+8>4x+m,所以x-4x>m-8,-3x>m-8,x<-13(m-8).因为其解集为x<3,所以-13(m-8)=3.解得m=-1.方法总结:已知解集求字母系数的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解题过程体现了方程思想.变式训练:见《学练优》本课时练习“课堂达标训练”第9题三、板书设计1.一元一次不等式的概念2.解一元一次不等式的基本步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)两边都除以未知数的系数.本节课通过类比一元一次方程的解法得到一元一次不等式的解法,让学生感受到解一元一次不等式与解一元一次方程只是在两边都除以未知数的系数这一步时有所不同.如果这个系数是正数,不等号的方向不变;如果这个系数是负数,不等号的方向改变.这也是这节课学生容易出错的地方.教学时要大胆放手,不要怕学生出错,通过学生犯的错误引起学生注意,理解产生错误的原因,以便在以后的学习中避免出错.。

数学北师大版初中二年级下册 综合实践:生活中的一次模型 教学设计

数学北师大版初中二年级下册 综合实践:生活中的一次模型 教学设计

第二章一元一次不等式与一元一次不等式组5.一元一次不等式与一次函数(一)一、学生知识状况分析学生的知识技能基础:学生已经学习了一次函数和一元一次不等式的有关知识,为本节探究一元一次不等式与一次函数的关系奠定了必要的知识基础。

学生活动经验基础:通过前面相关知识的学习,学生已经会利用一次函数和一元一次不等式解决一些简单的实际问题,感受到了用数学知识解决实际问题的必要性和作用;同时在以前的学习中,通过经历合作学习的过程,具有了一定的合作学习的经验,提升了合作与交流的能力。

二、教学任务分析数学知识的学习是一个渐次梯进的过程,因而课堂教学既要关注整个数学教学的远期目标,也应与具体的课堂教学任务联系。

本课是八下第一章第五节《一元一次不等式与一次函数》第一课时内容,从属于“数与代数”这一数学学习领域,因而务必服务于数与代数教学的远期目标,同时也应力图在学习中逐步达成学生的有关情感态度目标。

教科书基于学生对一元一次不等式、一元一次方程和一次函数认识的基础上,提出了本课的具体学习任务,本节课的教学目标是:1、理解一次函数图象与一元一次不等式的关系。

2、能够用图像法解一元一次不等式。

3、理解两种方法的关系,会选择适当的方法解一元一次不等式三、教学过程分析本节课设计了五个教学环节:第一环节:情境引入;第二环节:活动探究、合作学习;第三环节:运用巩固、练习提高;第四环节:课堂小结;第五环节:当堂作业。

第一环节:情境引入活动内容:上节课我们类比一元一次方程的解法,根据不等式的基本性质,学习了一元一次不等式的解法,本节课我们来学习一元一次不等式其它解法。

活动目的:以“旧”引“新”,由原有的知识为基础,利用初中生的好奇心理,激发学生探究新知的兴趣。

活动效果:学生在回忆中探索本课时的内容,从而降低了学生们“入室”的门槛。

第二环节:活动探究、合作学习活动内容:首先,我们来利用一次函数的图象求出相应的一元一次方程的解、一元一次不等式的解集。

北师大版初中数学考点整理

北师大版初中数学考点整理

北师大版初中数学代数考点研究第一模块:数考点1、实数的“二数一值”(相反数、倒数、绝对值)考点2、实数的近似数、有效数字和科学计数法考点3、实数的大小比较考点4、实数的运算考点5、数的规律探索第二模块:式考点1、同类项考点2、整式运算考点3、因式分解考点4、分式概念考点5、分式运算考点6、平方根、算术根、二次根式考点7、代数式的规律探索考点8、代数式的求值问题第三模块:方程与不等式考点1、方程(组)的解答考点2、求方程中的待定系数考点3、方程型应用问题考点4、不等式(组)的解法考点5、求不等式中待定系数的取值范围考点6、不等式(组)的应用问题第四模块:函数考点1、坐标点考点2、函数的图象考点3、求函数解析式考点4、二次函数的性质考点5、图象信息问题考点6、函数型的应用问题考点7、函数与面积第五模块:统计考点1、平均数、众数、中位数、方差、直方图的概念考点2、统计图的应用第六模块:概率考点1、会用列举法树状图计算概率考点2、利用概率解决问题北师大版初中数学代数考点研究北师大版初中数学教材共分六册四部分,编排有38章356课时。

其中《数与代数》设计有15个章节计150课时,占总课时的42.1%,《统计与概率》有8章计47课时,占总课时的13.2%。

依纲靠本,与此相对应的,在中考试卷中,以满分120分估算,其两部分的权重应当分别为50分和16分左右。

在这里,需要特别说明的是,中考试题要着重突出对重点知识重点内容的考查,并不刻意追求知识点的覆盖面,由此各部分比例分配在各地实际命制试卷时稍有微调,这是可以理解而且是负责的举动。

在《课程标准》31——36页、47——49页,分别陈述了这两部分内容的具体目标,以此为框架,我将教材代数方面的考点分为六大模块:数;式;方程与不等式;函数;统计;概率。

下面分别举例说明各模块包含的具体考点。

本文所引举示例,均取自于2005年全国各地课改区数学中考试卷。

第一模块:数本模块的数是指有理数和实数,内容约占教材的二章28课时,在卷中约占6~9分,以选择、填空的形式,也有以实数运算的解答题呈现的,题序通常排在各题型的第一小题。

初中数学_一元一次不等式组(1)教学设计学情分析教材分析课后反思

初中数学_一元一次不等式组(1)教学设计学情分析教材分析课后反思

教学设计一、学生知识状况分析在本章前面几节课中,学生学习了一元一次不等式概念,掌握了解一元一次不等式的基本技能。

在相关知识的学习过程中,学生会利用一元一次不等式解决一些简单的现实问题,感受到了不等式在生活中的广泛应用;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力;学生已初步掌握了类比思想、化归思想和数形结合思想,认识到类比、化归和借助数形结合的直观在思考、解决数学问题中的优越性,这对本课的学习是有益的,但还要注意加强学习的主动性和探究性。

二、教学任务分析“一元一次不等式组”是从已有的知识构建回顾出发,遵从情景引入的理念,灵活地、创设性的处理教材的一节课。

我们知道求未知数取值范围的问题是普遍存在的,在涉及两个以上数量间的大小关系时,不等式组是解决这些问题的有力工具,因此必须学会求解一元一次不等式组的解集,可见本课时在这一章中具有举足轻重的作用。

本课时教学为学生提供个性化的学习时间和空间,鼓励学生利用类比思想和数形结合思想自主探究,合作交流,大胆表述,满足学生多样化的学习要求。

此外,二元一次方程组与一元一次不等式组,两者既有联系又有差异,因此,在教学中一要注重类比,做好从方程组到不等式组的迁移;二要重视化归、数形结合等数学思想方法的渗透。

教科书基于学生对不等式以及对方程组的概念已基本掌握的基础之上,提出了本课的具体学习任务和本节课的教学目标是:【知识目标】理解一元一次不等式组及其解的意义。

【能力目标】学会利用一元一次不等式解集的数轴表示出不等式组的解集。

【情感目标】初步认识数学与人类生活的密切联系,培养思维的全面性。

本课的教学重点:利用数轴求一元一次不等式组的解集。

本课的教学难点:正确求一元一次不等式组的解集。

三、教学过程分析本节课设计了五个教学环节:第一环节:复习导入;第二环节:自学指导;第三环节:活动探究;第四环节:巩固练习;第五环节:课堂小结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档