2015年数学中考第二轮专题复习答案184-260

合集下载

2015年中考名校第二次模拟考试数学试题(卷)及答案

2015年中考名校第二次模拟考试数学试题(卷)及答案

2015年中考名校第二次模拟考试 数 学 试 题 (卷)时间120分钟 满分120分 2015.6.12一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,恰有一项是符合要求的,请将正确选择项前的字母代号填涂在答题卷相应位置.......上) 1、31-的绝对值数是( ) A . 3- B .3 C .31-D .31 2、当地时间4月25日12时许,尼泊尔中部地区突发7.9级(中国地震台网测定为8.1级)强烈地震。

据尼官方最新数字,地震已经造成尼境内至少6000人遇难,另有5000余人受伤。

为表达中国政府和人民对尼泊尔抗震救灾的坚定支持,中国政府决定向尼泊尔政府提供2000万元人民币紧急人道主义物资援助,包括帐篷、毛毯、发电机等灾区急需物资,帮助尼方开展救灾安置工作,请把2000万元用科学记数法表示为( )元。

A .4200010⨯ B .8210⨯ C .7210⨯ D .62010⨯ 3、下列计算正确的是( )A .623x x x =+B .3a ·62a a = C .3223=- D .27714=⨯ 4、如图,BD 平分∠ABC ,点E 在BC 上,EF ∥AB ,∠BEF=80º,则∠ABD 的度数为( )A .60ºB .50ºC .40ºD .30°5、在实数范围内分解因式328a a -的结果是( )A 、22(4)a a - B 、 )2)(2(2-+a a a C 、2(4)(4)a a a +- D 、)2)(2(-+a a a 6、九年级某班六名同学体能测试成绩(分)如下:80,90,75,75,80,80.对这 组数据表述错误的是( )A .众数是80B .极差是15C .平均数是80D .中位数是757、将不等式组⎩⎨⎧-≤-+xx x x 316148 的解集在数轴上表示出来,正确的是( )P D CBAA B C D8、如图,在矩形ABCD 中,AB=2,BC=1,动点P 从点B 出发,沿路线B→C→D作匀速运动,那么△ABP 的面积y 与点P 运动的路程x 之间的函数图象大致是( ) A B C D 9、分式方程 的解为( )A.B.C.D.无解10、在半径为1的⊙O 中,弦AB 、AC 分别是2、3,则∠BAC 的度数为( )A.15° B .15°或75° C.75° D.15°或65°11、已知二次函数)0(122≠--=k x kx y 的图象与x 轴有两个交点,则k 的取值范围是A 、1->k 且0≠kB 、1->kC 、1<k 且0≠kD 、1<k12、如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于A 、B ,且O 1A ⊥O 2A ,则图中阴影部分的面积是( ) A.4π-8 B. 16π-16 C.16π-32 D. 8π-16二、填空题(每小题3分,共12分) 13、9的平方根是 。

2015西城中考数学二模题及答案(完整版)

2015西城中考数学二模题及答案(完整版)

2015二模统一练习(二)一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.2015年羊年除夕夜的10点半,在央视春晚送红包的活动中,微信“摇一摇”峰值的摇动 次数达到8.1亿次/分钟,送出微信红包120 000 000个.将120 000 000用科学记数法表示 应为A. 90.1210⨯B. 71.210⨯C. 81.210⨯D. 71210⨯ 2.如图,BD ∥AC ,AD 与BC 交于点E ,如果∠BCA =50°,∠D =30°, 那么∠DEC 等于A. 75°B. 80°C. 100°D. 120° 3.64的立方根是A. 8±B. 4±C. 8D. 44.函数y =x 的取值范围是A.2x ≠B. x ≥2C. x >2D. x ≥2-5.如图,△ABC 中,D ,E 两点分别在AB ,AC 边上,且DE ∥BC , 如果23AD AB =,AC =6,那么AE 的长为 A. 3 B. 4 C. 9 D. 126.某居民小区开展节约用电活动,该小区100户家庭4月份的节电情况如下表所示.那么4月份这100户家庭的节电量(单位:千瓦时)的平均数是 A. 35 B. 26 C. 25 D. 20 7.若一个正六边形的半径为2,则它的边心距等于A. 2B. 1C.8.如图,△ABC 的边AC 与⊙O 相交于C ,D 两点,且经过圆心O , 边AB 与⊙O 相切,切点为B .如果∠A =34°,那么∠C 等于 A .28° B .33° C .34° D .56°9.如图,将正方形OABC 放在平面直角坐标系xOy 中,O 是原点,若点A 的坐标为,则点C 的坐标为A .B .(-C .(D .(1)-10.在平面直角坐标系xOy 中,点M 的坐标为(,1)m .如果以原点为圆心,半径为1的⊙O 上 存在点N ,使得45OMN ∠=︒,那么m 的取值范围是A .1-≤m ≤1 B. 1-<m <1 C. 0≤m ≤1 D. 0<m <1 二、填空题(本题共18分,每小题3分)11.若2(2)0m ++ 则m n -= .12.若一个凸n 边形的内角和为1080︒,则边数n = . 13.两千多年前,我国的学者墨子和他的学生做了小孔成像的实验.他的做法是,在一间黑暗的屋子里,一面墙上 开一个小孔,小孔对面的墙上就会出现外面景物的倒像.小 华在学习了小孔成像的原理后,利用如下装置来验证小孔 成像的现象.已知一根点燃的蜡烛距小孔20cm ,光屏在距 小孔30cm 处,小华测量了蜡烛的火焰高度为2cm ,则光屏上火焰 所成像的高度为______cm .14.请写出一个图象的对称轴是直线1x =,且经过(0,1)点的二次函数的表达式: _____________.15.如图,在平面直角坐标系xOy 中,直线3y x =与双曲线y =(n ≠0)在第一象限的公共点是(1,)P m .小明说:以看出,满足3nx x>的x 的取值范围是1x >.”你同意他的 观点吗?答: .理由是 .16.如图,在平面直角坐标系xOy 中,点D 为直线2y x = 象限内的任意一点,1DA ⊥x 轴于点1A ,以1DA 为边在1DA 作正方形111A B C D ;直线1OC 与边1DA 交于点2A ,以2DA 2DA 的右侧作正方形222A B C D ;直线2OC 与边1DA 交于点3A ,以3DA 为边在3DA 的右侧作正方形333A B C D ,……,按这种方式进行下去,则直线1OC 对应的函数表达式为 ,直线3OC 对应的函数表达式为 . 三、解答题(本题共30分,每小题5分)17.如图,△ABC 是等边三角形,D ,E 两点分别在AB ,BC 的延长线上,BD =CE ,连接AE ,CD .求证:∠E =∠D .18.计算:1012cos 30()1(3)3π-++-.19.已知2540x x --=,求代数式(2)(2)(21)(2)x x x x +----的值.20.解方程:231233x x x x-=--.21.列方程(组)解应用题:某超市的部分商品账目记录显示内容如下:求第三天卖出牙膏多少盒.22.已知关于x 的函数 2(3)3y mx m x =+--.(1)求证:无论m 取何实数,此函数的图象与x 轴总有公共点;(2)当m >0时,如果此函数的图象与x 轴公共点的横坐标为整数,求正整数m 的值.四、解答题(本题共20分,每小题5分)23.如图,将平行四边形纸片ABCD按如图方式折叠,使点C与点A重合,点D的落点记为点D′ ,折痕为EF,连接CF.(1)求证:四边形AFCE是菱形;(2)若∠B=45°,∠FCE=60°,AB=D′F的长.24.1949年以来,北京市人口结构变迁经历了5个阶段,从2001年至今已进入第五个阶段——人口膨胀增长阶段.以下是根据北京市统计局2015年1月的相关数据制作的统计图.根据以上信息解决下列问题:(1)以下说法中,正确的是(请填写所有正确说法的序号)①从2011年至2014年,全市常住人口数在逐年下降;②2010年末全市常住人口数达到近年来的最高值;③ 2014年末全市常住人口比2013年末增加36.8万人;④从2011年到2014年全市常住人口的年增长率连续递减.(2)补全“2014年末北京市常住人口分布图”,并回答:2014年末朝阳、丰台、石景山、海淀四区的常住人口总数已经达到多少万人?(3)水资源缺乏制约着北京市的人口承载能力,为控制人口过快增长,到2015年底,北京市要将全市常住人口数控制在2180万以内(即不超过2180万).为实现这一目标,2015年的全市常住人口的年增长率应不超过.(精确到0.1%)25.如图1,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,点F 在线段ED 上.连接AF 并延长交 ⊙O 于点G ,在CD 的延长线上取一点P ,使PF=PG .(1)依题意补全图形,判断PG 与⊙O 的位置关系,并证明你的结论;(2)如图2,当E 为半径OA 的中点,DG ∥AB ,且OA PG 的长.26.(1)小明遇到下面一道题:如图1,在四边形ABCD 中,AD ∥BC ,∠ABC =90º,∠ACB =30º,BE ⊥AC 于点E ,且=C D E A C B ∠∠.如果AB =1,求CD 边的长.小明在解题过程中发现,图1中,△CDE 与△ 相似,CD 的长度等于 ,线段CD 与线段 的长度相等;他进一步思考:如果ACB α∠=(α是锐角),其他条件不变,那么CD 的长度可以表示为CD = ;(用含α的式子表示)(2)受以上解答过程的启发,小明设计了如下的画图题:在Rt△OMN 中,∠MON =90º,OM <ON ,OQ ⊥MN 于点Q ,直线l 经过点M ,且l ∥ON .请在直线l 上找出点P 的位置,使得NPQ ONM ∠=∠.请写出你的画图步骤,并在答题卡上完成相应的画图过程.(画出一个即可,保留画图痕迹,不要求证明)五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)已知一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,二次函数2224y x ax =-+(其中a >2).(1)求一次函数的表达式及二次函数图象的顶点坐标(用含a 的代数式表示); (2)利用函数图象解决下列问题:①若25=a ,求当10y >且2y ≤0时,自变量x 的取值范围;②如果满足10y 且2y≤0时的自变量x的取值范围内恰有一个整数,直接写出a的取值范围.28.正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.29.对于平面直角坐标系xOy中的点P和图形G,给出如下定义:在图形G上若存在两点M,N,使△PMN为正三角形,则称图形G为点P的τ型线,点P为图形G的τ型点,△PMN为图形G关于点P的τ型三角形.(1)如图1,已知点(0,A,(3,0)B,以原点O为圆心的⊙O的半径为1.在A,B 两点中,⊙O的τ型点是____,画出并回答⊙O关于该τ型点的τ型三角形;(画出一个即可)(2)如图2,已知点(0,2)F m(其中m>0).若线段EF为原点O的τ型线,E,点(,0)且线段EF关于原点O的τ,求m的值;(3)若(0,2)H-是抛物线2=+的τ型点,直接写出n的取值范围.y x n北京市西城区2015年初三二模数学试卷参考答案及评分标准 2015. 6一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分)17.证明:如图1.∵ △ABC 是等边三角形,∴ AC =BC ,∠ACB=∠ABC =60°.……………………………………………… 1分∵ D ,E 两点分别在AB ,BC 的延长线上,∴ ∠ACE =∠CBD =120°. …………………2分在△ACE 和△CBD 中,,,AC CB ACE CBD CE BD =⎧⎪∠∠⎩=⎪⎨,= ……………………… 3分∴ △ACE ≌△CBD .……………………… 4分∴ ∠E =∠D .…………………………………………………………………… 5分18.解: 1012cos 30()1(3)3π-++- 2311=+- ………………………………………………………………4分 1=. ………………………………………………………………………… 5分 19.解: (2)(2)(21)(2)x x x x +----=224(252)x x x ---+………………………………………………………………2分 =224252x x x --+-=256x x -+-.………………………………………………………………………3分 ∵ 2540x x --=,∴ 254x x -=.…………………………………………………………………… 4分∴ 原式=2(5)64610x x ---=--=-.……………………………………………5分 20.解:去分母,得 3(3)2x x --=.…………………………………………………… 1分 去括号,得 332x x -+=. ………………………………………………………2分 整理,得 21x =-.……………………………………………………………… 3分 解得 12x =-. …………………………………………………………………… 4分 经检验,12x =-是原方程的解. …………………………………………………5分 所以原方程的解是12x =-.21.解:设牙膏每盒x 元,牙刷每支y 元.…………………………………………………1分 由题意,得 713121,1415187.x y x y +=+=⎧⎨⎩…………………………………………………… 2分解得 85.x y ==⎧⎨⎩,……………………………………………………………………… 3分(124125)88-⨯=(盒). ………………………………………………………… 4分 答:第三天卖出牙膏8盒.………………………………………………………………5分 22.解:(1)当m =0 时,该函数为一次函数33y x =--,它的图象与x 轴有公共点.……………………………………………………………… 1分当m ≠0 时,二次函数2(3)3y mx m x =+--.2(3)4(3)m m ∆=--⨯-26912m m m =-++2269(3)m m m =++=+. ∵ 无论m 取何实数,总有2(3)m +≥0,即∆≥0, ∴ 方程2(3)30mx m x +--=有两个实数根.∴ 此时函数2(3)3y mx m x =+--的图象与x 轴有公共点.……………2分 综上所述,无论m 取何实数,该函数的图象与x 轴总有公共点.(2)∵m >0,∴ 该函数为二次函数,它的图象与x 轴的公共点的横坐标为(3)(3)2m m x m--±+=.∴ 11x =-,23x m=. ……………………………………………………… 3分∵ 此抛物线与x 轴公共点的横坐标为整数,∴正整数m =1或3.……………………………………………………………5分四、解答题(本题共20分,每小题5分) 23.(1)证明:如图2.∵点C 与点A 重合,折痕为EF ,∴12∠=∠,AE =EC .∵ 四边形ABCD 为平行四边形, ∴ AD ∥BC . ∴ 32∠=∠.∴ 13∠=∠.∴ AE =AF1分 ∴ AF =EC . 又∵ AF ∥EC ,∴ 四边形AFCE 是平行四边形.………………………………………… 2分 又AE =AF ,∴ 四边形AFCE 为菱形.………………………………………………… 3分(2)解:如图3,作AG ⊥BE 于点G ,则∠AGB=∠AGE=90°. ∵ 点D 的落点为点D ′ ,折痕为EF , ∴D F DF '=.∵ 四边形ABCD 为平行四边形, ∴ AD =BC .又∵AF =EC ,∴AD AF BC EC -=-,即DF BE =.∵在Rt△AGB 中,∠AGB=90°,∠B =45°,AB =∴ AG =GB =6.∵ 四边形AFCE 为平行四边形, ∴ AE ∥FC .∴ ∠4=∠5=60°.∵ 在Rt△AGE 中,∠AGE =90°,∠4=60°, ∴ tan60AGGE ==︒∴ 6BE BG GE =+=+.∴ 6D F '=+.…………………5分 24.解:(1)③④.………………………………… 2分(2)补全统计图见图4. ………………… 3分 1055万人. ………………………… 4分(3)1.3%. …………………………………………………………………………… 5分 25. 解:(1)补全图形如图5所示. ………………………………………………………… 1分 答:PG 与⊙O 相切.证明:如图6,连接OG .∵ PF =PG , ∴ ∠1=∠2.又∵OG =OA , ∴ ∠3=∠A .∵ CD ⊥AB 于点E ,∴ ∠A +∠AFE =90°.又∵∠2 =∠AFE ,∴ ∠3+∠1=90°. ……………………… 2分 即 OG ⊥PG .∵ OG 为⊙O 的半径,∴ PG 与⊙O 相切. …………………… 3分(2)解:如图7,连接CG . ∵ CD ⊥AB 于点E ,∴ ∠OEC =90°. ∵ DG ∥AB ,∴∠GDC =∠OEC =90°. ∵∠GDC 是⊙O 的圆周角, ∴ CG 为⊙O 的直径. ∵ E 为半径OA 的中点,∴ 22OA OCOE ==. ∴ ∠OCE =30°即∠GCP =30°.又∵∠CGP=90°,2CG OA ==∴tan 4PG CG GCP =⋅∠==. …………………………… 5分 26.解:(1)CADBC . …………………………………………………………… 3分1tan α.……………………………………………………………………………4分 (2)方法1:如图8,以点N 为圆心,ON 为半径作圆,交直线l 于点1P ,2P ,则点 1P ,2P 为符合题意的点.……………………………………………… 5分 方法2:如图9,过点N 画NO 的垂线1m ,画NQ 的垂直平分线2m ,直线1m 与2m 交于点R ,以点R 为圆心,RN 为半径作圆,交直线l 于点1P ,2P ,则点1P ,2P 为符合题意的点. ……………………………………… 5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.解:(1)∵ 一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点, ∴ 20,4 1.k b k b +=⎧⎨+=⎩解得1,21.k b ⎧=⎪⎨⎪=-⎩……………………………………………………………… 1分∴ 1211-=x y . ………………………………………………………… 2分 ∵ 22224)(42a a x ax x y -+-=+-=,∴ 二次函数图象的顶点坐标为2(,4)a a -.………………………………… 3分(2)①当25=a 时,4522+-=x x y .………………………………… 4分 如图10,因为10y >且2y ≤0,由图象得2<x ≤4. (6)分②136≤a <52.……………………………7分 28.解:(1)CH=AB . ………………………………… 1分 (2)结论成立.………………………………… 2分证明:如图11,连接BE . 在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°. ∵ DE=DF , ∴ AF=CE .在△ABF 和△CBE 中,,,,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△CBE .∴ ∠1=∠2.……………………………………………………………………3分 ∵ EH ⊥BF ,∠BCE =90°,∴ H ,C 两点都在以BE 为直径的圆上. ∴ ∠3=∠2. ∴ ∠3=∠1.∵ ∠3+∠4=90°,∠1+∠HBC =90°, ∴ ∠4=∠HBC .∴ CH=CB .………………………………………………………………… 5分 ∴ CH=AB .………………………………………………………………… 6分(3)3.………………………………………………………………………7分29.解:(1)点A .………………………………………1分 画图见图12.(画出一个即可)…………2分 △AMN (或△AJK ). (3)分(2)如图13,作OL ⊥EF 于点L .∵ 线段EF 为点O 的τ型线, ∴ OL 即为线段EF 关于点O 的τ型三角形的高.∵线段EF 关于点O 的τ∴OL =. ……………………………… 4∵ 2OE =,OF m =,∴EL =. ∴ cos 1EL OE ∠==∴ cos 2cos 1OL OLOF ==∠∠∴m =………………………………………………………………………6分 (3)n ≤54-.……………………………………………………………………………8分。

2015年数学中考信息卷(二)答案

2015年数学中考信息卷(二)答案





*+,-. %! 2"
# /
*+,-. %3%! 40+,-12*34 2""%3%!
* / , /
)+ "
) /
",!*0-
5%2" %
6%#
2#%1" %
网 om 5%2%"
6
%2" %
#
学 .c 5%2%"

% %2"
#
e si 5%"2"!
g 5 %# 2" 5$ . %57"!
!!"#$%! &" !' !) (
明 j )bLcd,ef g 2hiKjk2lmn2
w. o!f),$"<#$/ 5-#"!
, /
ww *%$ $$$ <#$/ 5"$ $$$p!
8+,25/#)WU ,2V 4),$,+)2$25! 8(&%+,&*%254)4$(&)3$&*! 8&,)25/$"4i &4)34i! 812o4 " =#)2 ¡ f " = 4)4 5)35#4i &4)34¢i! 4&&)4 5&&)35*%"!
4&,5+5".$"2&&,+2&,+25".$"2!,$ 2%" "
2!,$ 1%" "5,$"!

课标版数学中考第二轮专题复习-探究型试题(含答案)

课标版数学中考第二轮专题复习-探究型试题(含答案)

探究型试题探究性问题涉及的基础知识非常广泛,题目没有固定的形式,因此没有固定的解题方法。

它既能充分地考查学生的基础知识掌握的熟悉程度,又能较好的考查学生的观察、分析、比较、概括的能力,发散思维能力等,因此复习中既要重视基础知识的复习,又要加强变式训练和数学思想方法的研究,切实提高分析问题、解决问题的能力。

例1(宜昌课改)如图1,已知△ABC 的高AE =5,BC =403,∠ABC =45°,F 是AE 上的点,G 是点E 关于F 的对称点,过点G 作BC 的平行线与AB 交于H 、与AC 交于I ,连接IF 并延长交BC 于J ,连接HF 并延长交BC 于K .(1)请你探索并判断四边形HIKJ 是怎样的四边形?并对你得到的结论予以证明;(2)当点F 在AE 上运动并使点H 、I 、K 、J 都在△ABC 的三条边上时,求线段AF 长的取值范围.(图2供思考用) 解:(1)∵点G 与点E 关于点F 对称,∴GF=FE ∵HI ∥BC ,∴∠GIF =∠E J F , 又∵∠GF I=∠EF J , ∴△GFI ≌△EFJ , ∴GI=JE同理可得HG=EK , ∴HI=JK,∴四边形HIKJ 是平行四边形(注:说明四边形HIJK 是平行四边形评1分,利用三角形全等说明结论的正确性评2分)(2)当F 是AE 的中点时,A 、G 重合,所以AF=2.5 如图1,∵AE 过平行四边形HIJK 的中心F, ∴HG=EK, GI=JE.∴HG/BE=GI/EC. ∵CE >BE,∴GI > HG , ∴CK >BJ.∴当点F 在AE 上运动时, 点K 、J 随之在BC 上运动, 图1如图2,当点F 的位置使得B 、J 重合时,这时点K 仍为CE 上的某一点(不与C 、EE C B A图2图1C G I J BE K HFB A重合),而且点H 、I 也分别在AB 、AC 上(这里为独立评分点,以上过程只要叙述大体清楚,说理较为明确即可评2分,不说明者不评分,知道要说理但部分不正确者评1分) 设EF =x ,∵∠AHG =∠ABC =45°,AE =5,∴BE=5=GI ,AG =HG =5-2x ,CE =340-5 ∵△AGI∽△AEC,∴AG∶AE=GI∶CE. ∴(5-2x)∶5=5∶(340-5) ∴AF=5-x =4 ∴25<AF ≤4 图2 说明:本题考查知识较多,主要考查了全等三角形、平行四边形、相似形的判定及应用。

2015年中考数学总复习试题及答案解析8

2015年中考数学总复习试题及答案解析8

2015年中考数学总复习试题及答案解析81.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形考点:多边形内角与外角.分析:此题可以利用多边形的外角和和内角和定理求解.解答:解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.2.将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°考点:多边形内角与外角.专题:计算题.分析:利用多边形的内角和公式即可求出答案.解答:解:n边形的内角和是(n﹣2)•180°,n+1边形的内角和是(n﹣1)•180°,因而(n+1)边形的内角和比n边形的内角和大(n﹣1)•180°﹣(n﹣2)•180=180°.故选:C.3.如图,在▱ABCD中,点E是AD的中点,延长BC到点F,使CF:BC=1:2,连接DF,EC.若AB=5,AD=8,sinB=,则DF的长等于()A.B.C.D.2考点:平行四边形的判定与性质;勾股定理;解直角三角形.分析:由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CFDE的对边平行且相等(DE=CF,且DE∥CF),即四边形CFDE是平行四边形.如图,过点C作CH⊥AD于点H.利用平行四边形的性质、锐角三角函数定义和勾股定理求得CH=4,DH=3,则在直角△EHC中利用勾股定理求得CE的长度,即DF的长度.解答:证明:如图,在▱ABCD中,∠B=∠ADC,AB=CD=5,AD∥BC,且AD=BC=8.∵E是AD的中点,∴DE=AD.又∵CF:BC=1:2,DE=CF,且DE∥CF,∴四边形CFDE是平行四边形.∴CE=DF.过点C作CH⊥AD于点H.又∵sinB=,∴sin∠CDH===,∴CH=4.在Rt△CDH中,由勾股定理得到:DH==3,则EH=4﹣3=1,∴在Rt△CEH中,由勾股定理得到:EC===,则DF=EC=.故选:C.4.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°考点:菱形的性质;全等三角形的判定与性质.分析:根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC 的度数.解答:解:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选:C.5.在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则S△AFE:S四为()边形ABCEA.3:4 B.4:3 C.7:9 D.9:7考点:平行四边形的性质;相似三角形的判定与性质.专题:几何图形问题.分析:利用平行四边形的性质得出△FAE∽△FBC,进而利用相似三角形的性质得出=,进而得出答案.解答:解:∵在平行四边形ABCD中,∴AE∥BC,AD=BC,∴△FAE∽△FBC,∵AE:ED=3:1,∴=,∴=,∴S△AFE:S四边形ABCE=9:7.故选:D.6.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A. 4 B.C.D. 5考点:菱形的性质.专题:几何图形问题.分析:连接BD,根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=AC•BD可得答案.解答:解:连接BD,交AC于O点,∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴AC⊥BD,AO=AC,BD=2BO,∴∠AOB=90°,∵AC=6,∴AO=3,∴B0==4,∴DB=8,∴菱形ABCD的面积是×AC•DB=×6×8=24,∴BC•AE=24,AE=,故选:C.7.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍考点:菱形的性质.专题:几何图形问题.分析:分别利用菱形的性质结合各选项进而求出即可.解答:解:A、∵四边形ABCD是菱形,∴AB=BC=AD,∵AC<BD,∴△ABD与△ABC的周长不相等,故此选项错误;B、∵S△ABD=S平行四边形ABCD,S△ABC=S平行四边形ABCD,∴△ABD与△ABC的面积相等,故此选项正确;C、菱形的周长与两条对角线之和不存在固定的数量关系,故此选项错误;D、菱形的面积等于两条对角线之积的,故此选项错误;故选:B.点评:此题主要考查了菱形的性质应用,正确把握菱形的性质是解题关键.8.如图,▱ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于.考点:平行四边形的性质;解直角三角形.专题:几何图形问题.分析:设对角线AC和BD相交于点O,在直角△AOE中,利用三角函数求得OA的长,然后根据平行四边形的对角线互相平分即可求得.解答:解:∵在直角△AOE中,cos∠EAC=,∴OA===2,又∵四边形ABCD是平行四边形,∴AC=2OA=4.故答案是:4.9.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE.且点G在矩形ABCD内部.如果将BG 延长交DC于点F.(1)则FG=FD(用“>”、“=”、“<”填空)(2)若BC=12cm,CF比DF长1cm,试求线段AB的长.考点:翻折变换(折叠问题).分析:(1)求简单的线段相等,可证线段所在的三角形全等,即连接EF,证△EGF≌△EDF即可;(2)可设CF=xcm,则BF=x+x﹣1+x﹣1=(3x﹣2)cm,在Rt△BFC中,根据勾股定理求出x,进一步得到线段AB的长.解答:解:(1)连接EF,则根据翻折不变性得,∠EGF=∠D=90°,EG=AE=ED,EF=EF,在Rt△EGF与Rt△EDF中,∴Rt△EGF≌Rt△EDF(HL),∴FG=FD;(2)设CF=xcm,则BF=x+x﹣1+x﹣1=(3x﹣2)cm,在Rt△BFC中,BF2=BC2+CF2,即(3x﹣2)2=122+x2,解得x1=﹣3.5(舍去),x2=5.AB=x+x﹣1=2x﹣1=9cm.故线段AB的长是9cm.故答案为:=.10.如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处.若AE=BE,则长AD与宽AB的比值是.考点:翻折变换(折叠问题);勾股定理;矩形的性质.专题:数形结合;转化思想.分析:由AE=BE,可设AE=2k,则BE=3k,AB=5k.由四边形ABCD是矩形,可得∠A=∠ABC=∠D=90°,CD=AB=5k,AD=BC.由折叠的性质可得∠EFC=∠B=90°,EF=EB=3k,CF=BC,由同角的余角相等,即可得∠DCF=∠AFE.在Rt△AEF中,根据勾股定理求出AF==k,由cos∠AFE=cos∠DCF得出CF=3k,即AD=3k,进而求解即可.解答:解:∵AE=BE,∴设AE=2k,则BE=3k,AB=5k.∵四边形ABCD是矩形,∴∠A=∠ABC=∠D=90°,CD=AB=5k,AD=BC.∵将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处,∴∠EFC=∠B=90°,EF=EB=3k,CF=BC,∴∠AFE+∠D FC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∴cos∠AFE=cos∠DCF.在Rt△AEF中,∵∠A=90°,AE=2k,EF=3k,∴AF==k,∴=,即=,∴CF=3k,∴AD=BC=CF=3k,∴长AD与宽AB的比值是=.故答案为:.。

课标版数学中考第二轮专题复习-说理型试题(含答案)(800K)

课标版数学中考第二轮专题复习-说理型试题(含答案)(800K)

说理型试题因为说理型试题考查的知识点较多,它不仅考查学生的基础知识,而且考查学生的创新能力,数形结合能力,分类讨论能力,探索问题能力,所以成为近几年中考试题的命题热点。

标系内,⊙C与y轴相切于D点,与x轴相交于A(2,0)、B(8,0)两点,圆心C在第四象限。

(1)求点C的坐标;(2)连结BC并延长交⊙C于另一点E,若2,能线段BE上有一点P,使得BE=BPAB∙否推出AP⊥BE?请给出你的结论,并说明理由;(3)在直线BE上是否存在点Q,使得2?若存在,求出点Q的坐标,=AQ∙EQBQ若不存在,也请说明理由。

解:说明:考查了相似形的判定及性质应用,切割线定理、勾股定理、三角函数等有关知识,本题关键是还体现了分类思想.练习一1、(2005年贵阳市)在Rt⊿ABC中,∠C =90,AC = 6,BC = 8,点O在CB上,且AO 平分∠BAC,CO = 3(如图所示),以点O为圆心,r为半径画圆;(1)r取何值时,⊙O与AB相切;(2)r取何值时,⊙O与AB有两个公共点?(3)当⊙O与AB相切时,设切点为D,在BC上是否存在点P,使⊿APD的面积为⊿ABC 的面积的一半?若存在,求出CP的长,若不存在,请说明理由;AC B2、(2005年武汉)如图,在平面直角坐标系中,点1O 的坐标为(-4,0),以点1O 为圆心,8为半径的圆与x 轴交于A 、B 两点,过点A 作直线l 与x 轴负方向相交成60°角。

以点2O (13,5)为圆心的圆与x 轴相切于点D. (1)求直线l 的解析式;(2)将⊙2O 以每秒1个单位的速度沿x 轴向左平移,同时直线l 沿x 轴向右平移,当⊙2O 第一次与⊙1O 相切时,直线l 也恰好与⊙2O 第一次相切,求直线l 平移的速度;(3)将⊙2O 沿x 轴向右平移,在平移的过程中与x 轴相切于点E ,EG 为⊙2O 的直径,过点A 作⊙2O 的切线,切⊙2O 于另一点F ,连结A 2O 、FG ,那么FG ·A 2O 的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围。

2015年福建省漳州市中考数学二模试卷(解析版)

2015年福建省漳州市中考数学二模试卷(解析版)

2015年福建省漳州市中考数学二模试卷一、单项选择题(共10小题,每小题4分,满分40分)1.(4分)实数a、b在数轴上表示如图,下列判断正确的是()A.a<0B.a>1C.b>﹣1D.b<﹣12.(4分)如图所示,直线a∥b,∠B=22°,∠C=50°,则∠A的度数为()A.22°B.28°C.32°D.38°3.(4分)下面的计算正确的是()A.6a﹣5a=1B.=±6C.()﹣1=﹣2D.2(a+b)=2a+2b4.(4分)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1B.2C.3D.45.(4分)一次函数y=kx+b的图象经过第二、四象限,则k的值可以是()A.2B.1C.0D.﹣16.(4分)下列关于分式的判断,正确的是()A.当x=2时,的值为零B.当x≠3时,有意义C.无论x为何值,不可能得整数值D.无论x为何值,的值总为正数7.(4分)一次数学测试后,随机抽取6名学生成绩如下:86,85,88,80,88,95,关于这组数据说法错误的是()A.极差是15B.众数是88C.中位数是85D.平均数是87 8.(4分)过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.9.(4分)在反比例函数(k<0)的图象上有两点,(﹣1,y1),,则y1﹣y2的值是()A.正数B.非正数C.负数D.不能确定10.(4分)定义运算,比如2⊗3=+=,下面给出了关于这种运算的几个结论:①2⨂(﹣3)=;②此运算中的字母均不能取零;③a⊗b=b⊗a;④a⊗(b+c)=a⊗c+b⊗c,其中正确是()A.①②④B.①②③C.②③④D.①③④二、填空题(共6小题,每小题4分,满分24分)11.(4分)分解因式:2x3﹣4x2+2x=.12.(4分)浙江省委作出“五水共治”决策.某广告公司用形状大小完全相同的材料分别制作了“治污水”、“防洪水”、“排涝水”、“保供水”、“抓节水”5块广告牌,从中随机抽取一块恰好是“治污水”广告牌的概率是.13.(4分)在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数是.14.(4分)如图,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为.15.(4分)如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使D,C,B在一条直线上,且DC=2BC,过点A作量角器圆弧所在圆的切线,切点为E,如果AB=6cm,则的长是cm.16.(4分)如图,直线y=﹣x+4与坐标轴交于A、B两点,动点P、C以1个单位每秒相同的速度同时分别沿射线AB、BO方向运动,以AP、BC为边分别作如图的两个正方形APQM、BCDE,设动点P的运动时间为t,当正方形APQM的顶点Q落在正方形BCDE 的边所在的直线上时,t的值为.三、解答题(共9小题,满分86分)17.(8分)先化简,再求值:(a+2b)2+(b+a)(b﹣a),其中a=﹣1,b=2.18.(8分)解方程组:.19.(8分)如图所示,∠BAC=∠ABD=90°,AC=BD,点O是AD,BC的交点,点E 是AB的中点.(1)图中有哪几对全等三角形?请写出来;(2)试判断OE和AB的位置关系,并给予证明.20.(8分)已知梯形ABCD,请使用无刻度直尺画图.(1)在图1中画出一个与梯形ABCD面积相等,且以CD为边的三角形;(2)图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.21.(8分)“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;请根据上述统计表和扇形提供的信息,完成下列问题:(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童车的合格率为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,请估计购买到合格品的概率是多少?22.(10分)有一位滑翔伞爱好者,正在空中匀速向下滑翔,已知水平方向上的风速为5.8m/s,如图,在A点他观察到C处塔尖的俯角为30°,5s后在B点的他观察到C处塔尖的俯角为45°,此时,塔尖与他本人的距离BC是AC的,求此人垂直下滑的距离.(参考数据,结果精确到0.1m)23.(10分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.24.(12分)问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB =a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD 的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.25.(14分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA =2,OC=3.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=﹣.2015年福建省漳州市中考数学二模试卷参考答案与试题解析一、单项选择题(共10小题,每小题4分,满分40分)1.(4分)实数a、b在数轴上表示如图,下列判断正确的是()A.a<0B.a>1C.b>﹣1D.b<﹣1【解答】解:从图上可以看出,0<a<1,b<﹣1.故选:D.2.(4分)如图所示,直线a∥b,∠B=22°,∠C=50°,则∠A的度数为()A.22°B.28°C.32°D.38°【解答】解:如图,∵a∥b,∴∠1=∠C=50°,又∠1=∠A+∠B,∴∠A=∠1﹣∠B=50°﹣22°=28°,故选:B.3.(4分)下面的计算正确的是()A.6a﹣5a=1B.=±6C.()﹣1=﹣2D.2(a+b)=2a+2b【解答】解;A、6a﹣5a=a,故此选项错误;B、=6,故此选项错误;C、()﹣1=2,故此选项错误;D、2(a+b)=2a+2b,正确.故选:D.4.(4分)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1B.2C.3D.4【解答】解:第一个是轴对称图形,有2条对称轴;第二个是轴对称图形,有2条对称轴;第三个是轴对称图形,有2条对称轴;第四个是轴对称图形,有3条对称轴;∴对称轴的条数为2的图形的个数是3;故选:C.5.(4分)一次函数y=kx+b的图象经过第二、四象限,则k的值可以是()A.2B.1C.0D.﹣1【解答】解:∵一次函数y=kx+b的图象经过第二,四象限,∴k<0,∴k的值可以为﹣1,故选:D.6.(4分)下列关于分式的判断,正确的是()A.当x=2时,的值为零B.当x≠3时,有意义C.无论x为何值,不可能得整数值D.无论x为何值,的值总为正数【解答】解:A、当x=2时,无意义,故A错误;B、当x≠0时,有意义,故B错误;C、当x=2时,得整数值,故C错误;D、分母x2+1大于0,分子大于0,故无论x为何值,的值总为正数,故D正确.故选:D.7.(4分)一次数学测试后,随机抽取6名学生成绩如下:86,85,88,80,88,95,关于这组数据说法错误的是()A.极差是15B.众数是88C.中位数是85D.平均数是87【解答】解:A、极差是95﹣80=15,故此选项正确,不符合要求;B、众数是88,故此选项正确,不符合要求;C、中位数是87,故此选项错误,符合要求;D、平均数是87,故此选项正确,不符合要求;故选:C.8.(4分)过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.【解答】解:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,•与正方体三个剪去三角形交于一个顶点符合.故选:B.9.(4分)在反比例函数(k<0)的图象上有两点,(﹣1,y1),,则y1﹣y2的值是()A.正数B.非正数C.负数D.不能确定【解答】解:点(﹣1,y 1),(﹣,y 2)在反比例函数(k <0)的图象上,∴代入得:y 1=﹣k ,y 2=﹣4k , ∴y 1﹣y 2=﹣k ﹣(﹣4k )=3k , ∵k <0,∴y 1﹣y 2的值是负数, 故选:C .10.(4分)定义运算,比如2⊗3=+=,下面给出了关于这种运算的几个结论:①2⨂(﹣3)=;②此运算中的字母均不能取零;③a ⊗b =b ⊗a ;④a ⊗(b +c )=a ⊗c +b ⊗c ,其中正确是( ) A .①②④B .①②③C .②③④D .①③④【解答】解:①2⨂(﹣3)=﹣=,正确;②此运算中的字母均不能取零,正确;③a ⊗b =+=b ⊗a =+,正确;④a ⊗(b +c )=+≠a ⊗c +b ⊗c =+++,错误,其中正确的为①②③, 故选:B .二、填空题(共6小题,每小题4分,满分24分) 11.(4分)分解因式:2x 3﹣4x 2+2x = 2x (x ﹣1)2. 【解答】解:2x 3﹣4x 2+2x , =2x (x 2﹣2x +1), =2x (x ﹣1)2. 故答案为:2x (x ﹣1)2.12.(4分)浙江省委作出“五水共治”决策.某广告公司用形状大小完全相同的材料分别制作了“治污水”、“防洪水”、“排涝水”、“保供水”、“抓节水”5块广告牌,从中随机抽取一块恰好是“治污水”广告牌的概率是.【解答】解:∵5块广告牌中有一块写有“治污水”, ∴从中随机抽取一块恰好是“治污水”广告牌的概率是,故答案为:.13.(4分)在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数是520.【解答】解:该校1300名学生一周的课外阅读时间不少于7小时的人数是1300×=520人,故答案为:520.14.(4分)如图,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为10.【解答】解:∵四边形ABCD是矩形,∴AC=2AO,BD=2BO,AC=BD,∴OA=OB,∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OB=AB=5,∴BD=2BO=10,故答案为:10.15.(4分)如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使D,C,B在一条直线上,且DC=2BC,过点A作量角器圆弧所在圆的切线,切点为E,如果AB=6cm,则的长是πcm.【解答】解:连接OA,OE,∵AE为圆O的切线,∴AE⊥OE,即∠AEO=90°,在Rt△AEO和Rt△ACO中,,∴Rt△AEO≌Rt△ACO(HL),∴∠EOA=∠COA,∵DC=2BC,且OD=OC=DC,∴OC=BC,在△ACO和△ACB中,,∴△ACO≌△ACB(SAS),∴∠AOC=∠ABC=60°,∠CAB=∠CAO=30°,∴∠EOC=120°,即∠EOD=60°,在Rt△ABC中,∠BAC=30°,AB=6cm,∴BC=3cm,即圆O半径为3cm,则l==π.故答案为:π.16.(4分)如图,直线y=﹣x+4与坐标轴交于A、B两点,动点P、C以1个单位每秒相同的速度同时分别沿射线AB、BO方向运动,以AP、BC为边分别作如图的两个正方形APQM、BCDE,设动点P的运动时间为t,当正方形APQM的顶点Q落在正方形BCDE的边所在的直线上时,t的值为、或.【解答】解:∵直线y=﹣x+4与坐标轴交于A、B两点,∴A(0,4),B(3,0),∴OA=4,OB=3,∴AB==5,(1)当正方形APQM的顶点Q落在DE边所在的直线时:DE边所在的直线的方程是:y=t,点P的坐标是(),设点Q的坐标是(a,t),∵PQ⊥AB,∴…(1),∵PQ=AP=t,∴…(2),由(1),可得a=3t﹣…(3),把(3)代入(2),整理,可得9t2﹣45t+50=0,解得t=或t=,经验证,t=不符合题意,∴t=.(2)当正方形APQM的顶点Q落在CD边所在的直线时:CD边所在的直线的方程是:x=3﹣t,点P的坐标是(),设点Q的坐标是(3﹣t,b),∵PQ⊥AB,∴…(1),∵PQ=AP=t,∴=t…(2),由(1),可得b=…(3),把(3)代入(2),整理,可得48t2﹣240t+225=0,解得t=或t=,经验证,t=不符合题意,∴t=.(3)当正方形APQM的顶点Q落在BC边所在的直线时:正方形APQM的边长为t,BP=5﹣t,∵∠QPB=∠AOB=90°,∠PBQ=∠OBA∴△QPB∽△AOB∴=∴,∴t=.综上,可得当正方形APQM的顶点Q落在正方形BCDE的边所在的直线上时,t的值为、或.故答案为:、或.三、解答题(共9小题,满分86分)17.(8分)先化简,再求值:(a+2b)2+(b+a)(b﹣a),其中a=﹣1,b=2.【解答】解:(a+2b)2+(b+a)(b﹣a)=a2+4ab+4b2+b2﹣a2=4ab+5b2,当a=﹣1,b=2时,原式=4×(﹣1)×2+5×22=12.18.(8分)解方程组:.【解答】解:方程组整理得:,②﹣①得:3y=3,即y=1,将y=1代入①得:x=,则方程组的解为.19.(8分)如图所示,∠BAC=∠ABD=90°,AC=BD,点O是AD,BC的交点,点E 是AB的中点.(1)图中有哪几对全等三角形?请写出来;(2)试判断OE和AB的位置关系,并给予证明.【解答】解:(1)△ABC≌△BAD,△AOE≌△BOE,△AOC≌△BOD;(2)OE⊥AB.理由如下:在Rt△ABC和Rt△BAD中,,∴△ABC≌△BAD(SAS),∴∠DAB=∠CBA,∴OA=OB,∵点E是AB的中点,∴OE⊥AB.20.(8分)已知梯形ABCD,请使用无刻度直尺画图.(1)在图1中画出一个与梯形ABCD面积相等,且以CD为边的三角形;(2)图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.【解答】解:设小正方形的边长为1,则S梯形ABCD=(AD+BC)×4=×10×4=20,(1)∵CD=4,∴三角形的高=20×2÷4=5,如图1,△CDE就是所作的三角形,(2)如图2,BE=5,BE边上的高为4,∴平行四边形ABEF的面积是5×4=20,∴平行四边形ABEF就是所作的平行四边形.21.(8分)“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;请根据上述统计表和扇形提供的信息,完成下列问题:(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童车的合格率为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,请估计购买到合格品的概率是多少?【解答】解:(1)童车的数量是300×25%=75,童装的数量是300﹣75﹣90=135,儿童玩具占得百分比是×100%=30%,童装占得百分比1﹣30%﹣25%=45%,如图;(2)儿童玩具中合格的数量是90×90%=81,童车中合格的数量是75×88%=66,童装中合格的数量是135×80%=108,所以从该超市的这三类儿童用品中随机购买一件,购买到合格品的概率是=0.85;答:估计购买到合格品的概率是0.85.22.(10分)有一位滑翔伞爱好者,正在空中匀速向下滑翔,已知水平方向上的风速为5.8m/s,如图,在A点他观察到C处塔尖的俯角为30°,5s后在B点的他观察到C处塔尖的俯角为45°,此时,塔尖与他本人的距离BC是AC的,求此人垂直下滑的距离.(参考数据,结果精确到0.1m)【解答】解:过点C作点A所在水平线的垂线,垂足为D,交点B所在水平线于点E,则CE⊥BE设BC=x,则AC=4x,在Rt△BCE中,∠B=45°,∴BE=CE=,在Rt△ACD中,∵∠A=30°,∴CD=AC•sin30°=2x,AD=AC•cos30°=•4x=2x,由题意可知,解得x≈10.52,∴DE=CD﹣CE=2x﹣x≈13.6m,答:此人垂直下滑的距离是13.6米.23.(10分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.【解答】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=∵a、b都是正整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆.(3)∵A型车每辆需租金100元/次,B型车每辆需租金120元/次,∴方案一需租金:9×100+1×120=1020(元)方案二需租金:5×100+4×120=980(元)方案三需租金:1×100+7×120=940(元)∵1020>980>940∴最省钱的租车方案是方案三:A型车1辆,B型车7辆,最少租车费为940元.24.(12分)问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB =a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD 的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.【解答】解:(1)如图1所示,(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM 交DC于F,交AB于E,则直线EF、OM将正方形的面积四等分,理由是:∵点O是正方形ABCD的对称中心,∴AP=CQ,EB=DF,在△AOP和△EOB中∵∠AOP=90°﹣∠AOE,∠BOE=90°﹣∠AOE,∴∠AOP=∠BOE,∵OA=OB,∠OAP=∠EBO=45°,∴△AOP≌△EOB,∴AP=BE=DF=CQ,设O到正方形ABCD一边的距离是d,则(AP+AE)d=(BE+BQ)d=(CQ+CF)d=(PD+DF)d,∴S四边形AEOP=S四边形BEOQ=S四边形CQOF=S四边形DPOF,直线EF、OM将正方形ABCD面积四等份;(3)存在,当BQ=CD=b时,PQ将四边形ABCD的面积二等份,理由是:如图③,连接BP并延长交CD的延长线于点E,∵AB∥CD,∴∠A=∠EDP,∵在△ABP和△DEP中∴△ABP≌△DEP(ASA),∴BP=EP,连接CP,∵△BPC的边BP和△EPC的边EP上的高相等,又∵BP=EP,∴S△BPC=S△EPC,作PF⊥CD,PG⊥BC,则BC=AB+CD=DE+CD=CE,由三角形面积公式得:PF=PG,在CB上截取CQ=DE=AB=a,则S△CQP=S△DEP=S△ABP∴S△BPC﹣S△CQP+S△ABP=S△CPE﹣S△DEP+S△CQP即:S四边形ABQP=S四边形CDPQ,∵BC=AB+CD=a+b,∴BQ=b,∴当BQ=b时,直线PQ将四边形ABCD的面积分成相等的两部分.25.(14分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA =2,OC=3.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=﹣.【解答】解:(1)∵OA=2,OC=3,∴A(﹣2,0),C(0,3),∴c=3,将A(﹣2,0)代入y=﹣x2+bx+3得,﹣×(﹣2)2﹣2b+3=0,解得b=,可得函数解析式为y=﹣x2+x+3;(2)存在,理由如下:如图:连接AD,与对称轴相交于P,由于点A和点B关于对称轴对称,则即BP+DP=AP+DP,当A、P、D共线时BP+DP=AP+DP最小.设AD所在直线的解析式为y=kx+b,将A(﹣2,0),D(2,2)分别代入解析式得,,解得,,故直线解析式为y=x+1,(﹣2<x<2),由于二次函数的对称轴为x=﹣=,则当x=时,y=×+1=,故P(,).。

2015年河北省中考数学试卷及答案解析

2015年河北省中考数学试卷及答案解析

2015年河北省中考数学试卷一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分.每小题的四个选项中只有一个是正确的)1.(3分)计算:3﹣2×(﹣1)=()A.5 B.1 C.﹣1 D.62.(3分)下列说法正确的是()A.1的相反数是﹣1 B.1的倒数是﹣1C.1的立方根是±1 D.﹣1是无理数3.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.4.(3分)下列运算正确的是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2D.a3•a2=a55.(3分)如图所示的三视图所对应的几何体是()A.B.C.D.6.(3分)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE7.(3分)在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④8.(3分)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140° D.150°9.(3分)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.10.(3分)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()A.B.C.D.11.(2分)利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×2 12.(2分)若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥113.(2分)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是()A.B.C.D.14.(2分)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣415.(2分)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤16.(2分)如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以二.填空题(4个小题,每小题3分,共12分)17.(3分)若|a|=20150,则a=.18.(3分)若a=2b≠0,则的值为.19.(3分)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.20.(3分)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=.三.解答题(共6个小题,共66分)21.(10分)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.22.(10分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为.23.(10分)水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?24.(11分)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表第一次第二次第三次A产品单价(元/件)6 5.2 6.5B产品单价(元/件) 3.543并求得了A产品三次单价的平均数和方差:=5.9,s A2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了%(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.25.(11分)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.26.(14分)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.探究:当半圆K与矩形ABCD的边相切时,求sinα的值.2015年河北省中考数学试卷参考答案与试题解析一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分.每小题的四个选项中只有一个是正确的)1.(3分)(2015•河北)计算:3﹣2×(﹣1)=()A.5 B.1 C.﹣1 D.6【分析】先算乘法,再算减法,由此顺序计算即可.【解答】解:原式=3﹣(﹣2)=3+2=5.故选:A.【点评】此题考查有理数的混合运算,掌握运算顺序与符号的判定是解决问题的关键.2.(3分)(2015•河北)下列说法正确的是()A.1的相反数是﹣1 B.1的倒数是﹣1C.1的立方根是±1 D.﹣1是无理数【分析】根据相反数、倒数、立方根,即可解答.【解答】解:A、1的相反数是﹣1,正确;B、1的倒数是1,故错误;C、1的立方根是1,故错误;D、﹣1是有理数,故错误;故选:A.【点评】本题考查了相反数、倒数、立方根,解决本题的关键是熟记相反数、倒数、立方根的定义.3.(3分)(2015•河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.【点评】此题主要考查了剪纸问题;学生的动手能力及空间想象能力是非常重要的,做题时,要注意培养.4.(3分)(2015•河北)下列运算正确的是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2D.a3•a2=a5【分析】A:根据负整数指数幂的运算方法判断即可.B:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数,据此判断即可.C:根据积的乘方的运算方法判断即可.D:根据同底数幂的乘法法则判断即可.【解答】解:∵=2,∴选项A不正确;∵6×107=60000000,∴选项B不正确;∵(2a)2=4a2,∴选项C不正确;∵a3•a2=a5,∴选项D正确.故选:D.【点评】(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(4)此题还考查了科学记数法﹣原数,要熟练掌握,解答此题的关键是要明确:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10﹣n,还原为原来的数,需要把a的小数点向左移动n位得到原数.5.(3分)(2015•河北)如图所示的三视图所对应的几何体是()A.B.C.D.【分析】对所给四个几何体,分别从主视图和俯视图进行判断.【解答】解:从主视图可判断A,C、D错误.故选B.【点评】本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.6.(3分)(2015•河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE【分析】利用外心的定义,外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,进而判断得出即可.【解答】解:如图所示:只有△ACF的三个顶点不都在圆上,故外心不是点O的是△ACF.故选:B.【点评】此题主要考查了三角形外心的定义,正确把握外心的定义是解题关键.7.(3分)(2015•河北)在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④【分析】根据数的平方,即可解答.【解答】解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴,∴的点落在段③,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.8.(3分)(2015•河北)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140° D.150°【分析】如图,作辅助线;首先运用平行线的性质求出∠DGC的度数,借助三角形外角的性质求出∠ACD即可解决问题.【解答】解:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选C.【点评】该题主要考查了垂线的定义、平行线的性质、三角形的外角性质等几何知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用平行线的性质、三角形的外角性质等几何知识点来分析、判断、解答.9.(3分)(2015•河北)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.【分析】根据方向角的定义,即可解答.【解答】解:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D符合.故选:D.【点评】本题考查了方向角,解决本题的关键是熟记方向角的定义.10.(3分)(2015•河北)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()A.B.C.D.【分析】设y=(k≠0),根据当x=2时,y=20,求出k,即可得出y与x的函数图象.【解答】解:设y=(k≠0),∵当x=2时,y=20,∴k=40,∴y=,则y与x的函数图象大致是C,故选:C.【点评】此题考查了反比例函数的应用,关键是根据题意设出解析式,根据函数的解析式得出函数的图象.11.(2分)(2015•河北)利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×2【分析】方程组利用加减消元法求出解即可.【解答】解:利用加减消元法解方程组,要消去x,可以将①×(﹣5)+②×2.故选D【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.(2分)(2015•河北)若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥1【分析】根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【解答】解:∵关于x的方程x2+2x+a=0不存在实数根,∴b2﹣4ac=22﹣4×1×a<0,解得:a>1.故选B.【点评】此题主要考查了一元二次方程根的情况与判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.(2分)(2015•河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是()A.B.C.D.【分析】由一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为与点数3相差2的有2种情况,直接利用概率公式求解即可求得答案.【解答】解:∵一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为点数3相差2的有2种情况,∴掷一次这枚骰子,向上的一面的点数为点数3相差2的概率是:=.故选B.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.14.(2分)(2015•河北)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣4【分析】先求出直线y=﹣x﹣3与y轴的交点,则根据题意得到a<﹣3时,直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,而四个选项中,只有﹣10<a<﹣4满足条件,故选D.【解答】解:∵直线y=﹣x﹣3与y轴的交点为(0,﹣3),而直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,∴a<﹣3.故选D.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.15.(2分)(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.16.(2分)(2015•河北)如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以【分析】根据图形可得甲可以拼一个边长为的正方形,图乙可以拼一个边长为的正方形.【解答】解:所作图形如图所示,甲乙都可以拼一个与原来面积相等的正方形.故选:A.【点评】本题考查了图形的简拼,解答本题的关键是根据题意作出图形.二.填空题(4个小题,每小题3分,共12分)17.(3分)(2015•河北)若|a|=20150,则a=±1.【分析】先根据0次幂,得到|a|=1,再根据互为相反数的绝对值相等,即可解答.【解答】解:∵|a|=20150,∴|a|=1,∴a=±1,故答案为:±1.【点评】本题考查了绝对值,解决本题的关键是熟记互为相反数的两个数绝对值相等.18.(3分)(2015•河北)若a=2b≠0,则的值为.【分析】把a=2b代入原式计算,约分即可得到结果.【解答】解:∵a=2b,∴原式==,故答案为:【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(3分)(2015•河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.【分析】首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出∠3、∠1、∠2的度数是多少,进而求出∠3+∠1﹣∠2的度数即可.【解答】解:正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形的每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°.故答案为:24°.【点评】此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n边形的内角和=(n﹣2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.20.(3分)(2015•河北)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n= 9.【分析】根据等腰三角形的性质和三角形外角的性质依次可得∠A1AB的度数,∠A2A1C的度数,∠A3A2B的度数,∠A4A3C的度数,…,依此得到规律,再根据三角形外角小于90°即可求解.【解答】解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°的度数,∠A4A3C=45°,…,∴9°n<90°,解得n<10.由于n为整数,故n=9.故答案为:9.【点评】考查了等腰三角形的性质:等腰三角形的两个底角相等;三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和.三.解答题(共6个小题,共66分)21.(10分)(2015•河北)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.【分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)把x的值代入计算即可求出值.【解答】解:(1)设所捂的二次三项式为A,根据题意得:A=x2﹣5x+1+3x=x2﹣2x+1;(2)当x=+1时,原式=7+2﹣2﹣2+1=6.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.(10分)(2015•河北)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等.【分析】(1)命题的题设为“两组对边分别相等的四边形”,结论是“是平行四边形”,根据题设可得已知:在四边形ABCD中,BC=AD,AB=CD,求证:四边形ABCD 是平行四边形;(2)连接BD,利用SSS定理证明△ABD≌△CDB可得∠ADB=∠DBC,∠ABD=∠CDB,进而可得AB∥CD,AD∥CB,根据两组对边分别平行的四边形是平行四边形可得四边形ABCD是平行四边形;(3)把命题“两组对边分别相等的四边形是平行四边形”的题设和结论对换可得平行四边形两组对边分别相等.【解答】解:(1)已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(2)证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∠ABD=∠CDB,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形;(3)用文字叙述所证命题的逆命题为:平行四边形两组对边分别相等.【点评】此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.23.(10分)(2015•河北)水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?【分析】(1)根据每放入一个大球水面就上升4毫米,即可解答;(2)①根据y=放入大球上面的高度+放入小球上面的高度,即可解答;②根据题意列出不等式,即可解答.【解答】解:(1)根据题意得:y=4x大+210;(2)①当x大=6时,y=4×6+210=234,∴y=3x小+234;②依题意,得3x小+234≤260,解得:,∵x小为自然数,∴x小最大为8,即最多能放入8个小球.【点评】本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式、一元一次不等式.24.(11分)(2015•河北)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表第一次第二次第三次A产品单价(元/件)6 5.2 6.5B产品单价(元/件) 3.543并求得了A产品三次单价的平均数和方差:=5.9,s A2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了25%(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.【分析】(1)根据题目提供数据补充折线统计图即可;(2)分别计算平均数及方差即可;(3)首先确定这四次单价的中位数,然后确定第四次调价的范围,根据“A产品这四次单价的中位数是B产品四次单价中位数的2倍少1”列式求m即可.【解答】解:(1)如图2所示:B产品第三次的单价比上一次的单价降低了=25%,(2)=(3.5+4+3)=3.5,==,∵B产品的方差小,∴B产品的单价波动小;(3)第四次调价后,对于A产品,这四次单价的中位数为=;对于B产品,∵m>0,∴第四次单价大于3,∵﹣1>,∴第四次单价小于4,∴×2﹣1=,∴m=25.【点评】本题考查了方差、条形统计图、算术平均数、中位数的知识,解题的关键是根据方差公式进行有关的运算,难度不大.25.(11分)(2015•河北)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.【分析】(1)把点B的坐标代入函数解析式,列出关于h的方程,借助于方程可以求得h的值;利用抛物线函数解析式得到该图象的对称轴和顶点坐标;(2)把点C的坐标代入函数解析式得到:y C=﹣h2+1,则由二次函数的最值的求法易得y c的最大值,并可以求得此时抛物线的解析式,根据抛物线的增减性来求y1与y2的大小;(3)根据已知条件“O(0,0),A(﹣5,0),线段OA被l只分为两部分,且这两部分的比是1:4”可以推知把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0).由二次函数图象上点的坐标特征可以求得h的值.【解答】解:(1)把点B的坐标B(2,1)代入y=﹣(x﹣h)2+1,得1=﹣(2﹣h)2+1.解得h=2.则该函数解析式为y=﹣(x﹣2)2+1(或y=﹣x2+4x﹣3).故抛物线l的对称轴为x=2,顶点坐标是(2,1);(2)点C的横坐标为0,则y C=﹣h2+1.当h=0时,y C=有最大值1,此时,抛物线l为:y=﹣x2+1,对称轴为y轴,开口方向向下,所以,当x≥0时,y随x的增大而减小,所以,x1>x2≥0,y1<y2;(3)∵线段OA被l只分为两部分,且这两部分的比是1:4,且O(0,0),A (﹣5,0),∴把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0).把x=﹣1,y=0代入y=﹣(x﹣h)2+1,得0=﹣(﹣1﹣h)2+1,解得h1=0,h2=﹣2.但是当h=﹣2时,线段OA被抛物线l分为三部分,不合题意,舍去.同样,把x=﹣4,y=0代入y=﹣(x﹣h)2+1,得h=﹣5或h=﹣3(舍去).综上所述,h的值是0或﹣5.【点评】本题考查了二次函数综合题.该题涉及到了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,二次函数最值的求法以及点的坐标与图形的性质等知识点,综合性比较强,难度较大.解答(3)题时,注意对h的值根据实际意义进行取舍.26.(14分)(2015•河北)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P在直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.探究:当半圆K与矩形ABCD的边相切时,求sinα的值.【分析】(1)在,当OQ过点B时,在R t△OAB中,AO=AB,得到∠DOQ=∠ABO=45°,求得α=60°﹣45°=15°;(2)如图2,连接AP,由OA+AP≥OP,当OP过点A,即α=60°时,等号成立,于是有AP≥OP﹣OA=2﹣1=1,当α=60°时,P、A之间的距离最小,即可求得结果(3)如图2,设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,过点R作RE⊥KQ于点E,在R t△OPH中,PH=AB=1,OP=2,得到∠POH=30°,求得α=60°﹣30°=30°,由于AD∥BC,得到∠RPO=∠POH=30°,求出∠RKQ=2×30°=60°,于是得到结果;拓展:如图5,由∠OAN=∠MBN=90°,∠ANO=∠BNM,得到△AON∽△BMN求出BN=,如图4,当点Q落在BC上时,x取最大值,作QF⊥AD于点F,BQ=AF=﹣AO=2﹣1,求出x的取值范围是0<x≤2﹣1;探究:半圆K与矩形ABCD的边相切,分三种情况;①如图5,半圆K与BC相切于点T,设直线KT与AD,OQ的初始位置所在的直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学 参考答案参 考 答 案第一篇 2012中考题型专项训练专项一 实数综合计算题型1.解:原式414=+-1= 2.【解】原式=1+-21=27 3.【解】原式=1-12×22-1+4×22=1-2-1+22= 2.4.解:原式=)8(4123-÷+-=21123--=05.解:原式=16-=1 6.解:原式414=+5=7.解:12)21(30tan 3)21(01+-+---3213332++⨯--==13-8.解:原式=3+(-1)⨯1-3+4 =39.解:原式=21133232=-⨯-+⨯10.解:原式=-112+2111.解:原式111+ 12.解:原式=3223232-+--+=2 .专项二 方程(组)与不等式(组)题组训练一一、解方程1.解 0,621=-=x x 2.解2,421=-=x x3.解∵a =1,b =3,c=1∴△=b 2-4ac=9-4×1×1=5>0 ∴x∴x 1=32-,x 2=32-4.解⎩⎨⎧==11y x5.解:原方程两边同乘以6x 得3(x +1)=2x ·(x +1)整理得2x 2-x -3=0 解得x =-1或x =32经验证知它们都是原方程的解,故原方程的解为x =-1或x =326.解:方程两边都乘(1)(1)x x +-,得3(1)(3)0x x +-+=,3330x x +--=, 20x =,0x =.经验证知0x =是原方程的解.二、解不等式(组),并把解集表示在数轴上. 1.解不等式①得x ≥-1,解不等式②得x <2,∴原不等式组的解集为-1≤x <2, 在数轴上表示不等式组的解集,如图.2.解不等式3(2)4x x --≥,得x ≤1解不等式1213xx +<+得,x >-2 所以不等式组的解集是:-2<x ≤1不等式组的解集在数轴上表示如下:题组训练二一、解方程(组)1.解:去分母,得:4x = x -3 移项,得:4x -x = -3合并同类项,得:3x =-3 ∴x =-1 检验:当x = -1是原方程的根 2.解:去分母,得2(x +1)=4解之,得x =1检验:将x =1代入x 2-1=1-1=0,所以x =1是原方程的增根, 原方程无解.3.解:方程两边同乘以x (x +3),得2(x +3)+x 2=x (x +3)解得x =64.解:方程两边同乘以(x -1)(x +3),得x (x -1)=(x +3)(x -1)+2(x +3)解这个整式方程,得35x =-检验:当x =35-时,( x -1)(x +3)≠0∴x =35-是原方程的解.5.解:原方程可化为:22(1)3(1)2(1)x x x x -++=-;解之得:5x =-;检验:把5x =-代入原方程,左边=2=右边,故5x =- 是原方程的根 二、解不等式(组)1.解不等式①得x >85-.解不等式②得x ≥15∴原不等式组的解集是x ≥15. 2.解:由(1)得:x < -2专题系统复习试卷由(2)得:x ≥-5∴不等式组的解集为-5≤x < -2 ∴它的所有整数解为-5,-4,-3.题组训练三一、解方程1.(x -2)(x +1)=0,解得x =2或x =-1 2.去分母,得2(x -2)=3(x +2) 解,x =-10经检验:x=-10是原方程的解. 3.222525x x x --+ =1 2x (2x +5)-2(2x -5)=(2x +5)(2x -5) 6x =-35 x =-356经检验:x =-356是原方程的解4.解:原方程两边同乘以12-x 得 )1(2212-=--x x x整理得0122=-+x x 解得211=-=x x 或 经验证1-=x 是原方程的增根,故原方程的解为21=x 二、解不等式(组) 1.解∵⎩⎨⎧----------+≤----------+②①>234512x x x x解不等式①,得x >-6.解不等式②,得x ≤2. ∴原不等式组的解集为-6<x ≤2. 2.解不等式①,得x ≥54-. 解不等式②,得x <3. 因此,原不等式组的解集为54-≤x <3. 解集表示在数轴上为:所以不等式组的整数解为:-1,0,1,2专项三 化简与求值题型题组训练一1.解:原式=2221(1)111x x x x x x +++==+++当2x =-时,原式1211x =+=-+=- 2.解:原式=2212)1)(1(+--÷+-+x x x x x =x x x x x x -=+-+⨯+-+1)1(22)1)(1(把31=x 代入得 原式=1-31=32·3.解:原式(1)(1)1x x x x x+-=⨯+1x =- 当1x 时原式111x =--4.解:22212121(1)(1)242(2)(2)x x x x x x x x x -+---+÷=÷---+- 21(2)(2)2(1)2,1x x x x x x x -+-=⋅--+=-1,2≠±≠x x ,取一个适当的数作为x 代入求值,答案不唯一5.原式=22(1)(1)1(2)x x x x x -+-∙--=12x x +- x 满足-2≤x ≤2且为整数,若使分式有意义,x 只能取0, -2.当x =0时,原式=12-(或:当x =-2时,原式=14) 题组训练二1.解:原式1211(1)(1)(1)(1)1x x x x x x x +--===+-+-+当x =-2时,原式=1121=--- 2.解:21=x 221211111x x x x x x ⎛⎫-+-+÷ ⎪+-+⎝⎭21(1)11(1)(1)1x x x x x x ⎛⎫-+=+∙ ⎪++--⎝⎭ 111x x x x +=∙+-1x x =-22 2.21x ===-当时,原式3.解:原式=xx x x x x x -+-÷-++12)1)(1()1(22=)1(111x x x x x +-⨯-+=x 1 当x =2时,原式的值为22211==x 4.解:原式=211(1)1a a a a+-+⋅+= 1a + 当a 1时,原式11+ 5.解:原式=2(5)(5)52x x x x x+-⨯-=5x + 解不等组得:-5≤x <6选取的数字不为5,-5,0即可(答案不唯一)专项四 概率与统计题型题组训练一1.(1)40;(2)8,0.2;(3)88(或87.5).30 4-数学 参考答案2.解:(1)由已知得,5月份销售这种品牌的电风扇台数为:1000%30300=(台)(2)销售乙型电风扇占5月份销售量的百分比为:%451000450=, 销售丙型电风扇占5月份销售量的百分比为:1-30%-45%=25%, ∴根据题意,丙种型号电风扇应订购:500%252000=⨯(台). 3.解:(1)被抽查学生共有:200%4080=÷(人) (2)视力合格人数约有:()180%20%10600=+⨯(人) 4.解:(1)2370+360+1060+390+420+400=5000(元),支出费用中支出最多的项目是食品且为2370元. (2)a =6050- (2630+521+1380+430+605)=484(元) b =484÷6050=0.08 c =605÷6050=0.1(3)设生活消费支出总额的年平均增长率是x , 根据题意得:25000(1)6050x +=,∴2(1) 1.21x +=,∴0.110%x ==(-2.1舍去).故2008年到2010年的生活消费支出总额的年平均增长率是10%.5.解:(1)C 品牌.(不带单位不扣分)(2)略.(B 品牌的销售量是800个,柱状图上没有标数字不扣分)(3)60°.(不带单位不扣分) (4)略.(合理的解释都给分)题组训练二1.解:(1)20;(2)3600;(3)1250. 2.(1)解法1:可画树状图如下:共6种情况.解法2:3个小球分别放入编号为①、②、③的三个盒子的所有可能情况为:红白蓝、红蓝白、白红蓝、白蓝红、蓝红白、蓝白红共6 种.(2)解:从(1)可知,红球恰好放入 2 号盒子的可能结果有白红蓝、蓝红白共2种,所以红球恰好放入2号盒子的概率2163P ==. 3.解:(1)2020%÷=100(人). (2)30100%30%100⨯=,120%40%30%10%---=36010%36⨯=°°. (3)喜欢篮球的人数: 40%10040⨯=(人), 喜欢排球的人数:10%10010⨯=(人). 4.解:(1)200060%(445470185)100⨯-++=.所以,条形统计图中100n =.(2)①47011852100333420⨯+⨯+⨯⨯=(). 所以,这2 000名学生一个月少喝饮料能节省3 420元钱捐给希望工程.②6000034201026002000⨯=.所以,我市七年级6万名学生一个月少喝饮料大约能节省102 600元钱捐给希望工程. 5.(1)“不合格”的食用油有1瓶,且甲种品牌食用油10%不合格∴被抽取的甲种品牌10瓶,则乙种品牌8瓶.(2)“优秀”等级中甲占60%,∴甲“优秀”的有6瓶,则乙“优秀”的有4瓶,“合格”的4瓶∴乙抽查的结果“优秀”的频率为50%,从而估计在超市中能买到“优秀”乙种食用油的概率为50%.专项五 图形面积的计算与证明题组训练一1.证法1:∵四边形ABCD 是菱形,∴AC 平分∠DAB . ∵60DAB ∠=︒,∴∠CAE 1302DAB =∠=︒.∵AC CE ⊥,∴∠E =90°-∠CAE = 90°-30°= 60°. ∴DAB E ∠=∠. ∵AB //CD ,∴四边形AECD 是等腰梯形. 证法2:连结BD ,∵ 四边形ABCD 是菱形, ∴AC BD ⊥,且AD AB =.蓝白白蓝红蓝红红蓝白白红红白蓝①号盒子 ②号盒子 ③号盒子图1DAB CE图2DA B CE丙 30% 甲乙第2题图专题系统复习试卷由AD AB =,︒=∠60DAB ,得, △ABD 是等边三角形, 即A B A D B D ==. ∵AC BD ⊥且AC CE ⊥,∴CE B D //. A B D C // , ∴四边形DBE C 是平行四边形. ∴BD EC =. ∴AD EC =.∴四边形AE CD 是等腰梯形. 证法3:设线段AD 和EC 的延长线交于点F .∵四边形ABCD 是菱形, ∴AC 平分∠DAB . ∵︒=∠60DAB ,∴∠CAE = 1302CAF DAB ︒∠=∠=. ∵AC CE ⊥,∴∠E =∠F = 90°-30°= 60°.∴△AEF 是等边三角形,且点C 是EF 的中点. //DC AB ,∴点D 是AF 的中点. ∴1122AD AF EF EC ===. ∴四边形AECD 是等腰梯形. 2.证明:(1)∵DE ⊥AG ,BF ⊥AG ,∴∠AED =∠AFB =90°. ∵ABCD 是正方形,DE ⊥AG , ∴∠BAF +∠DAE =90°,∠ADE +∠DAE =90°,∴∠BAF =∠ADE .又在正方形ABCD 中,AB =AD .在△ABF 与△DAE 中,∠AFB =∠DEA =90°, ∠BAF =∠ADE ,AB =DA , ∴△ABF ≌△DAE .(2)∵△ABF ≌△DAE ,∴AE =BF ,DE =AF . 又AF=AE+EF ,∴AF=EF+FB , ∴DE=EF+FB .3.证明:(1)在等腰直角△ABC 中,∵∠CAD =∠CBD =15o , ∴∠BAD =∠ABD =45o -15o =30o , ∴BD=AD ,∴△BDC ≌△ADC , ∴∠DCA =∠DCB =45o .由∠BDM =∠ABD+∠BAD =30o+30o=60o, ∠EDC=∠DAC +∠DCA =15o +45o =60o , ∴∠BDM =∠EDC , ∴DE 平分∠BDC ; (2)如图,连接MC ,∵DC=DM ,且∠MDC =60°,∴△MDC 是等边三角形,即CM=CD . 又∵∠EMC =180°-∠DMC =180°-60°=120°, ∠ADC =180°-∠MDC =180°-60°=120°, ∴∠EMC =∠ADC . 又∵CE=CA ,∴∠DAC =∠CEM =15°, ∴△ADC ≌△EMC ,∴ME=AD=DB . 4.证明:(1)∵3,2AC DC =63,42BC CE == ∴.AC BCDC CE= 又∠ACB =∠DCE =90°, ∴△ACB ∽△DCE . (2)∵ △ACB ∽△DCE , ∴∠ABC =∠DEC . 又∠ABC +∠A =90°, ∴∠DEC +∠A =90°. ∴∠EF A =90°.∴EF ⊥AB . 5.(1)∵∠B 、∠F 同对劣弧AP ,∴∠B =∠F∵BO=PO ,∴∠B =∠BPO ∴∠F=∠BPF ,∴AF ∥BE(2)∵AC 切⊙O 于点A ,AB 是⊙O 的直径, ∴∠BAC=90°∵AB 是⊙O 的直径,∴∠B P A=90° ∴∠EAP =90°—∠BEA ,∠B=90°—∠BE A , ∴∠EAP =∠B=∠F 又∠C=∠C ,∴△ACP ∽△FCA(3)∵∠CPE=∠BPO=∠B=∠EAP ,∠C=∠C ∴△PCE ∽△ACP∴APACPE PC = ∵∠EAP=∠B ,∠EP A =∠A P B ∴△EAP ∽△ BP ∴APABPE AE = 又AC=AB ,∴APACPE AE = 于是有PEAE PE PC = ∴CP=AE .题组训练二1.证明:(1)∵AB 与CD 是平行四边形ABCD 的对边,∴AB ∥CD ,∴∠DF A =∠F AB .图3DABCEFADEFCGBABCE数学 参考答案A B CDF3 241(2)在△ABE 和△FCE 中,∵FAB F AEB FEC BE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△ABE ≌△FCE . 2.证明:∵四边形ABCD 是平行四边形,∴.AD BC OB OD =,∥∴.EDO FBO OED OFB ==∠∠∠∠, ∴.OED OFB △≌△∴.DE BF =又∵ED BF ∥,∴四边形BEDF 是平行四边形. ∵EFBD ⊥,∴平行四边形BEDF 是菱形.3.(1)证明ABC 和△CDE 均为等边三角形,∴AC =BC ,CD =CE 且∠ACB =∠DCE =60°∵∠ACD +∠DCB =∠DCB +∠BCE =60° ∴∠ACD =∠BCE ∴△ACD ≌△BCE(2)解:作CH ⊥BQ 交BQ 于H , 则PQ =2HQ 在Rt △BHC 中 , 由已知和(1)得∠CBH=∠CAO =30° ∴CH =4在Rt △CHQ 中,HQ =3452222=-=-CH CQ ∴PQ=2HQ =6 4.(1)证明:四边形ABCD 是菱形CD AD CD P AD P ∴=∠=∠,.CDP ADP ∴△≌△. DCP DAP ∴∠=∠.(2)解:四边形ABCD是菱形,CD BA CD BA ∴=∥,. CPD FPB ∴△∽△.∴12DP CD CP PB BF PF ===, ∴11,22CD BF CP PF ==. A ∴为BF 中点. 又PA BF ⊥,PB PF ∴=.由(1)可知PF CP =,12PA PB =. 在Rt PAB △中,222122PB PB ⎛⎫=+ ⎪⎝⎭,PB ∴PD BD ∴∴= 5.(1)证明:连结OC .∵AC =CD ,120ACD ∠=︒, ∴30A D ︒∠=∠=. ∵OC OA =, ∴230A ∠=∠=︒.∴290OCD ACD ︒∠=∠-∠=. ∴CD 是O ⊙的切线.(2)解:∵∠A =30o , ∴1260A ∠=∠∠=︒. ∴2602360OBCSπ⨯==扇形23π.在Rt △OCD 中,CD =OC ·tan60°=∴Rt 11222OCD S OC CD ∆=⨯=⨯⨯∴图中阴影部分的面积为-3223π. 题组训练三1.(1)证明:A B C D 四边形是平行四边形,AD BC AD BC AF EC BE DF AF EC AECF ∴=∴=∴=∴∥,且,∥,,.四边形是平行四边形.(2)解:四边形AECF 是菱形,12AE EC ∴=∴∠=∠,.903902490134152BAC AE BE BE AE CE BC ∠=︒∴∠=︒-∠∠=︒-∠∴∠=∠∴=∴====,,,,,.2.(1)证明:∵四边形ABCD 是平行四边形∴AD ∥BC ,AB ∥CD∴∠ADF =∠CED ∠B +∠C =180° 又∵∠AFE +∠AFD =180° ∠AFE =∠B ∴∠AFD =∠C ∴△ADF ∽△DEC(2)解:∵四边形ABCD 是平行四边形 ∴AD ∥BC CD =AB =4 又∵AE ⊥BC ∴AE ⊥AD在Rt △ADE 中,D E=22AE AD +=6927=+ABCD QPEO HCBADEFPABCDEF专题系统复习试卷FB由(1)可知,△ADF ∽△DEC∴DEAD CDAF = ∴6334=AF ∴32=AF3.(1)证明:∵正方形ABCD ,点G ,E 为边AB 、BC 中点,∴AG EC =.又∵CF 为正方形外角平分线,且90AEF BG BE ∠=︒=,, ∴AGE E FE A CF C G E ∠∠==∠∠,. ∴AGE ECF ≌△△.∴EG CF =. (2)(图略).平行.4.(1)∵∠1=∠2,∴BO=CO 即2 BO=2CO∵四边形ABCD 是平行四边形 ∴AO=CO ,BO=OD即AC=2CO ,BD= 2 BO ∴AC= BD ∵四边形ABCD 是平行四边形 ∴四边形ABCD 是矩形 (2)在△BOC 中,∠BOC =120°,∴∠1 =∠2 =(180°-120°)÷2 = 30°∴在Rt △ABC 中,AC=2AB=2⨯4=8(cm),∴BC=344822=-(cm) ∴四边形ABCD 的面积=24)= 5.解:(1)在O CE △中,90602CEO EOC OC ∠=︒∠=︒=,,,112OE OC ∴==,2CE ∴== CE DE CD ∴=∴=,(2)11422S AB CE ABC==⨯=·△21π22π2S ∴=⨯-阴影6.(1)证明:连结OC 由DC 是切线得OC DC ⊥又AD DC ⊥AD OC ∥∴DAC ACO =∠∠ 又由OA =OC 得BAC ACO =∠∠DAC BAC ∴∠=∠即AC 平分∠BAD (2)解:方法一:AB 为直径∴90ACB ∠=° 又BAC BEC ∠=∠sin sin 6BC AB BAC AB BEC ∴=∠=∠=··8AC ∴==又D AC BAC BEC ∠=∠=∠且AD DC ⊥24sin sin 5CD AC DAC AC BEC ∴=∠=∠=··方法一:AB 为直径90ACB ∴∠=°又BAC BEC ∠=∠sin sin 6BC AB BAC AB BEC ∴=∠=∠=·· 8AC ∴==又90D AC BAC D ACB ∠=∠∠=∠=,°ADC ACB ∴△∽△DC AC CBAB =,即8610DC = 解得245DC =题组训练四1.过点A 作AE 垂直BD 与点E ,则四边形ACBE 为矩形,所以 CB =EA ,AC =BE ,且BD =2AC , 所以BE =ED =AC ,在Rt ⊿ACB 和Rt ⊿AED 中,ED =AC , CB =EA ,∠ACB =∠AED = 90°, 所以Rt ⊿ACB ≌ Rt ⊿AED (SAS ).所以AB =AD ,所以三角形ABD 为等腰三角形. 2.(1)在矩形ABCD 中,AC ∥DE ,∴∠DCA =∠CAB ,∵∠EDC =∠CAB , ∴∠DCA =∠EDC , ∴AC ∥DE ;(2)四边形BCEF 是平行四边形.理由:由∠DEC =90°,BF ⊥AC ,可得∠AFB =∠DEC =90°, 又∠EDC =∠CAB ,AB=CD ,∴△DEC ≌△AFB ,∴DE =AF ,由⑴得AC ∥DE , ∴四边形AFED 是平行四边形,∴AD ∥EF 且AD =EF ,∵在矩形ABCD 中,AD ∥BC 且AD =BC ,∴EF ∥BC 且EF =BC ,∴四边形BCEF 是平行四边形. 3.提示:由∠H =∠FCE ,AH =CE ,∠HAE =∠F CE 可证△HAE≌△CEF ,从而得到AE =EF . 4.解(1)∵△ABE ∴BA =BE ,∠ABE ∵∠MBN =60°,∴∠MBN -∠ABN ∠ABE -∠ABN .B ADAB C DE数学 参考答案其他 选项职高普高 即∠BMA =∠NBE .又∵MB =NB , ∴△AMB ≌△ENB (SAS ).(2)①当M 点落在BD 的中点时,AM +CM 的值最小. ②如图,连接CE ,当M 点位于BD 与CE 的交点处时, AM +BM +CM 的值最小.理由如下:连接MN .由(1)知,△AMB ≌△ENB ,∴AM =EN . ∵∠MBN =60°,MB =NB ,∴△BMN 是等边三角形. ∴BM =MN . ∴AM +BM +CM =EN +MN +CM . 根据“两点之间线段最短”,得EN +MN +CM =E C 最短 ∴当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最 小,即等于EC 的长.(3)过E 点作EF ⊥BC 交CB 的延长线于F , ∴∠EBF =90°-60°=30°. 设正方形的边长为x ,则BF =23x ,EF =2x .在Rt △EFC 中,∵EF 2+FC 2=EC 2, ∴(2x)2+(23x +x )2=()213+.解得,x =2(舍去负值). ∴正方形的边长为2.5.解:(1)∵AE=MC ,∴BE=BM ,∴∠BEM=∠EMB=45°,∴∠AEM =135°,∵CN 平分∠DCP ,∴∠PCN=45°, ∴∠AEM=∠MCN=135°在△AEM 和△MCN 中:∵,,=CMN,AEM MCN AE MC EAM ∠=∠=∠∠⎧⎪⎨⎪⎩∴△AEM ≌△MCN ,∴AM=MN(2)仍然成立.在边AB 上截取AE =MC ,连接ME ∵△ABC 是等边三角形,∴AB =BC ,∠B =∠ACB =60°, ∴∠ACP =120°. ∵AE =MC ,∴BE =BM ∴∠BEM =∠EMB =60° ∴∠AEM =120°.∵CN 平分∠ACP ,∴∠PCN =60°,∴∠AEM =∠MCN=120° ∵∠CMN =180°-∠AMN -∠AMB =180°-∠B -∠AMB =∠BAM∴△AEM ≌△MCN ,∴AM =MN(3)(2)180n n-︒第二篇 2012中考基础题型综合训练题组训练一一、选择题1.A 2.D 3.C 4.A 5.A 6.B 7.C 8.A 9.D 10.C 11.C 12.C二、填空题13.(x +2)(x -2) 14.球类 15.10 16.27π三、解答题17.解:原式=4-1+1+3=7 18.解:x x x x x 22)242(2+÷-+-242()222x x x x x =-⨯--+=2)2)(2(--+x x x ×22+x x=2x因为x ≠2,-2,0;当x =1时,原式=2×1=2 19.解:(1)40;(2)108°;(3)如图:(4)900×(100%-10%-60%)=270人.20.解:(1)90元(可用待定系数法求函数关系式再代入求函数值,或观察图象得出收费标准再代入求均可);(2)设五月份用电量为m 度,六月份用电量为n 度,则可得 n =2m 分析可知m ≤100,n>100,由求得的收费标准可得:0.65m+(0.8n-15)=165 解得m =80,n =160,所以五月份的用电量为80度,六月份的用电量为160度题组训练二一、选择题1.A 2.A 3.B 4.B 5.A 6.C 7.C 8.B 9.A 10.B 11.C 12.D 二、填空题13.2(m + 2n )(m -2n ) 14.110︒ 15.12-或 16.4 三、解答题17.解:原式2=+18.解:12x +,x 的取值范围是x ≠-2且x ≠1的实数.19.解:(1)∵小明所在的全班学生人数为14÷28% = 50人,∴骑自行车上学的人数为50-14-12-8 = 16人;其统计图略. (2)乘公共汽车、骑自行车、步行、其它所占全班的比分别 为14÷50,16÷50,12÷50,8÷50即28%,32%,24%,16%, 它们所对应的圆心角分别是100.8︒,115.2︒,86.4︒,57.6︒, 其统计图略.(3)小明所在的班的同学上学情况是:骑自行车的学生最多; 乘公共汽车的学生次之;其他占少数.专题系统复习试卷20.甲栋楼高390米,乙栋楼高3120米.题组训练三一、选择题1.A 2.C 3.D 4.D 5.C 6.C 7.B 8.C 9.D 10.B 11.B 12.B 二、填空题 13.-614.60° 15.6±16.31三、解答题17.解:-22+27+(π-1)0-3×︒+-60tan 1=-4+33+1-3(3-1)= 018.解:原式)111(1220122-+-÷+-a a a a a)1()1(20122a a a a -⨯-=12012-=a 因a ≠1 故取a =2,原式=2012.(取a=3,原式=1006) 19.解:(1)4%(2)72°(3)B 级(4)380人 20.(1)证明:四边形ABCD 是矩形,∴AD ∥BC , ∴∠PDO =∠QBO ,又OB =OD ,∠POD =∠QOB ,∴△POD ≌△QOB , ∴OP =OQ . (2)解法一:PD =8-t∵四边形ABCD 是矩形,∴∠A =90°,∵AD =8cm ,AB =6cm ,∴BD =10cm ,∴OD =5cm.当四边形PBQD 是菱形时,PQ ⊥BD ,∴∠POD=∠A ,又∠ODP =∠ADB ,∴△ODP ∽△ADB ,∴OD AD PD BD =,即58810t =-, 解得74t =,即运动时间为74秒时,四边形PBQD 是菱形. 解法二:PD =8-t当四边形PBQD 是菱形时,PB =PD =(8-t )cm ,∵四边形ABCD 是矩形,∴∠A =90°,在RT △ABP 中, AB =6cm ,∴222AP AB BP +=, ∴2226(8)t t +=-,解得74t =,即运动时间为74秒时,四边形PBQD 是菱形 题组训练四一、选择题 1.B 2.C 3.B 4.D 5.A 6.C 7.D 8.A 9.C 10.D 11.A 12.B 二、填空题13.a (a+b)(a-b ) 4.15. 16.52n三、解答题 17.解:原式=-=-1.18.解:原方程两边同乘以)1)(1(-+x x得6-3(x +1)=12-x 整理得0432=-+x x 解得x =1 或x =-4经验证知1-=x 是原方程的增根,故原方程的解为4=x 19.解:(1)设反比例函数解析式为y=xk,将)3,2(-B 代入得 3=2-k k =-6 所以反比例函数解析式为y =-x6; 设A (0,a ),由 四边形OABC 面积为4得2(.3)42a +=, 解得a =1设一次函数的解析式y=mx+b ,将)3,2(-B ,A (0,1)代入得3210m bb =-+⎧⎨=+⎩ 解得11m b =-=⎧⎨⎩所以一次函数的解析式为y=-x+1(2)由61y x y x ⎧=-⎪⎨⎪=-+⎩ 得123x y =-⎧⎨=⎩ 2232x y =⎧⎨=-⎩ 所以点D 的坐标为(3,-2)(3)x <-2或0<x <320.(1)解:设乙独做x 天完成此项工程,则甲独做(+30)天完成此项工程.由题意得:20(3011++x x )=1整理得:x 2-10x -600=0 解得:x 1=30 x 2=-20经检验:x 1=30 x 2=-20都是分式方程的解,但x 2=-20不符合题意舍去,故x +30=60答:甲、乙两工程队单独完成此项工程各需要60天、30天.(2)设甲独做a 天后,甲、乙再合做(20-3a)天,可以完成此项工程.(3)由题意得:1×(1 2.5)(20)643aa ++-≤ 解得:a ≥36答:甲工程队至少要独做36天后,再由甲、乙两队合作完成剩下的此项工程,才能使施工费不超过64万元. 题组训练五一、选择题1.D 2.B 3.B 4.D 5.A 6.B7.B 8.B 9.A 10.B 11.A 12.C数学 参考答案二、填空题 13.x (x +2)(x -2) 14.x 1=0,x 2=2 15.73816.502+π三、解答题17.解:原式=1+2+2-2-2×21=22-218.解:(1)画树状图如下:甲 12 3乙 6 7 8 9 6 7 8 9 6 7 8 9 和 78 9 10 8 9 10 11 9 10 11 12可见,共有12种等可能的情况,其中和小于10的有6种.∴小颖获胜的概率为61122=. (2)该游戏规则不公平.由(1)可知,共有12种等可能的情况,其和大于10的情况 有3种,∴小亮获胜的概率为31124=,显然1124≠,故该游戏规则不 公平.游戏规则可修改为:当两个转盘指针所指区域内的数字之和 大于或等于10时,小亮获胜;当两个转盘指针所指区域内的 数字之和小于10时,小颖获胜.修改游戏规则的方式很多,只要修改后的游戏规则符合题目 要求即给分,例如游戏规则也可修改为:当两个转盘指针所 指区域内的数字之和为奇数时,小亮获胜;为偶数时,小颖 获胜.19.解:(1)过点O 作OD ⊥AB 于点D ,交A′C 于点E根据题意可知EC=DB=OO′=2 ED =BC ∴∠A′ED =∠ADO=90º 在Rt △AOD 中, ∵cos ∠A =AD OA =35∴AD =6 ∴OD 在Rt △A′OE 中, ∵sin ∠A′=12,OA′∴OE =5∴BC=ED=OD -OE=3(2)在Rt △A′OE 中,A′E=∴B′C=A′C -A′B′=A′E +CE -AB=A′E +CE -(AD +BD ) =-(6+2)= 6答:此重物在水平方向移动的距离BC 是3米,此重物在竖 直方向移动的距离B′C 是(6)米.20.当点O 运动到AC 的中点(或OA =OC )时,四边形AECF 是矩形 证明:∵CE 平分∠BCA , ∴∠1=∠2, 又∵MN ∥BC , ∴∠1=∠3, ∴∠3=∠2, ∴EO =CO . 同理,FO =CO ∴EO =FO又OA =OC , ∴四边形AECF 是平行四边形 又∵∠1=∠2,∠4=∠5, ∴∠1+∠5=∠2+∠4. 又∵∠1+∠5+∠2+∠4=180° ∴∠2+∠4=90° ∴四边形AECF 是矩形题组训练六 一、选择题 1.B 2.D 3.C4.D5.C6.C7.B8.B9. B 10.A 11.A 12.B二、填空题13.2)1(+a b 14.21<m 15.P 1(1,4)、P 2(3,4). 16.22012 三、解答题17.解:原式=19-2×9-22+22-1=0 18.解:)211(342--⋅--a a a =)2122(3)2)(2(----⋅--+a a a a a a =233)2)(2(--⋅--+a a a a a =2+a当3-=a 时,原式=2+a =123-=+-19.解:(1)20,8,0.4,0.16 (2)57.6(3)由上表可知达到优秀和良好的共有19+20=39人,39500=39050⨯人. 20.(1)证明:如右图,1903,∠=︒-∠290∠=︒-∠12∴∠=∠又OC =OD ,OA =OE ,AOC BOD ∴∆≅∆(2)由AOC BOD ∆≅∆有:AC=BD =2,45CAO DBO ∠=∠=︒,90CAB ∴∠=︒,故CD图1AB C OMN EF 1 5 4 3 2专题系统复习试卷1.A 7.D13.17.18.19.20.(((题组训练八一、选择题1.A 2.D 3.C 4.A 5.D 6.A 7.A 8.B 9.A 10.A 11.D 12.A 二、填空题13.22(1a-)14.a<4 15.<16.2π三、解答题17.解:原式1222)2(3+⨯--+11123=+--=18.原式=2()122121x x x xx x x x----÷+++(1)(1)(2)(1)x x x xx x=÷-+--+22221x xx x-++2221(1)1(1)(21)x x xx x x x x-++=⨯=+-当x2-x-1=0时,x2=x+1,原式=1.19.解:(1)30.(2)由题意得:∠PBH=60°,∠APB=45°.∵∠ABC=30°,∴∠APB=90°.在Rt△PHB中,PB=PBHPH∠sin=203,在Rt△PBA中,AB=PB=203≈34.6.答:A、B两点间的距离约34.6米.20.(1)证明:∵AD∥BC∴∠ADB=∠CBD∵AB=AD∴∠ADB=∠ABD∴∠ABD=∠CBD(2)∵AE∥DB∴∠E=∠CBD由(1)得∠ABD=∠CBD∴∠ABC=2∠CBD=2∠E又∵∠C=2∠E∴∠ABC=∠C在梯形ABCD中,∴AB=DC(3)过D作DF⊥BC,垂足为F,由sin∠C=45,得DFDC=45由(2)有CD=AB,又AB=AD=2,∴CD=2,DF=425∵AD∥BC,AE∥DB∴四边形AEBD的平行四边形∴S四边形AEBD=AD·DF=2×425=85第三篇 2012中考重点题型与思想方法专项训练专项一 规律探究题型题组训练一1.C 2.C 3.A 4.D 5.(2)n n +6.(1)4n n ++或24n n ++; 7.21-n ;8.(1)111n n -+(2)证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n n n n +-+=)1(1+n n (3)原式=1-12+12-31+31-41+…+20091-20101=12009120102010-=.9.解:(1)()554322345510105a ba ab a b a b ab b +=+++++543222252(1)102(1)102345(1)52(1)(1)=+⨯⨯-+⨯⨯-+⨯⨯-+⨯⨯-+-()原式=5(21)-=1题组训练二1.A 2.B 3.A 4.A 5.ab 201021)( 6.512,45 7.5040 81,2011313-; 9.解:探究 (1)①(1,0);②(-2,21); (2)过点A ,D ,B 三点分别作x 轴的垂线,垂足分别为,,A D B '''则////,AA BB CC ''.∵D 为AB 中点,由平行线分线 段成比例定理得A D D B ''''=.∴OD ′=22ca a c a +=-+. 即D 点的横坐标是2ca + 同理可得D 点的纵坐标是2db +. ∴AB 中点D 的坐标为(2c a +,2db +).归纳:2c a +,2db +.运用 ①由题意得⎪⎩⎪⎨⎧=-=x y x y 32., 解得⎩⎨⎧==13y x .,或⎩⎨⎧-=-=31y x .,. ∴即交点的坐标为A (-1,-3),B (3,1) . ②以AB 为对角线时,由上面的结论知AB 中点M 的坐标为(1,-1) . ∵平行四边形对角线互相平分,∴OM =OP ,即M 为OP 的中点. ∴P 点坐标为(2,-2).同理可得分别以OA ,OB 为对角线时, 点P 坐标分别为(4,4) ,(-4,-4).∴满足条件的点P 有三个,坐标分别是(2,-2) ,(4,4), (-4,-4) .专项二 方案设计与决策型题型题组训练一1.B 2.B 3.D 4.D 5.②③ 6.72 7.(1)(从左至右,从上至下)14-x 15-x x -1(2)y =50x +(14-x )30+60(15-x )+(x -1)45=5x +1275 解不等式1≤x ≤14 所以x =1时y 取得最小值 y min =12808.(1)设搭建A 种园艺造型x 个,则搭建B 种园艺造型(50-x )个.根据题意得85(50)34949(50)295x x x x +-+-⎧⎨⎩≤≤解得313x ≤≤,所以共有三种方案①A :31 B :19 ②A :32 B :18 ③A :33 B :17(2)由于搭配一个A 种造型的成本是200元,搭配一个B 种 造型的成本是360元,所以搭配同样多的园艺造型A 种比B 种成本低,则应该搭配A 种33个,B 种17个. 成本:33×200+17×360=12720(元)9.(1)设T 恤和影集的价格分别为x 元和y 元.则925200x y x y -=⎧⎨+=⎩解得3526x y =⎧⎨=⎩答:T 恤和影集的价格分别为35元和26元. (2)设购买T 恤t 件,则购买影集 (50-t ) 本,则15003526(50)1530t t +-≤≤解得200230,99t ≤≤∵t 为正整数, ∴t = 23,24,25,即有三种方案.第一种方案:购T 恤23件,影集27本; 第二种方案:购T 恤24件,影集26本; 第三种方案:购T 恤25件,影集25本.E F ABDCMN图 ① HC图 ②A BD M FE G K题组训练二1.解(1)∵⊙O 1、⊙O 2、⊙O 3两两外切,∴O 1O 2=O 2O 3=O 1O 3=a 又∵O 2A= O 3A∴O 1A ⊥O 2O 3 O 1A=2241a a + =a 23(2)n h =n an h '==()a a n +-123,方案二装运钢管最多。

相关文档
最新文档