2019年中考数学复习:直角三角形的有关计算
2019年宜宾中考数学总复习精练第6章第19讲解直角三角形(含答案)

第十九讲 解直角三角形1.在一次数学活动中,李明利用一根拴有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD ,如图,已知李明距假山的水平距离BD 为12 m ,他的眼睛距地面的高度为1.6 m ,李明的视线经过量角器零刻度线OA 和假山的最高点C ,此时,铅垂线OE 经过量角器的60°刻度线,则假山的高度为( A )A .(43+1.6)mB .(123+1.6)mC .(42+1.6)mD .4 3 m,(第1题图)),(第2题图))2.如图,△ABC 的顶点是正方形网格的格点,则sinA 的值为( B ) A.12 B.55 C.1010 D.2553.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( D ) A .2 B.255 C.55 D.12,(第3题图)) ,(第4题图))4.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,则下列结论不正确的是( C ) A .sinB =AD AB B .sinB =ACBCC .sinB =AD AC D .sinB =CDAC5.小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB 的长度相等.小明将PB 拉到PB′的位置,测得∠PB′C=α(B′C 为水平线),测角仪B′D 的高度为1 m ,则旗杆PA 的高度为( A )A.11-sin αB.11+sin αC.11-cos α D.11+cos α6.计算sin 245°+cos30°·tan60°,其结果是( A )A .2B .1 C.52 D.547.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为AB 上一点且AE∶EB=4∶1,EF ⊥AC 于F ,连结FB ,则tan ∠CFB 的值等于( C )A.33 B.233 C.533D. 3,(第7题图)) ,(第8题图))8.在寻找马航MH370航班过程中,某搜寻飞机在空中A 处发现海面上一块疑似漂浮目标B ,此时从飞机上看目标B 的俯角为α,已知飞行高度AC =1 500 m ,tan α=35,则飞机距疑似目标B 的水平距离BC 为( D )A .2 400 5 mB .2 400 3 mC .2 500 5 mD .2 500 3 m9.在Rt △ABC 中,∠C =90°,sinA =35,BC =6,则AB =__10__.10.规定:sin(-x)=-sinx ,cos(-x)=cosx ,sin(x +y)=sinx ·cosy +cosx ·siny.据此判断下列等式成立的是__②③④__.(写出所有正确的序号)①cos(-60°)=-12;②sin75°=6+24;③sin2x =2sinx ·cosx ;④sin(x -y)=sinx ·cosy-cosx ·siny.11.如图,在半径为5的⊙O 中,弦AB =6,点C 是优弧AB ︵上一点(不与A ,B 重合),则cosC 的值为__45__.,(第11题图)) ,(第12题图))12.如图,在四边形ABCD 中,AD =AB =BC ,连结AC ,且∠ACD=30°,tan ∠BAC =233,CD =3,则AC =.13.计算:(1)tan45°+2sin45°-2cos60°; 解:原式=1+2×22-2×12=1+2-1 =2;(2)sin 21°+sin 22°+sin 23°+…+sin 289°.解:设S =sin 21°+sin 22°+sin 23°+…+sin 289°①, ∴S =cos 289°+cos 288°+cos 287°+…+cos 22°+cos 21° ∴S =cos 21°+cos 22°+cos 23°+…+cos 288°+cos 289°②,①+②得2S =89, S =892.14.如图,是一张宽m 的矩形台球桌ABCD ,一球从点M(点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点,如果MC =n ,∠CMN =α,那么P 点与B 点的距离为__m -n·tan αtan α__.15.如图,“中海海监50”正在南海海域A 处巡逻,岛礁B 上的中国海军发现点A 在点B 的正西方向上,岛礁C 上的中国海军发现点A 在点C 的南偏东30°方向上,已知点C 在点B 的北偏西60°方向上,且B ,C 两地相距150海里.(1)求出此时点A 到岛礁C 的距离;(2)若“中海海监50”从A 处沿AC 方向向岛礁C 驶去,当到达点A′时,测得点B 在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)解:(1)如图所示:延长BA ,过点C 作CD⊥BA 延长线与点D.由题意可得:∠CBD=30°,BC =150海里,则DC =75海里,∴cos30°=DC AC =75AC =32, 解得AC =50 3.答:点A 到岛礁C 的距离为503海里;(2)如图所示:过点A′作A′N⊥BC 于点N ,可得∠1=30°,∠BA ′A =45°,则∠2=∠ABA′=15°,即A′B 平分∠CBA.∴A ′E =AN.又∵A′E ⊥BA ,A ′N ⊥BC , 设AA′=x ,则A′E=A′N=32x , ∴CA ′=2A′N=2×32x =3x. ∵3x +x =503, 解得x =75-253,答:此时“中国海监50”的航行距离为(75-253)海里.16.(2019潍坊中考)如图,某数学兴趣小组要测量一栋五层居民楼CD 的高度.该楼底层为车库,高2.5 m ;上面五层居住,每层高度相等.测角仪支架离地1.5 m ,在A 处测得五楼顶部点D 的仰角为60°,在B 处测得四楼顶部点E 的仰角为30°,AB =14 m .求居民楼的高度.(结果精确到0.1 m ,参考数据:3≈1.73)解:设每层高为x m.由题意得MC′=MC-CC′=2.5-1.5=1,则DC′=5x+1,EC′=4x+1.在Rt△DC′A′中,∠DA′C′=60°.∴C′A′=DC′tan60°=33(5x+1).在Rt△EC′B′中,∠EB′C′=30°.∴C′B′=EC′tan30°=3(4x+1).∵A′B′=C′B′-C′A′=AB,∴3(4x+1)-33(5x+1)=14.解得x=23-27.∴居民楼高为:5×(23-27)+2.5≈18.4(m).17.AE,CF是锐角三角形ABC的两条高,如果AE∶CF=3∶2,则sin∠BAC∶sin∠ACB等于( B )A.3∶2 B.2∶3 C.9∶4 D.4∶92019-2020学年数学中考模拟试卷一、选择题1.某商品价格为a元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为()A.0.96a元B.0.972a元C.1.08a元D.a元2x的取值范围在数轴上表示正确的是()A.B.C.D.3.如图,点A所表示的数的绝对值是()A.3B.﹣3C.13D.13-4.若关于x的方程3x2﹣2x+m=0的一个根是﹣1,则m的值为()A.﹣5 B.﹣1 C.1 D.55.数据1、10、6、4、7、4的中位数是().A.9B.6C.5D.46.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是()A.94B.95分C.95.5分D.96分7.如图,四边形ABCD是正方形,直线l1、l2、l3分别通过A、B、C三点,且l1∥l2∥l3,若l1与l2的距离为6,正方形ABCD的面积等于100,l2与l3的距离为()A.8 B.10 C.9 D.78.如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是()A.3cmB.4cmC.5cmD.6cm9.若a b ,则实数a ,b 的大小关系为( ) A .a >bB .a <bC .a =bD .a≥b10.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是11x-=﹣1,﹣1的差倒数为11(1)--=12,现已知x 1=13,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2019的值为( ) A .﹣13B .﹣2C .3D .411.如图,一段抛物线293y x x =-+(-3≤≤)为1C ,与x 轴交于0A ,1A 两点,顶点为12D D ;将1C 绕点1A 旋转180°得到2C ,顶点为2D ;1C 与2C 组成一个新的图象.垂直于y 轴的直线l 与新图象交于点111()P x y ,,222()P x y ,,与线段12D D 交于点333()P x y ,,且1x ,2x ,3x 均为正数,设123t x x x =++,则t 的最大值是( )A .15B .18C .21D .2412.若一个多边形的内角和为1440°,则这个多边形的边数是( ) A .8 B .10C .12D .14二、填空题13.用48m 长的篱笆在空地上围成一个正六边形的绿化场地,则其面积为______2m14.将点P (﹣3,y )向下平移3个单位,向左平移2个单位后得到点Q (x ,﹣1),则x+y =_____.15x 的取值范围是_______. 16.如图,AB ∥CD ,∠DCE=118°,∠AEC 的角平分线EF 与GF 相交于点F ,∠BGF=132°,则∠F 的度数是__.17.把多项式ax 2+2a 2x+a 3分解因式的结果是_____.18.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__________.三、解答题19.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一条直线上.已知纸板的两条边DE =70cm ,EF =30cm ,测得AC =78m ,BD =9m ,求树高AB .20.在女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数关系分別如图中线段OA 和折线OBCD 所示.(1)谁先到终点,当她到终点时,另一位同学离终点多少米?(请直接写出答案) (2)起跑后的60秒内谁领先?她在起跑后几秒时被追及?请通过计算说明.21.先化简:2222111211x x x x x x +-⎛⎫-÷⎪--++⎝⎭然后解答下列问题: (1)当x =2时,求代数式的值(2)原代数式的值能等于0吗?为什么?22.水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚,对市场最为关注的产量和产量的稳定性进行了抽样调查,过程如下:收集数据从甲、乙两个大棚中分别随机收集了相同生产周期内25株秧苗生长出的小西红柿的个数:甲:26,32,40,51,44,74,44,63,73,74,81,54,62,41,33,54,43,34,51,63,64,73,64,54,33乙:27,35,46,55,48,36,47,68,82,48,57,66,75,27,36,57,57,66,58,61,71,38,47,46,71整理数据按如下分组整理样本数据:(说明:45个以下为产量不合格,45个及以上为产量合格,其中45≤x<65个为产量良好,65≤x<85个为产量优秀)分析数据两组样本数据的平均数、众数和方差如下表所示:得出结论(1)补全上述表格;(2)可以推断出大棚的小西红柿秩苗品种更适应市场需求,理由为(至少从两个不同的角度说明推断的合理性);(3)估计乙大棚的300株小西红柿秧苗中产量优秀的有多少株?23.(111|2|2cos453-︒⎛⎫-+-⎪⎝⎭;(2)解分式方程:2133xx x=++24.为顺利通过“国家文明城市”验收,市政府拟对城区部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?25.某市在地铁施工期间,交管部门计划在施工路段设高为3米的矩形路况警示牌BCEF(如图所示BC=3米)警示牌用立杆AB 支撑,从侧面D 点测到路况警示牌顶端C 点和底端B 点的仰角分别是60°和45°,求立杆AB 的长度(结果精确到整数,≈1.41)【参考答案】*** 一、选择题二、填空题13. 14.﹣3. 15.x≤2且x≠0 16.11°. 17.a (x+a )218.12 三、解答题19.203232+【解析】 【分析】先判定△DEF 和△DBC 相似,然后根据相似三角形对应边成比例列式求出BC 的长,再加上AC 即可得解. 【详解】解:在直角△DEF 中,DE =70cm ,EF =30cm ,则由勾股定理得到DF ==在△DEF 和△DBC 中,∠D =∠D ,∠DEF =∠DCB , ∴△DEF ∽△DCB ,∴DF EFDB BC=, 又∵EF =30cm ,BD =9m ,∴BC =EF DB DF ⋅==(m ) ∵78AC m =,∴AB =AC+BC =7203858232++=,即树高203232+m . 【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例的性质,比较简单,判定出△DEF 和△DBC 相似是解题的关键.20.(1)小莹比小梅先到终点,此时小梅距离终点200米;(2)小梅在起跑后5407秒时被追及. 【解析】 【分析】(1)小莹比小梅先到终点,此时小梅距离终点200米;(2)根据图象可以知道跑后的60秒内小梅领先,根据线段的交点坐标可以求出小梅被追及时间. 【详解】(1)小莹比小梅先到终点,此时小梅距离终点200米; (2)根据图象可以知道跑后的60秒内小梅领先, 小莹的速度为:800401809= (米/秒), 故线段OA 的解析式为:y =409x , 设线段BC 的解析式为:y =kx+b ,根据题意得:60300180600k b k b +=⎧⎨+=⎩,解得k 2.5b 150=⎧⎨=⎩, ∴线段BC 的解析式为y =2.5x+150, 解方程40 2.51509x x =+,得5407x =, 故小梅在起跑后5407秒时被追及. 【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.21.(1)11x x +-;(2)见解析. 【解析】【分析】(1)将x =2代入化简后的式子即可解答本题;(2)先判断,然后令化简的结果等于0,求出x 的值,再将所得的x 的值代入化简后的式子,看是否使得原分式有意义即可解答本题.【详解】 解:2222111211x x x x x x +-⎛⎫-÷ ⎪--++⎝⎭ 22(1)11(1)(1)(1)1x x x x x x ⎡⎤+-+=-⋅⎢⎥+--⎣⎦ 21(1)11x x x ⎛⎫=-⋅+ ⎪--⎝⎭ 1(1)1x x =⋅+- 11x x +=- (1)当x =2时,原式=2121+-=3; (2)原代数式的值不等等于0, 理由:令11x x +-=0,得x =﹣1, 当x =﹣1时,原分式无意义,故原代数式的值不等等于0.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.(1)5,5,6,54;(2)乙,乙的方差较小,众数比较大;(3)84株【解析】【分析】(1)利用划计法统计即可.(2)从平均数,众数,方差三个方面分析即可.(3)利用样本估计总体的思想解决问题即可.【详解】(1)甲:35≤x<45时,小西红柿的株数为5,55≤x<65时,小西红柿的株数为5.甲的众数为54,乙:45≤<55时,小西红柿的株数为6.故答案为:5,5,6,54.(2)选:乙.理由:乙的方差较小,众数比较大.故答案为:乙,乙的方差较小,众数比较大.(3)300725⨯=84(株)答:估计乙大棚的300株小西红柿秧苗中产量优秀的有84株.【点睛】本题考查了方差,众数,平均数,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(11;(2)23x=.【解析】【分析】(1)原式利用二次根式性质,绝对值的代数意义,负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:(1)原式=23212-+-⨯=;(2)去分母得:3x=2,解得:23x=,经检验23x=是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.24.15,30.【解析】【分析】等量关系为:甲工效+乙工效=110,甲(乙)的工效×甲(乙)的工作时间=甲(乙)的工作量;【详解】设甲工程队单独完成此项工程需x天,则乙工程队单独完成此工程需2x天.由题意,得10×(112x x+)=1 解得:x =15. 经检验,x =15是原方程的根.∴2x =30.答:甲、乙两个工程队单独完成此项工程分别需15天和30天.【点睛】考查了工程问题,题目相对复杂.分析题意,找到合适的等量关系是解决本题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.25.立杆AB 的长度约为4米.【解析】【分析】设AB =x 米,由∠BDA =45°知AB =AD =x 米,再根据tan ∠ADC =AC AD 建立关于x 的方程,解之可得答案.【详解】设AB =x 米,在Rt △ABD 中,∵∠BDA =45°,∴AD =AB =x 米,在Rt △ACD 中,∵∠ADC =60°,∴tan ∠ADC =AC AD ,即3x x +=解得:x ≈4(米), 答:立杆AB 的长度约为4米.【点睛】此题考查解直角三角形的应用,仰角俯角问题,解题关键在于求出∠ADC =60°2019-2020学年数学中考模拟试卷一、选择题1.将一副三角板按照如图所示的位置摆放在同一水平面上,两条斜边互相平行,两个直角顶点重合,则∠1的度数是( )A.30oB.45oC.75oD.105o2.如图,已知∠ABC=∠BAD ,添加下列条件还不能判定△ABC ≌△BAD 的是( )A.∠C=∠DB.∠CAB=∠DBAC.AC=BDD.BC=AD3.如图,已知△A 1B 1C 1的顶点C 1与平面直角坐标系的原点O 重合,顶点A 1、B 1分别位于x 轴与y 轴上,且C 1A 1=1,∠C 1A 1B 1=60°,将△A 1B 1C 1沿着x 轴做翻转运动,依次可得到△A 2B 2C 2,△A 3B 3C 3等等,则C 2019的坐标为( )A.(,0)B.(0)C.(40352,2) D.(0) 4.如图,平行四边形OABC 的顶点O ,B 在y 轴上,顶点A 在反比例函数y =﹣5x 上,顶点C 在反比例函数y =7x上,则平行四边形OABC 的面积是( )A .8B .10C .12D .312 5.若点,,在反比例函数的图象上,则,,的大小关系是( ) A.B. C. D.6.下列运算正确的是( )A .22321a a -=B .22122a a a ⋅=C .623a a a ÷=D .()()3223a b a b b -÷=-7.如图,⊙O 的半径OA =8,以A 为圆心,OA 为半径的弧交⊙O 于B ,C 点,则BC =( )A. B. C. D.8.下列图形是用长度相等的火柴棒按一定规律排列的图形,第(1)个图形中有8根火柴棒,第(2)个图形中有14根火柴棒,第(3)个图形中有20根火柴棒,…,按此规律排列下去,第(6)个图形中,火柴棒的根数是( )A .34B .36C .38D .489.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A .该班总人数为50B .步行人数为30C .乘车人数是骑车人数的2.5倍D .骑车人数占20%10.如图,△ABC 内接于⊙O ,若∠OAB =35°,则∠C 的度数是( )A .35°B .45°C .65°D .55°11.已知点(﹣2,y 1),(﹣3,y 2),(2,y 3)在函数y =﹣8x 的图象上,则( ) A .y 2>y 1>y 3 B .y 1>y 2>y 3 C .y 3>y 1>y 2D .y 1>y 3>y 2 12.有大小、形状、颜色完全相同的四个乒兵球,球上分别标有数字2,3,5,6,将这四个球放入不透明的袋中搅匀,不放回地从中随机连续抽取两个,则这两个球上的数字之积为奇数的概率是( )A .16B .13C .23D .14二、填空题13.解方程:3x 2﹣6x+1=2.14.已知抛物线2=2(1)3y x -+-与直线2y kx m =+相交于A (-2,3)、B (3,-1)两点,则12y y ≥时x 的取值范围是___________.15.双曲线y=在每个象限内,函数值y 随x 的增大而增大,则m 的取值范围是__________.16.如图,⊙O 的半径为2,AB ,CD 是互相垂直的两条直径,点P 是⊙O 上任意一点(P 与A ,B ,C ,D 不重合),过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q 走过的路径长为________.17.因式分解______________________.18.若m 、n 互为倒数,则mn 2﹣(n ﹣1)的值为_____.三、解答题19.如图,AB 是半圆O 的直径,点P 是半圆上不与点A ,B 重合的动点,PC ∥AB ,点M 是OP 中点.(1)求证:四边形OBCP 是平行四边形;(2)填空:①当∠BOP = 时,四边形AOCP 是菱形;②连接BP ,当∠ABP = 时,PC 是⊙O 的切线.20.已知两个函数:y1=ax+4,y2=a(x﹣12)(x﹣4)(a≠0).(1)求证:y1的图象经过点M(0,4);(2)当a>0,﹣2≤x≤2时,若y=y2﹣y1的最大值为4,求a的值;(3)当a>0,x<2时,比较函数值y1与y2的大小.21.计算:(1)(a+2)(a﹣3)﹣a(a﹣1)(2)224972 6926a aa a a--÷-+++22.如图,在平面直角坐标系中,A(0,1),B(4,2),C(2,0).(1)将△ABC沿y轴翻折得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕着点(﹣1,﹣1)旋转180°得到△A2B2C2,画出△A2B2C2;(3)线段B2C2可以看成是线段B1C1绕着平面直角坐标系中某一点逆时针旋转得到,直接写出旋转中心的坐标为.23.校园安全受到全社会的广泛关注,某市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)在这次活动中抽查了多少名中学生?(2)若该中学共有学生1600人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”程度的人数.(3)若从对校园安全知识达到“了解程度的2个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.24.如图,在平面直角坐标系中,△ABC 的三个顶点为:A (1,1),B (4,4),C (5,1).(1)若△ABC 和△A 1B 1C 1关于原点O 成中心对称图形,画出△A 1B 1C 1;(2)在x 轴上存在一点P ,满足点P 到点B 1与点C 1距离之和最小,请直接写出PB 1+PC 1的最小值为 .25.阅读下列材料,解决材料后的问题:材料一:对于实数x 、y ,我们将x 与y 的“友好数”用f (x ,y )表示,定义为:f (x )=2x y +,例如17与16的友好数为f (17,16)=17162+=1718. 材料二:对于实数x ,用[x]表示不超过实数x 的最大整数,即满足条件[x]≤x<[x]+1,例如:[﹣1.5]=[﹣1.6]=﹣2,[0]=[0.7]=0,[2.2]=[2.7]=2,……(1)由材料一知:x 2+2与1的“友好数”可以用f (x 2+2,1)表示,已知f (x 2+2,1)=2,请求出x 的值;(2)已知[12a ﹣1]=﹣3,请求出实数a 的取值范围; (3)已知实数x 、m 满足条件x ﹣2[x]=72,且m≥2x+112,请求f (x ,m 2﹣32m )的最小值.【参考答案】***一、选择题二、填空题13.x 1 ,x 2. 14.x≤-2或x≥315.m <1.16.4π 17.18.1三、解答题19.(1)见解析;(2)①120°;②45°【解析】【分析】(1)由AAS 证明△CPM ≌△AOM ,得出PC=OA ,得出PC=OB ,即可得出结论;(2)①证出OA=OP=PA ,得出△AOP 是等边三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.【详解】(1)∵PC ∥AB ,∴∠PCM =∠OAM ,∠CPM =∠AOM .∵点M 是OP 的中点,∴OM =PM ,在△CPM 和△AOM 中, PCM OAM CPM AOM PM OM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CPM ≌△AOM (AAS ),∴PC =OA .∵AB 是半圆O 的直径,∴OA =OB ,∴PC =OB .又PC ∥AB ,∴四边形OBCP 是平行四边形.(2)①∵四边形AOCP 是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等边三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案为:120°;②∵PC是⊙O的切线,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案为:45°.【点睛】本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.20.(1)证明见解析;(2)817a ;(3)见解析.【解析】【分析】(1)只需要把M的坐标带入到1y即可(2)把1y,2y代入到等式化简取y最大值时,即可解答(3)由(2)可知当a>0,x<2时,随x的增大而减小,然后再根二次函数的增减性可解此题【详解】解:(1)证明:当x=0时,y1=0+4=4,∴点M(0,4)在y1的图象上,即y1的图象经过点M(0,4);(2)∵y1=ax+4,y2=a(x﹣12)(x﹣4)(a≠0).∴y=y2﹣y1=a(x﹣12)(x﹣4)﹣(ax+4),即y=21124 2ax ax a-+-,∵a>0,对称轴为x=114>2,∴当﹣2≤x≤2时,y随x的增大而减小,∴当x=﹣2时,y取最大值为4a+11a+2a﹣4=17a﹣4,∵y=y2﹣y1的最大值为4,∴17a﹣4=4,解得,a=817;(3)由(2)知y=y2﹣y1=21124 2ax ax a-+-,当a>0,x<2时,随x的增大而减小,当x=2时,y=y2﹣y1=4a﹣11a+2a﹣4=﹣5﹣4<0,又当y=0时,21124 2ax ax a-+-=0,即2ax2﹣11ax+4a﹣8=0,x,∵△=121a2﹣32a2+64a=89a2+64a>0,2,根据二次函数的增减性可得,当x>2时,y2﹣y1<0,即y2<y1;当x2时,y2﹣y1=0,即y2=y1;当x2时,y2﹣y1>0,即y2>y1.【点睛】此题主要考察函数解析式的求解及常用方法,需要把已知的点,带入到函数解析式里面进行求解21.(1)-6(2)83 a-【解析】【分析】(1)根据整式的混合运算顺序和运算法则计算可得;(2)先计算除法,再计算减法即可得.【详解】(1)原式=a2﹣a﹣6﹣a2+a=﹣6;(2)原式=2(+7)(7)2(3)2(3)7a a a a a -+⋅-+-=2(+7)2(3)33a a a a +-++=83a +. 【点睛】 本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.22.(1)详见解析;(2)详见解析;(3)(﹣2,﹣2).【解析】【分析】(1)利用关于y 轴对称的点坐标特征写出点A 1、B 1、C 1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A 1、B 1、C 1的对应点A 2、B 2、C 2,从而得到△A 2B 2C 2;(3)作B 1B 2和C 1C 2的垂直平分线,它们相交于点P ,则点P 为旋转中心,然后写出P 点坐标即可.【详解】解:(1)如图,△A 1B 1C 1为所作;(2)如图,△A 2B 2C 2为所作;(3)如图,线段B 2C 2可以看成是线段B 1C 1绕着点P 逆时针旋转90°得到,此时P 点的坐标为(﹣2,﹣2).故答案为(﹣2,﹣2).【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23.(1)80(2)400(3)23【解析】【分析】(1)用“基本了解”的人数除以它所占的百分比得到调查的总人数;(2)计算出样本中“了解”程度的人数,然后用1600乘以基本中“了解”程度的人数的百分比可估计该中学学生中对校园安全知识达到“了解”程度的人数.(3)画树状图展示所有12种等可能的结果数,找出恰好抽到1个男生和1个女生的结果数,然后利用概率公式求解.【详解】解:(1)32÷40%=80(名),所以在这次活动中抽查了80名中学生;(2)“了解”的人数为80﹣32﹣18﹣10=20,1600×2080=400,所以估计该中学学生中对校园安全知识达到“了解”程度的人数为400人;(3)由题意列树状图:由树状图可知,在 4 名同学中随机抽取 2 名同学的所有等可能的结果有12 种,恰好抽到一男一女(记为事件A)的结果有8种,所以P(A)=82 123.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.24.(1)见解析;(2【解析】【分析】(1)分别作出三角形ABC三顶点关于原点的对称点,再顺次连接即可得;(2)作点C1关于x轴的对称点C′,连接B1C′与x轴的交点即为所求点P,继而利用勾股定理求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,点P 即为所求,PB1+PC 1.【点睛】本题主要考查作图﹣旋转变换,解题的关键是熟练掌握旋转变换的定义和性质,并据此得出变换后的对应点.25.(1)x =±2;(2)﹣4≤a<﹣2;(3)当m =34时,y 有最大值是﹣238,此时f (x ,m 2﹣32m )有最小值,最小值是﹣4023. 【解析】【分析】 (1)由题意得到22212x +=+,计算即可得到答案; (2)由题意得到131312a -≤-<-+,解不等式即可得到答案; (3)先由题意得到171712424x x x -≤<-+,则7322x -≤<-,设1724x k -=,由题意得到111222m x ≥+=,设y =﹣2m 2+3m ﹣4,根据二次函数的性质即可得到答案. 【详解】解:(1)∵f (x 2+2,1)=2, ∴22212x +=+, ∴x 2=4,∴x =±2;(2)∵[x]≤x<[x]+1, ∴131312a -≤-<-+, 解得﹣4≤a<﹣2;(3)∵x ﹣2[x]=74, ∴[x]=1724x -, ∴171712424x x x -≤<-+, ∴7322x -≤<-, 设1724x k -=, 又x =2k+72, ∴7522k -≤<-, ∴整数k =﹣3, ∴x =52-, 又111222m x ≥+=, ∴f (x ,m 2﹣32m ), =2322xm m -+, =252322m m --+, =25234m m -+-, 设y =﹣2m 2+3m ﹣4,则y =﹣2(m 34-)2238-, ∵﹣2<0, ∴当m =34时,y 有最大值是238-,此时f (x ,m 2﹣32m )有最小值,最小值是5238-=﹣4023, 此时最小值为﹣4023. 【点睛】本题考查分式方程的计算和二次函数,解题的关键是读懂题意,掌握分式方程的计算和二次函数的性质.。
中考数学专题复习:解直角三角形

中考数学专题复习:解直角三角形【基础知识回顾】一、锐角三角函数定义:在RE△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为CBA= ∠A的正切:tanA= ,它们弦称为∠A的锐角三角函数【名师提醒:1、sinA、∠cosA、tanA表示的是一个整体,是两条线段的比,没有,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】二、特殊角的三角函数值:【名师提醒:1、三个特殊角的三角函数值都是根据定义应用直角三角形性质算出来的,要在理解的基础上结合表格进行记忆2、当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而sin A3、几个特殊关系:⑴sinA+cos2A= ,tanA=⑵若∠A+∠B=900,则sinA= cosA.tanB= 】三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形的依据:RT∠ABC中,∠C900 三边分别为a、b、c⑴三边关系:⑵两锐角关系⑶边角之间的关系:sinA cosA tanAsinB cosB tanB【名师提醒:解直角三角形中已知的两个元素应至少有一个是当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在用上标上仰角和俯角⑵坡度坡角:如图:斜坡AB的垂直度H和水平宽度L的比叫做坡度,用i表示,即i=坡面与水平面得夹角为用字母α表示,则i=hl=⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA表示OB表示OC表示(也可称西南方向)3、利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数字问题(画出平面图形,转化为解直角三角形的问题)⑵根据条件特点选取合适的锐角三角函数去解直角三角形⑶解数学问题答案,从而得到实际问题的答案【名师提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决】【重点考点例析】考点一:锐角三角函数的概念例1 (•内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.12B.55C.1010D.255思路分析:利用网格构造直角三角形,根据锐角三角函数的定义解答.解:如图:连接CD交AB于O,根据网格的特点,CD⊥AB,在Rt△AOC中,CO=2211+=2;AC=2213+=10;则sinA=OCAC=25510=.故选B.点评:本题考查了锐角三角函数的定义和勾股定理,作出辅助线CD并利用网格构造直角三角形是解题的关键.对应训练1.(•贵港)在平面直角坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于()A.55B.52C.32D.121.A考点:锐角三角函数的定义;坐标与图形性质;勾股定理.专题:计算题.分析:过A作AC⊥x轴于C,利用A点坐标为(2,1)可得到OC=2,AC=1,利用勾股定理可计算出OA,然后根据正弦的定义即可得到sin∠AOB的值.解答:解:如图过A作AC⊥x轴于C,∵A点坐标为(2,1),∴OC=2,AC=1,∴OA=22OC AC+=5,∴sin∠AOB=1555ACOA==.故选A.点评:本题考查了正弦的定义:在直角三角形中,一个锐角的正弦等于这个角的对边与斜边的比值.也考查了点的坐标与勾股定理.考点二:特殊角的三角函数值例2 (•孝感)计算:cos245°+tan30°•sin60°= .思路分析:将cos45°=22,tan30°=33,sin60°=32代入即可得出答案.解:cos245°+tan30°•sin60°=12+33×32=12+12=1.故答案为:1.点评:此题考查了特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是解答本题的关键.对应训练(•南昌)计算:sin30°+cos30°•tan60°.思路分析:分别把各特殊角的三角函数代入,再根据二次根式混合运算的法则进行计算即可.解:原式=13322+⨯=1322+=2.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.考点三:化斜三角形为直角三角形例3 (•安徽)如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.6.思路分析:过C作CD⊥AB于D,求出∠BCD=∠B,推出BD=CD,根据含30度角的直角三角形求出CD,根据勾股定理求出AD,相加即可求出答案.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=23,∴CD=3,∴BD=CD=3,由勾股定理得:AD=22=3,AC CD∴AB=AD+BD=3+3,答:AB的长是3+3.点评:本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比较好的题目.对应训练3.(•重庆)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)3.考点:解直角三角形;三角形内角和定理;等边三角形的性质;勾股定理.专题:计算题.分析:根据等边三角形性质求出∠B=60°,求出∠C=30°,求出BC=4,根据勾股定理求出AC,相加即可求出答案.解答:解:∵△ABD是等边三角形,∴∠B=60°,∵∠BAC=90°,∴∠C=180°-90°-60°=30°,∴BC=2AB=4,在Rt△ABC中,由勾股定理得:AC=2222BC AB-=-=,4223∴△ABC的周长是AC+BC+AB=23+4+2=6+23.答:△ABC的周长是6+23.点评:本题考查了勾股定理,含30度角的直角三角形,等边三角形性质,三角形的内角和定理等知识点的应用,主要培养学生运用性质进行推理和计算的能力,此题综合性比较强,是一道比较好的题目.考点四:解直角三角形的应用例4 (•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=32千米,请据此解答如下问题:(1)求该岛的周长和面积;(结果保留整数,2≈1.41436≈2.45)(2)求∠ACD的余弦值.考点:解直角三角形的应用.分析:(1)连接AC ,根据AB =BC =15千米,∠B =90°得到∠BAC =∠ACB =45° AC =152千米,再根据∠D =90°利用勾股定理求得AD 的长后即可求周长和面积; (2)直接利用余弦的定义求解即可. 解:(1)连接AC∵AB =BC =15千米,∠B =90°∴∠BAC =∠ACB =45° AC =152千米 又∵∠D =90°∴AD =22 -AC CD =22(152)(32)123-=(千米)∴周长=AB +BC +CD +DA =30+32+123=30+4.242+20.784≈55(千米) 面积=S △ABC +18 6 ≈157(平方千米) (2)cos ∠ACD =CD 321==AC 5152点评:本题考查了解直角三角形的应用,与时事相结合提高了同学们解题的兴趣,解题的关键是从实际问题中整理出直角三角形并求解. 对应训练6.(•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC =75°. (1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千米/小时≈16.7米/秒)考点:解直角三角形的应用.专题:计算题.分析:(1)由于A到BC的距离为30米,可见∠C=90°,根据75°角的三角函数值求出BC的距离;(2)根据速度=路程÷时间即可得到汽车的速度,与60千米/小时进行比较即可.解答:解:(1)法一:在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC•tan∠BAC=30×tan75°≈30×3.732≈112(米).法二:在BC上取一点D,连接AD,使∠DAB=∠B,则AD=BD,∵∠BAC=75°,∴∠DAB=∠B=15°,∠CDA=30°,在Rt△ACD中,∠ACD=90°,AC=30,∠CDA=30°,∴AD=60,CD=303,BC=60+303≈112(米)(2)∵此车速度=112÷8=14(米/秒)<16.7 (米/秒)=60(千米/小时)∴此车没有超过限制速度.点评:本题考查了解直角三角形的应用,理解正切函数的意义是解题的关键.【聚焦山东中考】1.(•济南)如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A.13B.12C.22D.31.A考点:锐角三角函数的定义.A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定3考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.分析:首先根据绝对值与偶次幂具有非负性可知cosA-12=0,sinB-22=0,然后根据特殊角的三角函数值得到∠A、∠B的度数,再根据三角形内角和为180°算出∠C的度数即可.解答:解:∵|cosA-12|+(sinB-22)2=0,∴cosA-12=0,sinB-22=0,∴cosA=12,sinB=22,∴∠A=60°,∠B=45°,则∠C=180°-∠A-∠B=180°-60°-45°=75°,故答案为:75°.点评:此题主要考查了非负数的性质,特殊角的三角函数值,三角形内角和定理,关键是要熟练掌握特殊角的三角函数值.5.(•潍坊)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:3=1.73,2=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.5.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD=CD==21 3tan303=36.33,在Rt△BDC中,BD=CD==7 3tan303=12.11,则AB=AD-BD=36.33-12.11=24.22≈24.2(米)。
中考总复习解直角三角形

解直角三角形一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解三角函数的定义和正弦、余弦、正切的概念,并能运用;●掌握特殊角三角函数值,并能运用特殊角的三角函数值进行计算和化简;●掌握互为余角和同角三角函数间关系;●掌握直角三角形的边角关系和解直角三角形的概念,并能运用直角三角形的两锐角互余、勾股定理和锐角三角函数解直角三角形;●了解实际问题中的概念,并会用解直角三角形的有关知识解决实际问题.复习策略:●复习本专题应从四方面入手:(1)直角三角形在角方面的关系;(2)直角三角形在边方面的关系;(3)直角三角形的边角之间的关系;(4)怎样运用直角三角形的边角关系求直角三角形的未知元素.同时,解答这类题目时,应注重借助图形来解题,它能使已知条件、所求结论直观化,以便启迪思维,快捷解题.二、学习与应用知识点一:锐角三角函数“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记。
知识考点梳理认真阅读、理解教材,尝试把下列知识要点内容补充完整,若有其它补充可填在右栏空白处。
详细内容请参看网校资源ID:#tbjx4#248924知识框图通过知识框图,先对本单元知识要点有一个总体认识。
(一)锐角三角函数:在Rt△ABC中,∠C是直角,如图(1)正弦:∠A的与的比叫做∠A的正弦,记作sinA,即sinA= ;(2)余弦:∠A的与的比叫做∠A的余弦,记作cosA,即cosA= ;(3)正切:∠A的与的比叫做∠A的正切,记作tanA,即tanA= ;锐角三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(二)同角三角函数关系:(1)平方关系:sin2A+cos2A= ;(2)商数关系:tanA= .(三)互余两角的三角函数关系sinA=cos(),cosA=sin().(四)特殊角的三角函数值(五)锐角三角函数的增减性(1)角度在0°~90°之间变化时,正弦值(正切值)随角度的增大(或减小)而(或).(2)角度在0°~90°之间变化时,余弦值随角度的增大(或减小)而(或).要点诠释:∠A在0°~90°之间变化时,<sinA<,<cosA<,tanA>知识点二:解直角三角形在直角三角形中,由已知元素求未知元素的过程叫做解直角三角形.(一)三边之间的关系:a2+b2= (勾股定理)(二)锐角之间的关系:∠A+∠B= °(三)边角之间的关系:sinA= ,cosA= ,tanA=要点诠释:解直角三角形时,只要知道其中的个元素(至少有一个),就可以求出其余未知元素.知识点三:解直角三角形的实际应用(一)仰角和俯角:在视线与所成的角中,视线在上方的是仰角;视线在下方的是俯角.(二)坡角和坡度:坡面与的夹角叫做坡角.坡面的和的比叫做坡面的坡度(即坡角的值)常用i表示.(三)株距:相邻两树间的.(四)方位角与方向角:从某点的方向沿时针方向旋转到目标方向所形成的角叫做方位角.从方向或方向到目标方向所形成的小于°的角叫做方向角.经典例题-自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三。
2019年全国各地中考数学试题分类汇编(第二期) 专题28 解直角三角形(含解析)

解直角三角形一.选择题1. (2019•广东省广州市•3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC的长,本题得以解决.【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.2. (2019•广西北部湾经济区•3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A. 米B. 米C. 米D. 米【答案】C【解析】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=xtan65°,∴BD=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.二.填空题1. (2019•江苏宿迁•3分)如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是<BC <.【分析】当点C在射线AN上运动,△ABC的形状由钝角三角形到直角三角形再到钝角三角形,画出相应的图形,根据运动三角形的变化,构造特殊情况下,即直角三角形时的BC的值.【解答】解:如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2在Rt△ABC1中,AB=2,∠A=60°∴∠ABC1=30°∴AC1=AB=1,由勾股定理得:BC1=,在Rt△ABC2中,AB=2,∠A=60°∴∠AC2B=30°∴AC2=4,由勾股定理得:BC2=2,当△ABC是锐角三角形时,点C在C1C2上移动,此时<BC<2.故答案为:<BC<2.【点评】本题考查解直角三角形,构造直角三角形,利用特殊直角三角形的边角关系或利用勾股定理求解.考察直角三角形中30°的角所对的直角边等于斜边的一半,勾股定理等知识点.2. (2 019·江苏盐城·3分)如图,在△ABC 中,BC =26+,∠C =45°,AB =2AC ,则AC 的长为________.【答案】2【解析】过A 作AD ⊥BC 于D 点,设AC =x 2,则AB =x 2,因为∠C =45°,所以AD =AC =x ,则由勾股定理得BD =x AD AB 322=-,因为AB =26+,所以AB =263+=+x x ,则x =2.则AC =2.3. (2 019·江苏盐城·3分)如图,在平面直角坐标系中,一次函数y =2x -1的图像分别交x 、y 轴于点A 、B ,将直线AB 绕点B 按顺时针方向旋转45°,交x 轴于点C ,则直线BC 的函数表达式是__________.【答案】131-=x y 【解析】因为一次函数y =2x -1的图像分别交x 、y 轴于点A 、B ,则A (21,0),B (0,-1),则AB =25. 过A 作AD ⊥BC 于点D ,因为∠ABC =45°,所以由勾股定理得AD =410,设BC =x ,则AC =OC -OA =2112--x ,根据等面积可得:AC ×OB =BC ×AD ,即2112--x =410x ,解得x =10.则AC =3,即C (3,0),所以直线BC 的函数表达式是131-=x y .4. (2019•浙江湖州•4分)有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度.图2是支撑杆的平面示意图,AB 和CD 分别是两根不同长度的支撑杆,夹角∠BOD =α.若AO =85cm ,BO =DO =65cm .问:当α=74°时,较长支撑杆的端点A 离地面的高度h 约为 120 cm .(参考数据:sin 37°≈0.6,cos 37°≈0.8,sin 53°≈0.8,cos 53°≈0.6.)【分析】过O 作OE ⊥BD ,过A 作AF ⊥BD ,可得OE ∥AF ,利用等腰三角形的三线合一得到OE 为角平分线,进而求出同位角的度数,在直角三角形AFB 中,利用锐角三角函数定义求出h 即可.【解答】解:过O 作OE ⊥BD ,过A 作AF ⊥BD ,可得OE ∥AF , ∵BO =DO , ∴OE 平分∠BOD ,∴∠BOE =∠BOD =×74°=37°, ∴∠F AB =∠BOE =37°,在Rt △ABF 中,AB =85+65=150cm , ∴h =AF =AB •cos ∠F AB =150×0.8=120cm , 故答案为:120【点评】此题考查了解直角三角形的应用,弄清题中的数据是解本题的关键.三.解答题1. (2019•江苏宿迁•10分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)【分析】(1)作EM⊥CD于点M,由EM=ECsin∠BCM=75sin46°可得答案;(2)作E′H⊥CD于点H,先根据E′C=求得E′C的长度,再根据EE′=CE﹣CE′可得答案【解答】解:(1)如图1,过点E作EM⊥CD于点M,由题意知∠BCM=64°、EC=BC+BE=60+15=75cm,∴EM=ECsin∠BCM=75sin64°≈67.5(cm),则单车车座E到地面的高度为67.5+32≈99.5(cm);(2)如图2所示,过点E′作E′H⊥CD于点H,由题意知E′H=80×0.8=64,则E′C==≈71,1,∴EE′=CE﹣CE′=75﹣71.1=3.9(cm).【点评】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.2. (2019•江西•8分)图1是一台实物投影仪,图2是它的示意图,折线B-A-O表示固定支架,AO垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量:AO=6.8cm,CD=8cm,AB=30cm,BC=35cm.(结果精确到0.1)(1)如图2,∠ABC=70°,BC∥OE。
2019中考数学高频考点剖析专题19平面几何之直角三角形问题—解析卷.doc

备考2019中考数学高频考点剖析专题十九平面几何之直角三角形问题考点扫描☆聚焦中考直角三角形问题,是每年中考的必考重点内容之一,考查的知识点包括直角三角形的性质、勾股定理和解直角三角形三方面,总体來看,难度系数低,以选择填空为主。
关于解直角三角形主要是解析题。
解析题主要以计算为主。
结合2018年全国各地中考的实例,我们从三方血进行直角三角形问题的探讨:(1)直角三角形的性质;(2)勾股定理;(3)解直角三角形.考点剖析☆典型例题頑(2018・玉林)如图,在四边形ABCD中,ZB二ZD二90° , ZA=60° , AB二4,则AD的取值范围是2<AD<8・【分析】如图,延长BC交AD的延长线于E,作BF丄AD于F.解直角三角形求出AE、AF即可判断;【解答】解:如图,延长BC交AD的延长线于E,作BF丄AD于F.在RtAABE 中,VZE=30° , AB=4,AAE=2AB=8,在RtAABF 中,AF二寺AB二2,AAD的取值范围为2<AD<8,故答案为2<AD<8.例2| (2018・盐城)如图,在直角△ABC 中,ZC 二90° , AC 二6, BC 二8, P 、Q 分别为边BC 、AB 上的两个动点,若要使AAPQ 是等腰三角形且Z\BPQ 是直角三角形,则AQ 二 芈或孕. 【分析】分两种情形分别求解:①如图1屮,当AQ 二PQ, ZQPB=90°时,②当AQ 二PQ, ZPQB=90° 时;【解答】解:①如图1中,当AQ=PQ, ZQPB 二90°时,设AQ 二PQ 二x,・.・PQ 〃AC,AABPQ^ABCA,.BQ_PQ・ 10-x = x10 ~_6,・15 rAAQ~. 4②当 AQ 二PQ, ZPQB=90° 时,设 AQ 二PQ 二y.VABQP^ABCA,• PQ.BQ•• A L BC '■ y,10-y飞8 例3| (2018・黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则 蚂蚁从外壁A 处到内壁B 处的最短距离为20 cm (杯壁厚度不计).・・x 二 图1 图?蚂蚁月【分析】将杯子侧面展开,建立A关于EF的对称点A',根据两点之间线段最短可知“ B的长度即为所求.:【解答】解:如图连接A' B,则A' B 即为最短距离,A' B=A/A^D^+BD^A/162+1 2 2=20 (cm).故答案为20.^H| (2018*杭州)如图,在中,ZACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,八D长为半径画弧,交线段AC于点E,连结CD.(1)若ZA=28° ,求ZACD的度数.(2)设BC=a, AC二b.①线段AD的长是方程x2+2ax・b2=0的一个根吗?说明理由.②若AD=EC,求学的值.B【分析】(1)根据三角形内角和定理求出ZB,根据等腰三角形的性质求出ZBCD,计算即可;(2)①根据勾股定理求岀AD,利用求根公式解方程,比较即可;②根据勾股定理列出算式,计算即可.【解答】解:(1) V ZACB=90° , ZA=28° ,.\ZB=62° ,VBD=BC,・・・ZBCD二ZBDC二59° ,・・・ZACD二90° - ZBCD二31°;(2)①由勾股定理得,A B R AC J BC S/ai2 + b2,AD=Va2 + b2 - a,解方程x2+2ax - b~0 得,x^~2a± V4a2+4b2^ 土需盯予-a,2・・・线段AD的长是方程x2+2ax - b2=0的一个根;② VAD=AE,AAE=EC=4,2 由勾股定理得,a2+b2=(寺b+a)2, 整理得,竿导.b 4巫(2018-遵义)如图,吊车在水平地血上吊起货物时,吊绳BC与地血保持垂直,吊臂AB与水平线的夹角为64。
中考数学综合题专题复习【直角三角形的边角关系】专题解析附答案解析

中考数学综合题专题复习【直角三角形的边角关系】专题解析附答案解析一、直角三角形的边角关系1.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.2.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定3.下图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 m,AB=6 m,中间平台宽度DE=1 m,EN,DM,CB为三根垂直于AB的支柱,垂足分别为N,M,B,∠EAB=31°,DF⊥BC于点F,∠CDF=45°,求DM和BC的水平距离BM的长度.(结果精确到0.1 m.参考数据:sin31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)【答案】2.5m.【解析】试题分析:设DF=x,在Rt△DFC中,可得CF=DF=x,则BF=4-x,根据线段的和差可得AN=5-x,EN=DM=BF=4-,在Rt△ANE中,∠EAB=,利用∠EAB的正切值解得x的值.试题解析:解:设DF=,在Rt△DFC中,∠CDF=,∴CF=tan·DF=,又∵CB=4,∴BF=4-,∵AB=6,DE=1,BM= DF=,∴AN=5-,EN=DM=BF=4-,在Rt△ANE中,∠EAB=,EN=4-,AN=5-,tan==0.60,解得=2.5,答:DM和BC的水平距离BM为2.5米.考点:解直角三角形.4.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)【答案】(1)证明见解析;(2);(3).【解析】试题分析:(1)应用圆周角定理证明∠APD=∠FPC,得到∠APC=∠FPD,又由∠PAC=∠PDC,即可证明结论.(2)由AC=2BC,设,应用勾股定理即可求得BC,AC的长,则由AC=2BC得,由△ACE∽△ABC可求得AE,CE的长,由可知△APB是等腰直角三角形,从而可求得PA的长,由△AEF是等腰直角三角形求得EF=AE=4,从而求得DF的长,由(1)△PAC∽△PDF得,即可求得PD的长.(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.又∵∠PAC=∠PDC,∴△PAC∽△PDF.(2)连接BP,设,∵∠ACB=90°,AB=5,∴.∴.∵△ACE∽△ABC,∴,即. ∴.∵AB⊥CD,∴.如图,连接BP,∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.由(1)△PAC∽△PDF得,即.∴PD的长为.(3)如图,连接BP,BD,AD,∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.∵,∴.∵△AGP∽△DGB,∴.∵△AGD∽△PGB,∴.∴,即.∵,∴.∴与之间的函数关系式为.考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.5.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若314cos,53BAD BE∠==,求OE的长.【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =356.【解析】试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.试题解析:(1)DE为⊙O的切线,理由如下:连接OD,BD,∵AB为⊙O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,∴∠C+∠A=90°,∴∠ADO+∠CDE=90°,∴∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为⊙O的切线;(2)∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE;(3)解:∵cos∠BAD=,∴sin∠BAC=,又∵BE=,E是BC的中点,即BC=,∴AC=.又∵AC=2OE,∴OE=AC=.考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数6.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,BC=16cm,AD是斜边BC上的高,垂足为D,BE=1cm.点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M 同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH.点M到达点D 时停止运动,点N到达点C时停止运动.设运动时间为t(s).(1)当t为何值时,点G刚好落在线段AD上?(2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围.(3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,△CPD是等腰三角形?【答案】(1)3;(2);(3)t=9s或t=(15﹣6)s.【解析】试题分析:(1)求出ED的距离即可求出相对应的时间t.(2)先求出t的取值范围,分为H在AB上时,此时BM的距离,进而求出相应的时间.同样当G在AC上时,求出MN的长度,继而算出EN的长度即可求出时间,再通过正方形的面积公式求出正方形的面积.(3)分DP=PC和DC=PC两种情况,分别由EN的长度便可求出t的值.试题解析:∵∠BAC=90°,∠B=60°,BC=16cm∴AB=8cm,BD=4cm,AC=8cm,DC=12cm,AD=4cm.(1)∵当G刚好落在线段AD上时,ED=BD﹣BE=3cm∴t=s=3s.(2)∵当MH没有到达AD时,此时正方形MNGH是边长为1的正方形,令H点在AB 上,则∠HMB=90°,∠B=60°,MH=1∴BM=cm.∴t=s.当MH到达AD时,那么此时的正方形MNGH的边长随着N点的继续运动而增大,令G点在AC上,设MN=xcm,则GH=DH=x,AH=x,∵AD=AH+DH=x+x=x=4,∴x=3.当≤t≤4时,S MNGN=1cm2.当4<t≤6时,S MNGH=(t﹣3)2cm2∴S关于t的函数关系式为:.(3)分两种情况:①∵当DP=PC时,易知此时N点为DC的中点,∴MN=6cm∴EN=3cm+6cm=9cm.∴t=9s故当t=9s的时候,△CPD为等腰三角形;②当DC=PC时,DC=PC=12cm∴NC=6cm∴EN=16cm﹣1cm﹣6cm=(15﹣6)cm∴t=(15﹣6)s故当t=(15﹣6)s时,△CPD为等腰三角形.综上所述,当t=9s或t=(15﹣6)s时,△CPD为等腰三角形.考点:1.双动点问题;2.锐角三角函数定义;3.特殊角的三角函数值;4.正方形的性质;5.由实际问题列函数关系式;6.等腰三角形的性质;7.分类思想的应用.7.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.BE【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)3【解析】【分析】(1)①补全图形即可,②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=2FG=DG=2GH=6,得出DF2DG=3Rt△DCF中,由勾股定理得出CF=3得出结果.【详解】解:(1)①补全图形如图1所示,②FG=DG,FG⊥DG,理由如下,连接BG,如图2所示,∵四边形ABCD是正方形,∴∠ACB=45°,∵EG ⊥AC , ∴∠EGC =90°,∴△CEG 是等腰直角三角形,EG =GC , ∴∠GEC =∠GCE =45°, ∴∠BEG =∠GCF =135°, 由平移的性质得:BE =CF ,在△BEG 和△GCF 中,BE CF BEG GCF EG CG =⎧⎪∠=∠⎨⎪=⎩,∴△BEG ≌△GCF (SAS ), ∴BG =GF ,∵G 在正方形ABCD 对角线上, ∴BG =DG , ∴FG =DG ,∵∠CGF =∠BGE ,∠BGE+∠AGB =90°, ∴∠CGF+∠AGB =90°, ∴∠AGD+∠CGF =90°, ∴∠DGF =90°, ∴FG ⊥DG.(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示, 在Rt △ADG 中, ∵∠DAC =45°, ∴DH =AH =2在Rt △DHG 中,∵∠AGD =60°, ∴GH 33236,∴DG =2GH =6, ∴DF 2DG =3 在Rt △DCF 中,CF ()22436-3∴BE =CF =3.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.8.如图,在平面直角坐标系中,菱形ABCD 的边AB 在x 轴上,点B 坐标(﹣6,0),点C 在y 轴正半轴上,且cos B =35,动点P 从点C 出发,以每秒一个单位长度的速度向D 点移动(P 点到达D 点时停止运动),移动时间为t 秒,过点P 作平行于y 轴的直线l 与菱形的其它边交于点Q .(1)求点D 坐标;(2)求△OPQ 的面积S 关于t 的函数关系式,并求出S 的最大值;(3)在直线l 移动过程中,是否存在t 值,使S =320ABCDS 菱形?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)点D 的坐标为(10,8).(2)S 关于t 的函数关系式为S =24(04)220(410)33t t t t t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503.(3)3或7. 【解析】【分析】(1)在Rt △BOC 中,求BC,OC,根据菱形性质再求D 的坐标;(2)分两种情况分析:①当0≤t ≤4时和②当4<t ≤10时,根据面积公式列出解析式,再求函数的最值;(3)分两种情况分析:当0≤t ≤4时,4t =12,;当4<t ≤10时,22201233t t -+= 【详解】解:(1)在Rt △BOC 中,∠BOC =90°,OB =6,cos B =35, 10cos OB BC B∴==8OC ∴==∵四边形ABCD 为菱形,CD ∥x 轴,∴点D 的坐标为(10,8).(2)∵AB =BC =10,点B 的坐标为(﹣6,0),∴点A 的坐标为(4,0).分两种情况考虑,如图1所示.①当0≤t ≤4时,PQ =OC =8,OQ =t ,∴S =12PQ •OQ =4t , ∵4>0, ∴当t =4时,S 取得最大值,最大值为16;②当4<t ≤10时,设直线AD 的解析式为y =kx +b (k ≠0),将A (4,0),D (10,8)代入y =kx +b ,得:4k b 010k b 8+=⎧⎨+=⎩,解得:4k 316b 3⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AD 的解析式为41633y x =-. 当x =t 时,41633y t =-, 41648(10)333PQ t t ⎛⎫∴=--=- ⎪⎝⎭ 21220233S PQ OP t t ∴=⋅=-+ 22202502(5),033333S t t t =-+=--+-<Q ∴当t =5时,S 取得最大值,最大值为503. 综上所述:S 关于t 的函数关系式为S =24(04)220(410)33t t t t t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503. (3)S 菱形ABCD =AB •OC =80.当0≤t ≤4时,4t =12,解得:t =3;当4<t ≤10时,222033t t -+=12, 解得:t 1=5﹣7(舍去),t 2=5+ 7. 综上所述:在直线l 移动过程中,存在t 值,使S =320ABCD S 菱形,t 的值为3或5+7.【点睛】考核知识点:一次函数和二次函数的最值问题.数形结合,分类讨论是关键.9.关于三角函数有如下的公式: sin (α+β)=sinαcosβ+cosαsinβ①cos (α+β)=cosαcosβ﹣sinαsinβ②tan (α+β)=③利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如: tan105°=tan (45°+60°)==﹣(2+).根据上面的知识,你可以选择适当的公式解决下面的实际问题: 如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α=60°,底端C 点的俯角β=75°,此时直升飞机与建筑物CD 的水平距离BC 为42m ,求建筑物CD 的高.【答案】建筑物CD 的高为84米.【解析】分析:如图,过点D作DE⊥AB于点E,由题意易得∠ACB=75°,∠ABC=90°,DE=BC=42m,∠ADE=60°,这样在Rt△ABC和在Rt△ADE中,结合题中所给关系式分别求出AB和AE的长,即可由CD=BE=AB-AE求得结果了.详解:如图,过点D作DE⊥AB于点E,由题意可得∠ACB=75°,∠ABC=90°,DE=BC=42m,CD=BE,∠ADE=60°,∴在Rt△ABC和Rt△ADEAB=BC•tan75°=42tan75°=,AE=,∴CD=AB﹣AE=(米).答:建筑物CD的高为84米.睛:读懂题意,把已知量和未知量转化到Rt△ABC和Rt△ADE中,这样利用直角三角形中边角间的关系结合题目中所给的“两角和的三角形函数公式”即可使问题得到解决.10.如图,正方形ABCD的边长为2+1,对角线AC、BD相交于点O,AE平分∠BAC分别交BC、BD于E、F,(1)求证:△ABF∽△ACE;(2)求tan∠BAE的值;(3)在线段AC上找一点P,使得PE+PF最小,求出最小值.【答案】(1)证明见解析;(2)tan∠EAB2﹣1;(3)PE+PF的最小值为22【解析】【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)如图1中,作EH ⊥AC 于H .首先证明BE=EH=HC ,设BE=EH=HC=x ,构建方程求出x 即可解决问题;(3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小,最小值为线段EH 的长;【详解】(1)证明:∵四边形ABCD 是正方形,∴∠ACE =∠ABF =∠CAB =45°,∵AE 平分∠CAB ,∴∠EAC =∠BAF =22.5°,∴△ABF ∽△ACE .(2)解:如图1中,作EH ⊥AC 于H .∵EA 平分∠CAB ,EH ⊥AC ,EB ⊥AB ,∴BE =EB ,∵∠HCE =45°,∠CHE =90°,∴∠HCE =∠HEC =45°,∴HC =EH ,∴BE =EH =HC ,设BE =HE =HC =x ,则EC 2,∵BC 2+1,∴x+x 2+1,∴x =1,在Rt △ABE 中,∵∠ABE =90°,∴tan ∠EAB =221BE AB == 1. (3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小.作EM ⊥BD 于M .BM =EM =2, ∵AC =22AB BC +=2+2,∴OA =OC =OB =12AC =22+ , ∴OH =OF =OA•tan ∠OAF =OA•tan ∠EAB =22+ •(2﹣1)=2, ∴HM =OH+OM =222+, 在Rt △EHM 中,EH =2222222EM HM 22⎛⎫⎛⎫+++ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭= =22+.. ∴PE+PF 的最小值为22+..【点睛】 本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.11.如图,在航线l 的两侧分别有观测点A 和B ,点B 到航线l 的距离BD 为4km ,点A 位于点B 北偏西60°方向且与B 相距20km 处.现有一艘轮船从位于点A 南偏东74°方向的C 处,沿该航线自东向西航行至观测点A 的正南方向E 处.求这艘轮船的航行路程CE 的长度.(结果精确到0.1km )(参考数据:3≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)【答案】20.9km【解析】分析:根据题意,构造直角三角和相似三角形的数学模型,利用相似三角形的判定与性质和解直角三角形即可.详解:如图,在Rt △BDF 中,∵∠DBF=60°,BD=4km ,∴BF=cos 60BD o =8km , ∵AB=20km ,∴AF=12km , ∵∠AEB=∠BDF ,∠AFE=∠BFD ,∴△AEF ∽△BDF , ∴AE BD AF BF, ∴AE=6km , 在Rt △AEF 中,CE=AE•tan74°≈20.9km .故这艘轮船的航行路程CE 的长度是20.9km .点睛:本题考查相似三角形,掌握相似三角形的概念,会根据条件判断两个三角形相似.12.如图所示,小华在湖边看到湖中有一棵树AB ,AB 与水面AC 垂直.此时,小华的眼睛所在位置D 到湖面的距离DC 为4米.她测得树梢B 点的仰角为30°,测得树梢B 点在水中的倒影B′点的俯角45°.求树高AB (结果保留根号)【答案】AB=(3)m .【解析】【分析】设BE=x ,则BA=x+4,B′E=x+8,根据∠ADB′=45°,可知DE=B′E=x+8,再由tan30°=BE DE即可得出x 的值,进而得到答案,【详解】如图:过点D 作DE ⊥AB 于点E ,设BE=x ,则BA=x+4,B′E=x+8,∵∠ADB′=45°,∴DE=B′E=x+8,∵∠BDE=30°,∴tan30°=383BE x DE x ==+ ,解得x=4+43 , ∴AB=BE+4=(8+43 )m .【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解答此题的关键。
2019年中考数学《“3,4,5”直角三角形的奇思妙想》复习教学案

“3,4,5”直角三角形的奇思妙想提到三边长都是整数的直角三角形,我们往往首先想到的就是边长为“3,4,5”的直角三角形.早在西汉时期,算书《周髀算经》中就有“勾三股四弦五”的记载.其实,我们对“3,4,5” 直角三角形进一步探究,还能发现一些有趣且有用的结论. 一、基础准备如图1 , Rt ABC V 中,90C ∠=︒,3BC =,4AC =,5AB =,CAB α∠=,CBA β∠=,显然90αβ+=︒.延长CA 至点D ,使得5AD AB ==,连结BD ,则ABD V 是等腰三角形,2D α∠=.在Rt BCD V 中,31tan tan2453BC D DC α∠====+ 同样方法,可求得41tan tan2352AC E EC β∠====+同时90452222αβαβ+︒+===︒提炼如下:1tan23α=, 1tan 22β=,90αβ+=︒,4522αβ+==︒.用文字语言表述为:如果两个锐角的正切值分别为13,12,那么这两个锐角的和为45︒. 我们不妨用约定符号将上述结果简记为“13”+“12”=45︒.(其中“13”,“12”分别表示正切值为13,12的锐角) 下面我们运用此结论来解决问题,并与常规解法进行比较.二、运用策略例1 如图2,在33⨯的格中标出了1∠和2∠,则1+2=∠∠ .解法1 构造三角形,从而发现1∠和2∠间的关系.如图3,显然1=3∠∠,2=4∠∠, 并且90ABC ∠=︒,AB BC =,1+23445∴∠∠=∠+∠=︒.解法2 利用“13”+“12”=45︒的结论解决问题.图2中,1tan 13∠=,1tan 22∠=.根据结论“如果两个锐角的正切值分别为13,12,那么这两个锐角的和为45︒,得1+245∠∠=︒.例2 如图4,正方形ABCD 的边长为6,点E 、F 分别在AB ,AD 上,若3BE =,且45ECF ∠=︒,则CF 的长为( )(A)解法1 通过作辅助线,构造全等三角形.适当假设线段长,利用勾股定理得出等量关系式,最终求出CF 的长.解 如图5,延长FD 到G ,使DG BE =,连结CG 、EF .∵四边形ABCD 为正方形,CD CB =,90B CDG ∠=∠=︒, BCE DCG ∴≅V V ,CG CE ∴=,DCG BCE ∠=∠,45GCF DCG DCF BCE DCF ECF ∴∠=∠+∠=∠+∠=︒=∠, GCF ECF ∴≅V V ,GF EF ∴=.设DF x =,则6AF x =-,3EF GF GD DF x ==+=+. 在Rt AEF V 中,222AE AF EF +=, 2223(6)(3)x x ∴+-=+.解得2x =,则4DF =.CF ∴==故选A解法2 利用“13”+“12”=45︒的结论求解. 易见图4中,45DCF ECB ∠+∠=︒, 且31tan 62BE ECB BC ∠===.根据“13”+“12”=45︒,得1tan 3DCF ∠=,123DF CD ∴==.在Rt DCF V 中,求得CF ==. 故选A.点评 比较两种做法,我们发现利用“13”+“12”=45︒解决问题更加方便快捷. 再来一题试试看吧!例3 如图6,在ABC V 中,45BAC ∠=︒,AD 是BC 边上的高,3BD =,2DC =则AD 的长为 .解法一 构造正方形,利用勾股定理求AD 长.如图7,分别以AB 、AC 为对称轴,画出ABD V 、ACD V 的轴对称图形,D 点的对称点为E 、F ,延长EB 、FC 相交于G 点,得到四边形AEGF 是正方形.根据对称的性质,可得2BE BD ==,3CF CD ==.设AD x =,则正方形AEGF 的边长是x ,2BG EG BE x ∴=-=-,3CG FG CF x =-=-.在Rt BCG V 中,根据勾股定理,可得222(2)(3)5x x -+-=,解得:6x =或1-(舍去). 故边长是6.解法2 构造全等三角形,利用相似求解.如图8,过点B 作BE AC ⊥,垂足为E ,交AD 于点F .45BAC ∠=︒Q ,BE AE ∴=.90C EBC ∠+∠=︒Q ,90C EAF ∠+∠=︒ EAF EBC ∴∠=∠,AFE BCE ∴≅V V .5AF BC BD DC ∴==+=,FBD DAC ∠=∠.又90BDF ADC ∠=∠=︒Q ,BDF ADC ∴V :V , FD BDDC AD∴=. 设FD 长为x ,即325x x=+解得1x =,即1FD =,516AD AF FD ∴=+=+=.故答案为6解法3 凭借直觉经验,利用“13”+“12”=45︒求解. 图6中,45BAC BAD DAC ∠=∠+∠=︒,联想到“13”+“12”=45︒,发现当6AD =时,恰好有1tan 2BAD ∠=,1tan 3DAC ∠=,从而知6AD =.点评解法1、解法2中需要作辅助线,构造全等或相似,利用勾股定理来求解,方法不容易想到,解决起来也比较耗时。
中考考点三角形中角度与边长的关系的计算与应用

中考考点三角形中角度与边长的关系的计算与应用中考考点:三角形中角度与边长的关系的计算与应用一、引言三角形是几何学中的重要概念,其角度与边长之间的关系是中考数学题中的常见考点。
掌握三角形中角度与边长的计算与应用,对于解题具有重要意义。
本文将介绍三角形中角度与边长的关系的计算方法和实际应用。
二、角度的计算方法1. 直角三角形的角度关系在直角三角形中,有一个直角(90°)和两个锐角(小于90°)。
根据三角形的内角和为180°,可以计算得出直角三角形中两个锐角之和为90°。
例如,已知一个角度为30°,则另一个角度为90°-30°=60°。
2. 一般三角形的角度关系对于一般三角形,角度的计算可以通过以下方法进行:(1) 已知两个角度,求第三个角度:三角形的内角和为180°,所以可以通过已知的两个角度求得第三个角度。
(2) 已知两边长度及夹角,求第三边的长度:可以利用余弦定理、正弦定理或正切定理进行计算。
三、边长的计算方法1. 直角三角形的边长关系在直角三角形中,有一个直角和两个锐角。
根据勾股定理,直角边的平方等于两个锐角边的平方和。
例如,在一个直角三角形中,已知两个锐角边的长度分别为3和4,可以通过计算得知直角边的长度为√(3^2+4^2)=5。
2. 一般三角形的边长关系对于一般三角形,可以利用余弦定理、正弦定理或正切定理来计算边长:(1) 余弦定理:在一个三角形中,已知两边长度及夹角,可以利用余弦定理计算第三边的长度。
根据余弦定理,第三边的平方等于已知两边的平方和减去两倍已知两边的长度乘以夹角的余弦值。
(2) 正弦定理:在一个三角形中,已知一个角度和该角度对应的边长以及另外两边的长度,可以利用正弦定理计算未知边长。
(3) 正切定理:在一个三角形中,已知一个角度和该角度对应的边长以及另外一条边的长度,可以利用正切定理计算未知边长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学精品复习资料全国中考真题解析考点汇编☆直角三角形的有关计算一、选择题1.(2011湖北荆州,8,3分)在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A、 5714B、 35C、 217D、 2114考点:解直角三角形.专题:几何图形问题.分析:根据∠A=120°,得出∠DAC=60°,∠ACD=30°,得出AD=1,CD= 3,再根据BC=2 7,利用解直角三角形求出.解答:解:延长BA做CD⊥BD,∵∠A=120°,AB=4,AC=2,∴∠DAC=60°,∠ACD=30°,∴2AD=AC=2,∴AD=1,CD= 3,∴BD=5,∴BC=2 7,∴sinB= 327= 2114,故选:D.点评:此题主要考查了解直角三角形以及勾股定理的应用,根据题意得出∠DAC=60°,∠ACD=30°是解决问题的关键.2.(2011山东滨州,9,3分)在△ABC中,∠C=90°, ∠C=72°,AB=10,则边AC的长约为(精确到0.1),则AC=AB•cosA=10×cos72°≈3.1;故选C .【点评】本题考查了解直角三角形的应用,要熟练掌握好边角之间的关系及三角函数的定义.3. (2011•德州,7,3分)一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a 1,a 2,a 3,a 4,则下列关系中正确的是( )A 、a 4>a 2>a 1B 、a 4>a 3>a 2C 、a 1>a 2>a 3D 、a 2>a 3>a 4 考点:正多边形和圆;等边三角形的判定与性质;多边形内角与外角;平行四边形的判定与性质。
专题:计算题。
分析:设等边三角形的边长是a ,求出等边三角形的周长,即可求出等边三角形的周率a 1;设正方形的边长是x ,根据勾股定理求出对角线的长,即可求出周率;设正六边形的边长是b ,过F 作FQ ∥AB 交BE 于Q ,根据等边三角形的性质和平行四边形的性质求出直径,即可求出正六边形的周率a 3;求出圆的周长和直径即可求出圆的周率,比较即可得到答案.解答:解:设等边三角形的边长是a ,则等边三角形的周率a 1=3a a=3设正方形的边长是x ,由勾股定理得:对角线是x ,则正方形的周率是a 2错误!未找到引用源。
≈2.828, 设正六边形的边长是b ,过F 作FQ ∥AB 交BE 于Q ,得到平行四边形ABQF和等边三角形EFQ ,直径是b+b=2b , ∴正六边形的周率是a 3=62b b =3, 圆的周率是422r a rππ==, ∴a 4>a 3>a 2. 故选B .点评:本题主要考查对正多边形与圆,多边形的内角和定理,平行四边形的性质和判定,等边三角形的性质和判定等知识点的理解和掌握,理解题意并能根据性质进行计算是解此题的关键.4.(2011山东菏泽,5,4分)如图所示,已知在三角形纸片ABC中,BC=3,AB=6,∠BCA=90°.在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则DE的长度为()A.6 B.3 C.错误!未找到引用源。
D错误!未找到引用源。
考点:翻折变换(折叠问题);含30度角的直角三角形;勾股定理.专题:计算题.分析:易得∠ABC=60°,∠A=30°.根据折叠的性质∠CBE=∠D=30°.在△BCE和△DCE 中运用三角函数求解.解答:解:∵∠ACB=90°,BC=3,AB=6,∴sinA=BC:AB=1:2,∴∠A=30°,∠CBA=60°.根据折叠的性质知,∠CBE=∠EBA=错误!未找到引用源。
∠CBA=30°,∴CE=BCtan30°=错误!未找到引用源。
,∴DE=2CE=2错误!未找到引用源。
.故选C.点评:本题考查了:1.折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2.直角三角形的性质,锐角三角函数的概念求解.5.(2011泰安,19,3分)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.6考点:翻折变换(折叠问题);勾股定理。
专题:探究型。
分析:先根据图形翻折变换的性质求出AC的长,再由勾股定理及等腰三角形的判定定理即可得出结论.解答:解:∵△CED是△CEB翻折而成,∴BC=CD,BE=DE,∵O是矩形ABCD的中心,∴OE是AC的垂直平分线,AC=2BC=2×3=6,∴AE =CE ,在Rt △ABC 中,AC 2=AB 2+BC 2,即62=AB 2+32,解得AB =3错误!未找到引用源。
, 在Rt △AOE 中,设OE =x ,则AE =3错误!未找到引用源。
-x ,AE 2=AO 2+OE 2,即(33-x )2=(33)2+32,解得x =错误!未找到引用源。
, ∴AE =EC =33-3=23.故选A .点评:本题考查的是翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.6.(2011辽宁本溪,6,3分)如图,在Rt △ABC 中,∠C =90°,AB =10,BC =8,DE 是△ABC 的中位线,则DE 的长度是( )BD AA .3B .4C .4.8D .5考点:三角形中位线定理;勾股定理专题:存在型分析:由在Rt △ABC 中,∠C =90°,AB =10,BC =8,根据勾股定理即可求得AC 的长,又由DE 是△ABC 的中位线,根据三角形中位线的性质,求得DE 的长度.解答 解:∵在Rt △ABC 中,∠C =90°,AB =10,BC =8,∴,∵DE 是△ABC 的中位线,∴DE =12AC =3. 故选A .点评:此题考查了勾股定理与三角形中位线的性质.题目难度不大,注意数形结合思想的应用. 7.如图,矩形ABCD 中,AB=4,BC=5,AF 平分∠DAE ,EF ⊥AE ,则CF 等于( )A 、B 、1C 、D 、22. (2011•临沂,13,3分)如图,△ABC 中,cosB=2,sinC=错误!未找到引用源。
,AC=5,则△ABC 的面积是( )A、错误!未找到引用源。
B、12C、14D、21考点:解直角三角形。
分析:根据已知做出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.解答:解:过点A做AD⊥BC,∵△ABC中,cosB=错误!未找到引用源。
,sinC=错误!未找到引用源。
,AC=5,∴cosB=错误!未找到引用源。
=错误!未找到引用源。
,∴∠B=45°,∵sinC=35=ADAC=5AD,∴AD=3,∴CD=4,∴BD=3,则△ABC的面积是:12×AD×BC=错误!未找到引用源。
×3×(3+4)=212.故选A.点评:此题主要考查了解直角三角形的知识,做出AD⊥BC,进而得出相关线段的长度是解决问题的关键.8.(2011•丹东,8,3分)如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D.若AC=9,则AE的值是()A、6错误!未找到引用源。
3B、4错误!未找到引用源。
C、6D、4考点:线段垂直平分线的性质;含30度角的直角三角形。
专题:计算题。
分析:由角平分线的定义得到∠CBE=∠ABE,再根据线段的垂直平分线的性质得到EA=EB,则∠A=∠ABE,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.解答:解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=6.故选C.点评:本题考查了线段的垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等.AOB=60°,AB=5,则AD的长是()C.5D.10考点:解直角三角形;矩形的性质。
专题:计算题。
分析:本题的关键是利用等边三角形和矩形对角线的性质求长度.解答:解:因为在矩形ABCD中,所以AO=12AC=12错误!未找到引用源。
BD=BO,又因为∠AOB=60°,所以△AOB是等边三角形,所以AO=AB=5,所以BD=2AO=10,所以AD2=BD2﹣AB2=102﹣52=75,所以故选A.点评:此题考查的知识点是解直角三角形,解答此题的关键是由矩形的性质和等边三角形的性质首先得出BD=2AB=10,然后由勾股定理求得AD.二、填空题1. (2011•玉林,17,3分)如图,等边△ABC 绕点B 逆时针旋转30°时,点C 转到C′的位置,且BC′与AC 交于点D ,则错误!未找到引用源。
CDD C '的值为 2﹣错误!未找到引用源。
.考点:旋转的性质;等边三角形的性质;解直角三角形。
分析:等边△ABC 绕点B 逆时针旋转30°时,则△BCD 是直角三角形,根据三角函数即可求解.解答:解:设等边△ABC 的边长是a ,图形旋转30°,则△BCD 是直角三角形.BD=BC•cos30°=错误!未找到引用源。
23 则C′D=1﹣错误!未找到引用源。
=错误!未找到引用源。
232-,CD=错误!未找到引用源。
∴错误!未找到引用源。
=错误!未找到引用源。
21232-=2﹣错误!未找到引用源。
故答案是:2﹣3.点评:本题主要考查了图形旋转的性质,以及直角三角形的性质,正确确定△BCD 是直角三角形是解题的关键.2. (2011江苏淮安,18,3分)如图,在Rt △ABC 中,∠ABC=90°,∠ACB=30°,将△ABC绕点A 按逆时针方向旋转15°后得到△AB 1C 1,B 1C 1交AC 于点D ,如果AD=则△ABC 的周长等于 .考点:旋转的性质;解直角三角形。
分析:根据已知可以得出∠BAC=60°,而将△ABC绕点A按逆时针方向旋转15°,可知∠B1AD=45°,可以求出AB1=2错误!未找到引用源。