三角形练习一
人教版八年级上册数学:第十一章三角形练习题(一)

八年级上册数学:第十一章三角形练习题(一)一.选择题1.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm2.已知△ABC的三边长分别为a、b、c,且M=(a+b+c)(a+b﹣c)(a﹣b﹣c),那么()A.M>0 B.M≥0 C.M=0 D.M<03.若n边形的内角和等于外角和的3倍,则边数n为()A.n=6 B.n=7 C.n=8 D.n=94.下列各图中,正确画出AC边上的高的是()A.B.C.D.5.在Rt△ABC中,若一个锐角等于40°,则另一个锐角的度数为()A.40°B.45°C.50°D.60°6.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°7.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形8.若三角形三个内角度数比为2:3:4,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.下列各线段中,能与长为4,6的两线段组成三角形的是()A.2 B.8 C.10 D.1210.如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60°D.45°11.如图,点D,E在△ABC边上,沿DE将△ADE翻折,点A的对应点为点A′,∠A′EC=40°,∠A′DB=110°,则∠A等于()A.30°B.35°C.60°D.70°12.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90°B.135°C.270°D.315°二.填空题13.三角形两边长分别是2,4,第三边长为偶数,第三边长为.14.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.15.八边形的内角和为,外角和为.16.如图,已知BD为△ABC中∠ABC的平分线,CD为△ABC的外角∠ACE的平分线,与BD 交于点D,若∠D=28°,则∠A=.17.在△ABC中,AD为BC边上的高,∠BAD=55°,∠CAD=25°,则∠BAC=.18.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.三.解答题19.如图,在△ABC中,∠A=40°,∠B=72°,CD是AB边上的高,CE是∠ACB的平分线,DF⊥CE于F,求∠CDF的度数.20.如图,在△ABC中,分别作其内角∠ACB与外角∠DAC的角平分线,且两条角平分线所在的直线交于点E(1)填空:①如图1,若∠B=60°,则∠E=;②如图2,若∠B=90°,则∠E=;(2)如图3,若∠B=α,求∠E的度数;(3)如图4,仿照(2)中的方法,在(2)的条件下分别作∠EAB与∠ECB的角平分线,且两条角平分线交于点G,求∠G的度数.21.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,∠A =40°,则∠ABX +∠ACX = °;②如图3,DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =40°,∠DBE =130°,求∠DCE 的度数;③如图4,∠ABD ,∠ACD 的10等分线相交于点G 1、G 2…、G 9,若∠BDC =133°,∠BG 1C =70°,求∠A 的度数.22.探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ放置在△AC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数.23.如图,在△ABC中,∠B=50°,∠C=70°,AD是高,AE是角平分线,(1)∠BAC=,∠DAC=.(填度数)(2)求∠EAD的度数.24.(1)如图1,这是一个五角星ABCDE,你能计算出∠A+∠B+∠C+∠D+∠E的度数吗?为什么?(必须写推理过程)(2)如图2,如果点B向右移动到AC上,那么还能求出∠A+∠DBE+∠C+∠D+∠E的大小吗?若能结果是多少?(可不写推理过程)(3)如图,当点B向右移动到AC的另一侧时,上面的结论还成立吗?(4)如图4,当点B、E移动到∠CAD的内部时,结论又如何?根据图3或图4,说明你计算的理由.参考答案一.选择题1.解:A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.2.解:∵△ABC的三边长分别为a、b、c,且M=(a+b+c)(a+b﹣c)(a﹣b﹣c),∴a+b+c>0,a+b﹣c>0,a﹣b﹣c<0,∴M<0.故选:D.3.解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.4.解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.5.解:∵直角三角形中,一个锐角等于40°,∴另一个锐角的度数=90°﹣40°=50°.故选:C.6.解:∵∠A+∠B+∠ACB=180°,∠ACB=100°,∠A=20°,∴∠B=60°,根据翻折不变性可知:∠CB′D=∠B=60°,∵∠DB′C=∠A+∠ADB′,∴60°=20°+∠ADB′,∴∠ADB′=40°,故选:A.7.解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选:A.8.解:设三个内角度数为2x、3x、4x,由三角形内角和定理得,2x+3x+4x=180°,解得,x=20°,则三个内角度数为40°、60°、80°,则这个三角形一定是锐角三角形,故选:A.9.解:设组成三角形的第三边长为x,由题意得:6﹣4<x<6+4,即:2<x<10,故选:B.10.解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°,=45°+60°,=105°.故选:B.11.解:∵∠A′EC=40°,∴∠AEC+∠A′EC=180°+40°=220°,由翻折可知:∠AED=∠A′ED=×220°=110°,∵∠A′DB=110°,∴∠A′DA=70°,由翻折可知:∠ADE=∠A′DE=A′DA=35°,∴∠A=180°﹣∠ADE﹣∠AED=35°.故选:B.12.解:∵∠C=90°,∴∠A+∠B=90°.∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.故选:C.二.填空题(共6小题)13.解:设第三边为a,根据三角形的三边关系知,4﹣2<a<4+2.即2<a<6,由周长为偶数,则a为4.故答案为:4.14.解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=360°,解得n=6.故答案为:6.15.解:八边形的内角和为(8﹣2)•180°=1080°;外角和为360°.故答案为:1080°,360°.16.解:∵BD为∠ABC的平分线,CD为∠ACE的平分线,∴∠DBC=∠ABC,∠DCE=∠ACE,∵∠DCE=∠DBC+∠D,∠ACE=∠ABC+∠A,∴∠DBC+∠D=(∠ABC+∠A),∴∠D=∠A,∴∠A=2∠D=2×28°=56°.故答案为56°.17.解:画图如下:①如左图:∠BAC=∠BAD+∠CAD=55°+25°=80°;②如右图:∠BAC=∠BAD﹣∠CAD=55°﹣25°=30°.故答案为:80°或30°.18.解:∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.三.解答题(共6小题)19.解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°.∵CE是∠ACB的平分线,∴∠BCE=∠ACB=×68°=34°.∵CD⊥AB即∠CDB=90°,∴∠BCD=180°﹣90°﹣72°=18°,∴∠DCE=∠BCE﹣∠BCD=34°﹣18°=16°.∵DF⊥CE即∠DFC=90°,∴∠CDF=180°﹣90°﹣16°=74°.20.解:(1)①∠DAC﹣∠ACB=∠B=60°,∵EA平分∠DAC,EC平分∠ACB,∴∠FAC=∠DAC,∠ACE=∠ACB,∴∠E=∠FAC﹣∠ACE=∠B=30°;②∠DAC﹣∠ACB=∠B=60°,∵EA平分∠DAC,EC平分∠ACB,∴∠FAC=∠DAC,∠ACE=∠ACB,∴∠E=∠FAC﹣∠ACE=∠B=45°;(2)∠DAC﹣∠ACB=∠B=α,∵EA平分∠DAC,EC平分∠ACB,∴∠FAC=∠DAC,∠ACE=∠ACB,∴∠E=∠FAC﹣∠ACE=∠B=α;(3)∵AG,CG分别是∠EAB与∠ECB的角平分线,∴∠G=∠HAC﹣∠ACG=∠FAC﹣∠ACE=(∠FAC﹣∠ACE)=×∠B=α.21.解:(1)如图(1),连接AD并延长至点F,,根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C;(2)①由(1),可得∠ABX+∠ACX+∠A=∠BXC,∵∠A=40°,∠BXC=90°,∴∠ABX+∠ACX=90°﹣40°=50°,故答案为:50.②由(1),可得∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE﹣∠DAE=130°﹣40°=90°,∴(∠ADB+∠AEB)=90°÷2=45°,∴∠DCE=(∠ADB+∠AEB)+∠DAE=45°+40°=85°;C=(∠ABD+∠ACD)+∠A,③∠BG1C=70°,∵∠BG1∴设∠A为x°,∵∠ABD+∠ACD=133°﹣x°∴(133﹣x)+x=70,∴13.3﹣x+x=70,解得x=63,即∠A的度数为63°.22.解:(1)如图(1),∠BDC=∠BAC+∠B+∠C,理由是:过点A、D作射线AF,∵∠FDC=∠DAC+∠C,∠BDF=∠B+∠BAD,∴∠FDC+∠BDF=∠DAC+∠BAD+∠C+∠B,即∠BDC=∠BAC+∠B+∠C;(2)①如图(2),∵∠X=90°,由(1)知:∠A+∠ABX+∠ACX=∠X=90°,∵∠A=40°,∴∠ABX+∠ACX=50°,故答案为:50;②如图(3),∵∠A=40°,∠DBE=130°,∴∠ADE+∠AEB=130°﹣40°=90°,∵DC平分∠ADB,EC平分∠AEB,∴∠ADC=∠ADB,∠AEC=∠AEB,∴∠ADC+∠AEC==45°,∴∠DCE=∠A+∠ADC+∠AEC=40°+45°=85°.23.解:(1)∠BAC=60°,∠DAC=20°,在△ABC中∠B=50°,∠C=70°,∠BAC=180°﹣∠B﹣∠C=60°,∵AD是高,∠C=70°,∴∠DAC=90°﹣70°=20°,故答案为:60°;20°;(2)∵AE是角平分线,∴∠EAC=∠BAC=30°又∵AD是高,∴∠DAC+∠C=90°,∠DAC=90°﹣70°=20°,∴∠EAD=∠EAC﹣∠DAC=10°.24.解:(1)如图,由三角形的外角性质,∠A+∠C=∠1,∠B+∠D=∠2,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(2)如图,由三角形的外角性质,∠A+∠D=∠1,∵∠1+∠DBE+∠C+∠E=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°;(3)如图,由三角形的外角性质,∠A+∠C=∠1,∠B+∠D=∠2,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(4)如图,延长CE与AD相交,由三角形的外角性质,∠A+∠C=∠1,∠B+∠E=∠2,∵∠1+∠2+∠D=180°,∴∠A+∠B+∠C+∠D+∠E=180°.。
三角形练习题含答案

三角形练习题含答案一、选择题1.如果在一个顶点周围用两个正方形和n个正三角形恰好可以进行平面镶嵌,则n的值是.A.3B.C.5D..下面四个图形中,线段BE是⊿ABC的高的图是3.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是 A.13cmB.6cmC.5cmD.4cm4.三角形一个外角小于与它相邻的内角,这个三角形是 A.直角三角形 B.锐角三角形 C.钝角三角形 D.属于哪一类不能确定.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C 相等的角的个数是A、3个 B、4个 C、5个 D、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=A、90B、120C、160D、180第5题图第6题图7.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是1个2个3个4个 8.给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。
正确的命题有A.1个B.2个C.3个D.4个二、填空题9.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD=。
10.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________. 11.把一副常用的三角板如图所示拼在一起,那么图中∠ADE是度。
12.如图,∠1=_____.ACABED第10题图C第11题图2第12题图第14题图16题图13.若三角形三个内角度数的比为2:3:4,则相应的外角比是 . 14.如图,⊿ABC中,∠A =0°,∠B =2°,CE 平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF =度。
四年级数学三角形练习题1

1. 什么是三角形?三角形是由三条不在同一直线上的线段首尾顺次连结所组成的图形叫做三角形。
2. 三角形的性质和特点。
三角形具有三个角、三条边、三个顶点、三条高。
三角形具有稳定性。
3. 三角形的三条边关系:三角形的任意两边之和大于第三边。
(通常情况下判断三条线段是否能组成一个三角形,采用这种方法:取最小的两边之和与最长的一条边做比较,只要最小的两边之和大于最长的边,就一定能构成三角形。
)4. 三角形的高:就是从底边所对应的顶点,到底边上垂直距离,叫做三角形的高。
5. 三角形的周长=三条边相加三角形的面积=底×高÷26. 三角形的内角和等于180度。
7. 三角形的分类。
锐角三角形:三个角全都是锐角的三角形叫做锐角三角形。
直角三角形:其中有一个角为90度的三角形叫做直角三角形。
钝角三角形:其中有一个角为钝角的三角形叫做钝角三角形。
8. 等腰三角形:在一个三角形中,有两条边一样长(或有两个角相等)的三角形叫做等腰三角形。
等腰三角形的特点:①两条腰的长度相等;②两个底角的度数相等;③两条腰上的高长度相等。
9. 等边三角形:在一个三角形中,三条边都一样长(或三个角的度数都相等)的三角形叫做等边三角形。
等边三角形的特点:①三条边的长度相等;②三个角的度数相等且都等于60度;③三条边上的高长度都相等。
10.①顶角为60度的等腰三角形一定是等边三角形。
②有一个底角为60度的等腰三角形一定等边三角形。
《三角形》专项训练一、填空1、一个三角形,其中两个角分别是40°和60°,这个三角形是( )三角形。
2、一个三角形最多可以画( )条高。
3、一个等腰三角形,从它的顶点向对边作垂线,分成的每个小三角形的内角和是( )。
4、由三条( )围成的图形叫三角形。
5、一个等腰三角形,其中一个角是40°,它的另个两个角可能是( )和( ),也可能是( )和( )。
6、三角形按角可分为( )三角形、( )三角形、( )三角形。
三角形

《三角形》练习一、三角形三边关系的应用:三角形的 大于 , 小于 。
1、两根木棒长为7cm 和10cm ,要选择第三根木棒,将它们订成三角形框架,那么第三根木棒的长x(cm)的取值范围是 2、在△ABC 中,AB=8,BC=6,则第三边AC 的长度m 的取值范围是 3、在一个三角形中,有两边的长分别是2和10,第三边长是一个奇数,第三边为 4、若在一个三角形中,有两边的长分别是3和7,且三角形的周长是偶数,则这个三角形周长是 5、三角形的两边长分别为4和9,且周长为偶数,则第三边取值可以有 种。
6、三角形的三边分别是3,8,x ,若x 的值为偶数,则x 的值为 个。
7、三角形的三边长为3,4,x-1,则x 的取值范围是 8、下列各组线段的长,能够组成三角形的是①6、10、4 ②5、4、8 ③6、10、5④21、41、51 ⑤三条线段的比是3:4:5 ⑥1+a,2+a,3+a(a >0) 9、四条线段的长度分别为5cm ,6cm,8cm,13cm ,以其中任意三条为边构成三角形的是 10、用12根火柴棒(等长)拼成一个三角形,火柴棒不许剩余,重叠,折断,则能摆出不同形状的三角形的个数是 二、等腰三角形:(注意分类讨论) 1、等腰三角形的两条边是7和3,则第三条边的长是 ;若两条边是5和8,则第三条边的长是 2、等腰三角形的两边长分别为4cm ,7cm ,则该三角形的周长是 3、等腰三角形的两边长分别为6cm ,3cm ,则该三角形的周长是 3、一个等腰三角形的周长为25cm ,其中一边长为10cm ,则另两边长是 4、如果三角形的两边长分别是23cm 和10cm,第三边与其中一边的长相等,那么第三边的长为 5、等腰三角形的周长是12cm ,一边与另一边的差是3cm ,则三边长是 6、等腰三角形的周长是14cm ,底边与腰的比是3:2,则各边长分别是 三、利用三角形中线计算 1、如图1:AD 是△ABC 的中线, ①若BC=10cm ,则BD= =21 = cm ②若CD=7cm ,则BD= = cm ③若BD=5cm ,则BC=2 = cm ④△ABD 与△ACD 面积的大小关系是 (等底等高的两个三角形面积相等) 2、如图2:在△ABC 中,D ,E 分别是BC 、AD 的中点,△ABC 的面积是4cm 2,则S △ABD = = =21 = cm 2, S △ABE = = =21 = 41 = cm 2 3、如图3:在△ABC 中,D ,E 、F 分别是BC 、AD 、EC 的中点,△ABC的面积是16cm 2,则 S △BEF =21 = S △ABC = cm2 4、如图4:AD 是△ABC 的中线,AB=6cm ,AC=5cm ,则△ABD 与△ACD 的周长差是5、若AD 是△ABC 的中线,△ABD 的周长比△ACD 的周长大2,且AB=5,则AC 长是6、等腰三角形一腰上的中线把三角形的周长分为9和15两部分,则三角形的三边长是7、如图5:△ABC 的周长为18cm ,BE 、CF 、AD 分别为AC 、AB 、BC 边上的中线,AF=3cm ,AE=2cm, 则BD 的长为 四、三角形的角平分线 1、若AE 是△ABC 的角平分线,∠BAC=70°,则,∠BAE= =21 = 2、如图6:AD 、AE 分别是△ABC 的角平分线和中线,若∠BAD=30°,CE=3cm ,则∠BAC= BC=3、如图7:D 是△ABC 的边AB 上一点,D E ∥AC 交BC 于点E ,若∠DEA=∠EAD ,说明AE 是△ABC 的角平分线4、如图8:AD 是角平分线,D E ∥AC 交AB 于E ,EF ∥AD 交BC 于F ,说明EF 是△BED 的角平分线五、三角形的高 1、若AD 、BE 分别是△ABC 中BC 、AC 边上的高,AD=4cm, BC=6cm,AC=5cm , 则BE= (等积法的应用) 2、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为 3、如图9:AB ⊥BD 于B ,AC ⊥CD 于C ,则△ADE 的边DE 上的高为 ,边AE 上的高为 ,若AE=5,DE=2, CD=59,则AB= 3、如图10,AD 是△ABC 的高,BE 平分∠ABC 交AD 于E ,若∠C=70°,∠BED=64°,求∠BAC 的度数 4、①画出下面各三角形三边上的高。
三角形基础练习

A D CCAB C <三角形>全章基础练习(一)1、图中共有()个三角形。
A:5 B:6 C:7D:82、如图,AE⊥BC,BF⊥AC,CD⊥AB,则△ABC中AC边上的高是()A:AE B:CD C:BF D:AF3、三角形一边上的高()。
A:必在三角形内部B:必在三角形的边上C:必在三角形外部D:以上三种情况都有可能4、能将三角形的面积分成相等的两部分的是()。
A:三角形的角平分线B:三角形的中线C:三角形的高线D:以上都不对6、具备下列条件的三角形中,不是直角三角形的是()。
A:∠A+∠B=∠C B:∠A=∠B=12∠CC:∠A=90°-∠B D:∠A-∠B=907、一个三角形最多有个直角,有个钝角,有个锐角。
8、△ABC的周长是12 cm ,边长分别为a ,b , c , 且a=b+1 , b=c+1 ,则a= cm , b= cm , c= cm。
9、如图,AB∥CD,∠ABD、∠BDC的平分线交于E,试判断△BED的形状?并说明理由. (二)1、三角形的三个外角中,钝角最多有()。
A:1个B:2个C:3 个D:4 个2、下列说法错误的是()。
A:一个三角形中至少有两个锐角B:一个三角形中,一定有一个外角大于其中的一个内角C:在一个三角形中至少有一个角大于60°D:锐角三角形,任何两个内角的和均大于90°3、一个三角形的外角恰好等于和它相邻的内角,则这个三角形是()。
A:锐角三角形B:直角三角形C:钝角三角形D:不能确定4、直角三角形两锐角的平分线相交所成的钝角是()。
A:120°B:135°C:150°D:165°5、△ABC中,BCA∠=∠=∠3,1000,则.___________=∠B6、在△ABC中,∠A=100°,∠B-∠C=40°,则∠B= ,∠C= 。
7、如图,∠B=50°,∠C=60°,AD为△ABC的角平分线,求∠ADB的度数。
人教新课标第十一章三角形练习题

三角形练习(1)1、一个等腰三角形的一边长为6cm ,周长为20cm ,求其他两边的长。
2、已知等腰三角形的一边长等于5,一边长等于6,求他的周长。
3、已知等腰三角形的一边长等于4,一边长等于9,求他的周长。
4、在△ABC 中,AB=2,BC=4. △ABC 的AD 高与CE 的比是多少?5、如图,AD 是△ABC 的角平分线。
DE ∥AC ,DE 交AB 于E 。
DF ∥AB ,DF 交AC 于F 。
图中∠1与∠2有什么关系?请说明理由。
三角形练习(3)1、分别画出锐角三角形、直角三角形、钝角三角形的高。
2.如图7.2.1-2,将一副三角板按图示的方法叠在一起,则图中∠α等于________度.3.如图7.2.1-3所示,∠A =40°,∠1+∠2+∠3+∠4=_________.4.在△ABC 中,∠A =90°,∠C =55°,则∠B =_____;若∠C =4∠A ,∠A +∠B =100°,则∠B =________.5.如图7.2.1-4所示,BC 、AD 相交于点O ,∠A =∠C =90°,∠B =25°,则∠D =______度.6.如图7.2.1-5,AB ∥CD ,直线l 平分∠AOE ,∠1=40°,∠2=______.图7. 2.1-2 图7. 2.1- 3 图7.2.1-4 图7.2.1-5 7. △ABC 中,若∠A+∠B=∠C ,则△ABC 是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定8.一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是( )A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形9.如图7.2.1-7所示,将三角形纸片ABC 的一个角折叠,折痕为EF ,若∠A =80°,∠B =68°,∠CFE =78°,求∠CEF 的度数.三角形练习(4)1.如图7.2.2-1所示,图中的∠1=________.图7.2.2-1 图7.2.2-2 图7.2.2-3 2.如图7.2.2-2,∠3=120°,则∠1-∠2=________. 3.已知,如图7.2.2-3,AD 与BC 相交于点O ,AB ∥CD ,如果∠B =20°,∠D =40°,那么∠BOD 为________度. 4.如图7.2.2-4所示,∠a =________.5.在△ABC 中,∠A =53°,∠B =63°,那△ABC 的最小外角是( ) A.117°B.63°C.116°D.53图7.2.2-46.下列各图形中∠1=60°的是( )7.如图7.2.2-6,直线a ∥b ,则∠A 的度数为( ) A.28° B .31°C.39° D.42°A BCDFE12图7.2.2-68. 一个零件的形状如图7.2.2-7所示,按规定∠A 应等于 87°,∠B 、∠D 应分别为25°、29°,工人师傅量得 ∠BCD =139°,就断定这个零件不合格,你能说明道理 吗?图7.2.2-7三角形练习(2)1、 △ABC 的周长为24cm ,三条边满足a:b=3:4,c=2b-a.求△ABC 的三边长。
(完整版)全等三角形练习题及答案(一)

ir全等三角形练习一、填空题:1.如图,△ABC≌△DEB,AB=DE,∠E=∠ABC,则∠C的对应角为,BD的对应边为 .2.如图,AD=AE,∠1=∠2,BD=CE,则有△ABD≌△,理由是,△ABE≌△,理由是 .(第1题)(第2题)(第4题)3.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是cm.4.如图,AD、A´D´分别是锐角△ABC和△A´B´C´中BC与B´C´边上的高,且AB= A´B´,AD=A´D´,若使△ABC≌△A´B´C´,请你补充条件(只需填写一个你认为适当的条件)5. 若两个图形全等,则其中一个图形可通过平移、或与另一个三角形完全重合.6. 如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=___________度(第6题)(第7题)(第8题)7.已知:如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,则DN+MN的最小值为__________.8.如图,在△ABC中,∠B=90o,D是斜边AC的垂直平分线与BC的交点,连结AD,若∠DAC:∠DAB=2:5,则∠DAC=___________.9.如图,等腰直角三角形ABC中,∠BAC=90o,BD平分∠ABC交AC于点D,若AB+AD=8cm,则底边BC上的高为___________.MNDCBAEDCBAHEDCBAB ′C ′D ′O ′A ′ODC BA(第1410.如图,锐角三角形ABC 中,高AD 和BE 交于点H ,且BH =AC ,则∠ABC =__________度.(第9题) (第10题)13题)二、选择题:11.已知在△ABC 中,AB =AC ,∠A =56°,则高BD 与BC 的夹角为( )A .28°B .34°C .68°D .62°12.在△ABC 中,AB =3,AC =4,延长BC 至D ,使CD =BC ,连接AD ,则AD 的长的取值范围为( )A .1<AD <7B .2<AD <14C .2.5<AD <5.5 D .5<AD <1113.如图,在△ABC 中,∠C =90°,CA =CB ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于点E ,且AB =6,则△DEB 的周长为( )A .4B .6C .8D .1014.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A ′O ′B ′=∠AOB 的依据是A .(S .S .S .)B .(S .A .S .)C .(A .S .A .)D .(A .A .S .15. 对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A.∠α=60º,∠α的补角∠β=120º,∠β>∠αB.∠α=90º,∠α的补角∠β=900º,∠β=∠αC.∠α=100º,∠α的补角∠β=80º,∠β<∠αD.两个角互为邻补角16. △ABC 与△A´B´C ´中,条件①AB =A´B´,②BC = B´C´,③AC=A´C´,④∠A=∠A´,⑤∠B =∠B´,⑥∠C =∠C´,则下列各组条件中不能保证△ABC ≌△A´B´C´的是( )A. ①②③B. ①②⑤C. ①③⑤D. ②⑤⑥17.如图,在△ABC 中,AB =AC ,高BD ,CE 交于点O ,AO 交BC 于点F ,则图中共有全等三角形()A .7对B .6对C .5对D .4对D CBAn h18.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,若△DEB 的周长为10cm ,则斜边AB 的长为( )A .8 cmB .10 cmC .12 cmD . 20 cm19.如图,△ABC 与△BDE 均为等边三角形,AB <BD ,若△ABC 不动,将△BDE 绕点B 旋转,则在旋转过程中,AE 与CD 的大小关系为( )A .AE =CDB .AE >CDC .AE <CD D .无法确定20.已知∠P =80°,过不在∠P 上一点Q 作QM ,QN 分别垂直于∠P 的两边,垂足为M ,N ,则∠Q 的度数等于( )A .10°B .80°C .100°D .80°或100°三、解答题(每小题5分,共30分)21.如图,点E 在AB 上,AC =AD ,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为,你得到的一对全等三角形是 .∆∆≅(第21题)22.如图,EG ∥AF ,请你从下面三个条件中再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况),并给予证明.①AB =AC ,②DE =DF ,③BE =CF ,已知:EG ∥AF , = , = ,求证:证明:(第22题)ECD BAEA BD FC23. 如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件,请你在其中选择3个作为题设,余下的1个作为结论,写一个真命题,并加以证明.①AB =DE ,②AC =DF ,③∠ABC =∠DEF ,④BE =CF(第23题)24. 如图,四边形ABCD 中,点E 在边CD 上.连结AE 、BF ,给出下列五个关系式:①AD ∥BC ;②DE =CE ③. ∠1=∠2 ④. ∠3=∠4 . ⑤AD +BC =AB 将其中的三个关系式作为假设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题,书写形式如:如果……,那么……,并给出证明;(2)用序号再写出三个真命题(不要求证明);(3)真命题不止以上四个,想一想就能够多写出几个真命题25.已知,如图,D 是△ABC 的边AB 上一点,DF 交AC 于点E , DE =FE , AB ∥FC . 问线段AD 、CF 的长度关系如何?请予以证明.(第25题)E DAC4321FB26.如图,已知ΔABC 是等腰直角三角形,∠C =90°.(1)操作并观察,如图,将三角板的45°角的顶点与点C 重合,使这个角落在∠ACB 的内部,两边分别与斜边AB 交于E 、F 两点,然后将这个角绕着点C 在∠ACB 的内部旋转,观察在点E 、F 的位置发生变化时,AE 、EF 、FB 中最长线段是否始终是EF ?写出观察结果.(2)探索:AE 、EF 、FB 这三条线段能否组成以EF 为斜边的直角三角形?如果能,试加以证明.四、探究题 (每题10分,共20分)27.如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F .请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.OPAMNEB CD FACEFBD图①图②图③28.如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系?请证明你的结论;(2)将图a中的△CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图a中的△ABC绕点C旋转一定的角度,请你画山一个变换后的图形(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现)ACF BE ACFB图a 图b参考答案一、1.∠DBE, CA 2.△ACE, SAS,△ACD, ASA(或SAS)3. 64.CD=C´D´(或AC=A´C´,或∠C=∠C´或∠CAD=∠C´A´D´)5.平移,翻折6. 907. 10 8. 20º 9. 10. 4548-2二、11. A 12. D 13. B 14.A 15.C 16.C 17.A 18.B 19.A 20.D三、21.可选择等条件中的一个.可得到△ACE≌△ADE∠=、∠=、BDBCDABCABDECE=或△ACB≌△ADB等.22.结合图形,已知条件以及所供选择的3个论断,认真分析它们之间的内在联系可选①AB=AC,②DE=DF,作为已知条件,③BE=CF作为结论;推理过程为:∵EG∥AF,∴∠GED=∠CFD,∠BGE=∠BCA,∵AB=AC,∴∠B=∠BCA,∴∠B=∠BGE∴BE=EG,在△DEG和△DFC中,∠GED=∠CFD,DE=DF,∠EDG=∠FDC,∴△DEG≌△DFC,∴EG=CF,而EG=BE,∴BE=CF;若选①AB=AC,③BE=CF为条件,同样可以推得②DE=DF,23.结合图形,认真分析所供选择的4个论断之间的内在联系由④BE=CF还可推得BC=EF,根据三角形全等的判定方法,可选论断:①AB=DE,②AC=DF,④BE=CF为条件,根据三边对应相等的两个三角形全等可以得到:△ABC≌△DEF,进而推得论断③∠ABC=∠DEF,同样可选①AB=DE,③∠ABC=∠DEF,④BE=CF为条件,根据两边夹角对应相等的两个三角形全等可以得到:△ABC≌△DEF,进而推得论断②AC=DF.24. (1)如果①②③,那么④⑤证明:如图,延长AE交BC的延长线于F因为AD∥BC 所以∠1=∠F又因为∠AED=∠CEF,DE=EC所以△ADE≌△FCE,所以AD=CF,AE=EF因为∠1=∠F,∠1=∠2所以∠2=∠F所以AB=BF.所以∠3=∠4所以AD+BC=CF+BC=BF=AB(2)如果①②④,那么③⑤;如果①③④,那么②⑤;如果①③⑤,那么②④.(3) 如果①②⑤,那么③④;如果②④⑤,那么①③;如果③④⑤,那么①②.25. (1)观察结果是:当45°角的顶点与点C 重合,并将这个角绕着点C 在重合,并将这个角绕着点C 在∠ACB 内部旋转时,AE 、EF 、FB 中最长的线段始终是EF . (2)AE 、EF 、FB 三条线段能构成以EF 为斜边的直角三角形,证明如下:在∠ECF 的内部作∠ECG =∠ACE ,使CG =AC ,连结EG ,FG ,∴ΔACE ≌ΔGCE ,∴∠A =∠1,同理∠B =∠2,∵∠A +∠B =90°,∴∠1+∠2=90°,∴∠EGF =90°,EF 为斜边.四、27.(1)FE 与FD 之间的数量关系为FE =FD (2)答:(1)中的结论FE=FD 仍然成立图① 图②证法一:如图1,在AC 上截取AG =AE ,连接FG∵ ∠1=∠2,AF =AF ,AE =AG ∴ △AEF ≌△AGF∴ ∠AFE =∠AFG ,FG =FE ∵ ∠B=60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线∴ ∠2+∠3=60°,∠AFE =∠CFD =∠AFG =60°∴ ∠CFG =60° ∵ ∠4=∠3,CF =CF ,∴ △CFG ≌△CFD ∴ FG =FD ∴ FE =FD 证法二:如图2,过点F 分别作FG ⊥AB 于点G ,FH ⊥BC 于点H ∵ ∠B =60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线∴ ∠2+∠3=60° ∴ ∠GEF =60°+∠1,FG =FH∵ ∠HDF =∠B +∠1 ∴ ∠GEF =∠HDF ∴ △EGF ≌△DHF ∴ FE =FD28. (1)AF =BE . 证明:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形,∴AC =BC ,CF =CE ,∠ACF =∠BCE =60.∴△AFC ≌△BEC . ∴AF =BE . (2)成立. 理由:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形, ∴AC =BC ,CF =CE ,∠ACB =∠FCE =60°. ∴∠ACB -∠FCB =∠FCE -∠FCB.图⑤ 即∠ACF=∠BCE. ∴△AFC≌△BEC. ∴AF=BE. (3)此处图形不惟一,仅举几例. 如图,(1)中的结论仍成立. (4)根据以上证明、说明、画图,归纳如下:如图a,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE. 。
三角形练习题一

错例分析例1:画出三角形ABC 的高。
A解析:学生在作图时往往会因为怕麻烦而不使用作图工具,不采用标准的作图方法,相信自己的眼睛大致的做出一条垂直线段,就容易出现不经过顶点,不与底边垂直的情况。
画三角形的高通常用三角尺做工具来画:把三角尺的一条边与指定的底边重合,沿底边平移三角尺,直到另一条边通过与该底边相对的顶点,再从顶点起沿直角边向底边画线段,此线段便是三角形的高,最后标上直角符号。
答案 如图所示:例2:下图中,∠2 = 50o ,∠4 =110o ,求∠1的度数。
A B C DBCD 1∠1 =180o—∠2 —∠4= 180o —50o —110o = 20o错因分析:没有看懂题目中每个角的关系,没有理解三角形内角和等于180度这句话的含义,只是盲目的运用所学的知识进行解题。
答案:方法1此题可应用三角形内角和知识进行解答。
已知∠2 = 50o,∠3 的度数没有直接给出,但是∠4和∠3合起来正好是一个平角,等于180o,与这个三角形的内角和相等,即∠3 + ∠4 = ∠1 + ∠2 + ∠3 ,所以∠4 = ∠1 + ∠2 ,由此可知∠1的度数。
因为∠4 = ∠1 + ∠2,故∠1 = ∠4 —∠2 = 110o —50o = 60o 方法2∠3和∠4组成了一个平角,已知∠4 =110o,所以∠3通过180o —∠4可求出,再利用三角形内角和180o减去∠2和∠3,就可求出∠1的度数。
∠3 = 180o—∠4 = 180o—110o = 70o∠1 =180o—∠2 —∠3= 180o —50o —70o = 60o归纳总结三角形的内角和是180o,三角形三个角中已知两个角的度数,求第三个角的度数,用内角和(180o)连续减去已知的两个角的度数或减去这两个角的度数之和即可。
思路拓展1、三角形的一个外角等于不相邻的两个内角之和。
2、三角形内角和的应用:利用三角形内角和可求出任意一个多边形的内角和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B C A B C D E F E
D C B A 初一数学课堂练习(三角形1)
命题人:赵冬玲 05.3.20
例1 如图,在ABC ∆中画出角平分线AD,中线CE 及高线BF 来; 如果ABC ∆的面积为16cm 2,AC=6cm,求AC 边上的高线BF 的长。
例2 (1)ABC ∆中,若C B A ∠=∠+∠,则ABC ∆是 三角形。
(2) 如果三角形的一个外角是锐角,那么这个三角形是( ) A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D. 无法判断
例 3 (2001,天津)如图,ABC ∆中,C B ∠=∠,BC FD ⊥,AB DE ⊥,︒=∠158AFD ,则=∠EDF 。
例4 (2003,云南)如图,︒=∠︒=∠50,125A ABD ,则AC E ∠的度数是 。
(例3图) (例4图)
例5 等腰三角形(有两条边相等的三角形)一腰上的中线把该三角形的周长分为13.5cm 和11.5cm 两部分。
求这个等腰三角形各边的长。
练习:
一、选择题:
1、有两边相等的三角形的一边是7,另一边是4,则此三角形的周长是( ) A. 18 B. 15 C. 18或15 D.无法确定
2、下列命题:(1)平分三角形内角的射线叫做三角形的角平分线;(2)三角形的中线、角平分线都是线段;(3)一个三角形有三条中线、三条角平分线、三条高线;(4)三角形的三条中线相交于一点,但三条高线未必相交于同一点。
其中说法正确的是( )
A.(1) (2) (3) (4)
B. (2) (3) (4)
C. (1) (4)
D. (2) (3) 3、下列语句正确的个数是( ) (1)直角三角形只有一条高;(2)钝角三角形的高线可以都在三角形内;(3)三角形的高线相交于一点,这点不在三角形内部,就在三角形外部;(4)三角形的三条中线,三条角平分线必在三角形内部。
A. 1个
B. 2个
C. 3个
D. 4个
4、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )
A. 锐角三角形
B. 直角三角形
C. 钝角三角形
D. 不能确定
A B
D 5、在ABC
∆中,︒
=
∠
=
∠75
2B
A,则=
∠C()
A.︒
30 B. '
30
67︒ C. ︒
105 D. ︒
135
6、一个三角形的三个内角中至少有()
A. 一个锐角
B. 一个直角
C. 一个钝角
D. 两个锐角
二、填空题:
7、已知ABC
∆中,︒
=
∠
-
∠
︒
=
∠40
,
100C
B
A,则=
∠C。
8、如图,=
∠
+
∠
+
∠
+
∠
+
∠
+
∠6
5
4
3
2
1。
9、如图,已知︒
=
∠
︒
=
∠
︒
=
∠35
,
25
2
,
20
1A,则BDC
∠的度数为。
10、若一个三角形的三个内角之比为4:3:2,则这个三角形的最大内角为。
11、如图,在ABC
∆中,I是三条角平分线的交点,︒
=
∠130
BIC,则A
∠的度数
是。
(8题图)(9题图) (11题图)
12、如图,4
3
2
1∠
∠
∠
∠、
、
、满足
的关系式是()
A. 4
3
2
1∠
+
∠
=
∠
+
∠
B. 3
4
2
1∠
-
∠
=
∠
+
∠
C. 3
2
4
1∠
+
∠
=
∠
+
∠
D. 3
2
4
1∠
-
∠
=
∠
+
∠
(12题图)
三、解答题:
如图,在等腰∆ABC中,AB=AC,周长为16cm,AC边上的中线BD把∆ABC
分成周长差为4cm的两个三角形,求∆ABC各边的长。