数学物理方程第四章 积分变换法
合集下载
第四章积分变换法详解

第二十五页,共47页。
L(eat ) 1 , pa
p L(cos at ) p2 a2
4.3 拉普拉斯变换的概念和性质
2)线性性质
L f g L f L g
3) 微分性质
若 F ( p) L[ f (t)], 则
L[ f 't ] pF p f 0 ,
L[ f ''t ] p2F p p f 0 f '0, L[ f n t ] pnF p pn1 f 0 pn2 f '0
u x, y FouxrierU , y
由傅立叶变换的线性性质
u y
x,
y
Fouxrier
U
,
y
y
d dy
U
,
y
是参数
同理,
第九页,共47页。
2u y2
x
,
y
Fouxrier
d2 dy 2
U
,
y
4.2 傅立叶变换的应用
第十页,共47页。
4.2 傅立叶变换的应用
例 用积分变换法解方程:
1 t fˆ (, ) sina(t ) d
a 0
由初始条件 U (,t) ()cosat () sinat a
第十八页,共47页。
1 t fˆ (, ) sina(t ) d
a 0
4.2 傅立叶变换的应用
注意到 ()cosat 1 [()eiat ()eiat ]
2
取傅立叶逆变换,得
u 2u
t
x 2
,
t 0, x R .
u x, 0 f x
解:由自变量的取值范围 ,对 x 进行傅立叶变换,设
数学物理方程课件 积分变换法

设F[ f1(x)] F1(), F[ f2 (x)] F2 (),
则F[ f1(x) f2 (x)] F1() F2 ()
(5)
其中,为常数,逆变换也成立,即
F-1[ F1() F2 ()] f1(x) f2 (x)
(6)
试证明Fourier正弦变换和Fourier余弦变换的公式分别为
Fs1[Fs ()]
f (x)
2
0 fs (x) sin xdx
Fc1[Fc ()]
f
(x)
2
0 fc (x) cos xdx
§4.1.1 Fourier变换法
证明:F () F[ f (x)] f (x)eixdx
i
2
0
Fs
(
)
ei
x
d
(欧拉公式)
即Fourier正弦变换的公式为
f (x) 2
0 Fs () cos xd
§4.1.1 Fourier变换法
例9:证明
x 0 1 x2
sin xdx
2
e
(
0)。
证明:本题直接积分不易计算,考虑到fs
1 l
l l
f (x) cos n
l
xdx, n 0,1, 2,...
bn
1 l
l l
f (x) sin n
l
xdx, n 1, 2,...
§4.1.1 Fourier变换法
二、Fourier变换
设f (x)在(-, )上满足
i)逐段光滑(可导);
高等应用数学方法

高等应用数学方法
1. 积分变换法:积分变换法是一种用于解决复杂微分方程的数学方法,它通过将原始微分方程转化为一系列积分方程来求解。
2. 广义矩阵反转法:广义矩阵反转法是一种用于求解线性方程组的数学方法,它利用矩阵的反转来求解线性方程组。
3. 广义逆矩阵法:广义逆矩阵法是一种用于求解线性方程组的数学方法,它利用矩阵的逆来求解线性方程组。
4. 拉格朗日乘子法:拉格朗日乘子法是一种用于求解非线性方程组的数学方法,它利用拉格朗日乘子来求解非线性方程组。
5. 拉格朗日方程法:拉格朗日方程法是一种用于求解最优化问题的数学方法,它利用拉格朗日方程来求解最优化问题。
6. 高斯消元法:高斯消元法是一种用于求解线性方程组的数学方法,它利用高斯消元法来求解线性方程组。
7. 广义逆矩阵法:广义逆矩阵法是一种用于求解复杂线性方程组的数学方法,它利用矩阵的逆来求解复杂线性方程组。
第四章积分变换法

即:由三角函数组成的函项级数成为三角级数。
三角函数系的正交性
(1)三角函数系
1,cos x,sin x,cos 2x,sin 2x, cos kx,sin kx,
( 2)正交 :
任意两个不同函数在[ , ]上的积分等于零。即
i)
cos kxdx 0,
sin kxdx 0,
16
ii)
sin kx cos nxdx 0.
3
特别是对于无界或半无界的定解问题,用积分变换来 求解,最合适不过了。(注明:无界或半无界的定解问题 也可以用第三章方法求解)
4
所谓积分变换,就是把某函数类A中的任意一个函数 f (t)
,经过某种可逆的积分方法(即为通过含参变量 的积分)
b
F( ) f (t)K(t, ) d t
a
变为另一函数类 B中的函数 F ( ), 这里 K (t, ) 是一个确
u(t) 4 (sin t 1 sin 3t 1 sin5t 1 sin7t )
3
Байду номын сангаас
5
7
( t , t 0)
由以上可以看到:一个比较复杂的周期函数可以看 作是许多不同频率的简谐函数的叠加
14
2 三角级数 三角函数系的正交性
三角级数
引例中的简谐振动函数
f (t ) A0 Ak sin(k t k )
傅立叶的两个最主要的贡献:
• “周期信号都可表示为谐波关 系的正弦信号的加权和”—— 傅里叶的第一个主要论点
• “非周期信号都可用正弦信号 的加权积分表示” ——傅里叶的第二个主要论点
10
(一) 周期函数的傅里叶展开 1.傅里叶级数的引进
在物理学中,我们已经知道最简单的波是谐波(正弦
数学物理方法3-4积分变换法

§3.4.1
第三章 偏微分方程的定解问题 第四节 积分变换法
直线上的初值问题
例3.4.1求解热传导 问题
dU(, t) 2 2 a U(, t), t 0 解:利用傅立 dt 叶变换的性质 U(, 0) (), t a22 a22t C () U(, t) e C F(, ) e d
思考 利用积分变换方法求解问题的好处是什么?
第三章 偏微分方程的定解问题 第四节 积分变换法
傅立叶变换的定义
U ( , t ) u ( x, t )e
j x
1 dx , u ( x , t ) 2
U ( , t )e j x d
傅立叶变换的性质 微分性 位移性 f ( n ) (x) ( j ) n F ( )
e
d d
1 2a
t
( )e
2 x
4 a 2t
d
第三章 偏微分方程的定解问题 第四节 积分变换法
§3.4.2
半无界直线上的问题
半无界区域上的热传导(扩散)问题 2 u 2 u 0 x , t 0 t a x 2 0, 例3.4.4 求解 t 0 u (0, t ) u0 , u ( x, 0) 0, 0 x 做代换 u ( x, t ) v( x, t ) u0 转化为直线上热传导方程 2 v v 2 对称延拓法(奇延拓) a , 0 x , t 0 2 x t x0 u0 , v(0, t ) 0, t0 ( x) u0 , x0 v( x, 0) u0 , 0 x 考虑与无界区域上 波传播问题的差别
数学物理方程行波法与积分变换

常见数学物理方程
波动方程
描述波动现象的数学模型,如声波、光波和水波 等。
热传导方程
描述热量传递过程的数学模型,如温度场的变化 和热传导等。
弹性力学方程
描述弹性物体变形的数学模型,如物体的应力和 应变等。
数学物理方程的解法
行波法
通过将方程转化为行波方程,利用行波的特性求解原 方程。
分离变量法
将多变量问题转化为单变量问题,通过求解单变量方 程得到原问题的解。
拉普拉斯变换
01
拉普拉斯变换的定 义
将一个时域函数转换为复平面上 的函数。
02
拉普拉斯变换的性 质
线性、时移、复频移、微分、积 分等。
03
拉普拉斯变换的应 用
控制系统分析、电路分析等领域。
积分变换的性质和应用
积分变换的性质
线性性质、时移性质、频移性质、微 分性质等。
积分变换的应用
求解偏微分方程、求解常微分方程、 求解积分方程等。
应用
一维波动方程的行波法广泛应用于求解一维波动问题,如弦振动、 波动传播等。
高维波动方程的行波法
方法
转化
应用
对于高维波动方程,行波法同样适用。 设解为多个行波的叠加形式,利用波 的传播性质和叠加原理,将高维波动 方程转化为多个一维或低维的常微分 方程或代数方程。
通过行波变换,将高维波动方程分解 为多个一维或低维的方程,简化求解 过程。
。
03
对于某些问题,可能需要复杂的积分变换和逆变换计
算。
行波法与积分变换的联系
行波法和积分变换都是求解数学物理方程的方法,它们之间存在一定的联 系。
在某些情况下,行波法可以通过适当的变量替换转化为积分变换的形式。
《数理方程》积分变换法解析

x2
x2
1 p2
dU dx
2x p
x2 p3
.
而 u |x1 cos y
变为
U
x,
p
|x1
1
p p2
,
解常微分方程得
U x, p
1 3 p3
x3
1 p
x2
p 1 p2
1 3 p3
1 p
.
取拉普拉斯逆变换,得
L(t n )
n! pn1 , n 0,1,
u
|x
0
f
t.
思考:需要对哪一个自变量进行哪一种积分变换?
对 t 进行拉普拉斯变换,设
u x,t U x, p, f t F p
于是方程变为
a2
d 2U x,
dx 2
p
pU
x,
p,
U x, p |x0 F p
这是二阶常微分方程的边值问题,它的通解为
根据傅里叶变换的微分性质,
方程转化为
dU ,
t
2U , t
dt
U , t |t0 F
于是 U ,t F e2t .
为了求出原方程的解,下面对 U ,t 关于 进行
傅立叶逆变换.
U ,t F e2t .
再由边值条件 U x, p |x0 F p 可知,C = F(p).
U
x,
p
F
pe
p a
x
.
为求出 u(x,t), 需要对 U(x,p) 进行拉普拉斯 逆变换。
积分变换法

dU (,t) a22U (,t) G(,t),
dt
它满足初值条件
U (, t) |t0 ().
(39) (40)
为了求解常微分方程初值问题(39)(40),记
19
例1 求解下列问题的解 ut a 2uxx f (x,t) ( x , t 0), (37)
u |t0 (x).
(38)
10
例3 求fˆ() e2t 的傅里叶逆变换,其中t 0.
解 由定义知
f (x) 1 fˆ ()eixd 1 e2t eix d
2
2
1 e2t (cosx i sin x)d,
2
1 e2t cos xd,
0
对 f (x) 求导,并利用一次分部积分得
df (x) x f (x) 0. dx 2t
( ) L1
s
1
2a 2
L1
s
1
2 a 2
G
(, s)
L[eat ] 1 sa
()ea22t
G(,t) ea22t
()ea22t t G(, )ea22 (t ) d . 0
(42)
为了求出问题(37)(38)的解,还需要对U (,t)
取傅氏逆变换。
22
例1 求解下列问题的解 ut a 2uxx f (x,t) ( x , t 0), (37)
t t0 t t0
证明 由拉氏变换的定义知
L[ f (t t0 )u(t t0 )]
0
f
(t
t0 )u(t
t0 )est dt
t0
f
(t
t0
)e st
dt
令 y t t0 , 则上式变为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
u
t
a
f
t
a
e
st
dt
0 f t aestdt 0
令 v t a ,t v a
dt dv
f
v esvadv
0
esa f t est dt 0
esa L f t
F s eas
结论
easF s Lut a f t a
表示Fs乘以eas后,相当于f t
在 t 軸向右平移了a距離。
f
(x)
a0 2
ak
k 1
cos kx
而当信号具有反对称性(奇)特征时,ak=0,
f (x)
a0 2
bk sin kx
k 1
❖ 在研究热传导方程的过程中,为了简化原问题, 傅里叶建议将热导方程从时间域变换到频率域,
为此他提出了著名的傅里叶变换的概念。信号
f(x)的傅里叶变换定义为:
❖
fˆ ( ) f (x)eix dx,i 1
若函数 f (x) 以 f (x 2l) f (x) 为周期,即
则可取三角函数族
1,cos x,cos 2 sin xl,sin 2 xl
x, ,
… …
cos sin
n
l
,x …
n x, …
l
l
l
作为基本函数族,将f (x) 展开为级数
f (x)
= a0 + (an
n1
cosn
l
x
+bncos
f
(t
)]
1
1 e sT
T f (t)estdt
0
卷积与卷积定理
t
卷积定义: f1(t) f2 (t) 0 f1( ) f2 (t )d
卷积定理: l[ f1(t) f2 (t)] F1(S )F2 (S )
注意到前面所给出的约定,即函数 f (t) 等价于函数
f (t)u(t),因此,这里所给出的卷积实际上与Fourier
2 j j
其中,F(s) 称为函数 f (t) 的像函数,f (t)称为 F(s) 的像原函数.
注1:函数f (t)的Laplace变换就是函数 f (t)u(t)et 的Fourier变换.
注2:由于Laplace变换只用到了函数f (t)在 t 0
的部分,为方便起见,在Laplace变换中所提
其中 F(ω,t)=
1
2
u(x,t)[eix ]*dx
❖ 1 用傅里叶级数法解决有界细杆的热传导问题
ut a2uxx 0
第二类齐次边界条件下的本征函数:cos n x
l (0,1,2,…),
u(x,t)=
n0
Tn
(t
)co
s
n
l
x
把这个级数代入泛定方程,
[Tn' (t)
n0
n2 2a2
其中 U (t; k) 为u(x,t)的傅里叶变换。为求解这个非齐次
e 常微分方程,用 k2a2t 遍乘方程各项
d [U (t; k)ek2a2t ] F (t; k)ek2a2t dt
❖ 对t积分一次,计及零初始值,
U (t; k)
e k 2a2t
=
t F ( ; k )ek2a2 d
0
= t f ( , )eik ek2a2 (t )d d 0
(a,b是常数)
线形性质: l[af (t) bg(t)] aF(s) bG(s)
相似性质: l[af (t)] 1 F ( s ) aa
延迟性质 : l[ f (t )u(t )] es F (s)
微分性质: l[ f (n) (t)] snF (s) sn1F (0) sn2F(0) L F (n1) (0)
2
e 4 2
u(x,t) t
=
f ( , )[
1
e ]d d
( x )2 4a2 (t
)
0
2a (t )
4.4 Laplace变换的定义和基本性质
❖ Laplace变换应用范围: Laplace变换方法广泛应用于求解非稳态 热传导问题,将对时间的偏导数消去。
❖ Laplace变换方法简单,但对变换后得到 的解进行反变换则相当复杂。
变换中的卷积是一致的.
❖阶梯函数的Laplace变换
u
t a
0,t 1,t
a a
a
0
Lut a
ut a est dt
0
0
a
1
e
st
dt
1 e st s
a
0
1
s e as
1 e as s
❖Laplace变换的移位特性
若a>0,L[f(t)]=F(s) 則L[u(t-a)f(t-a)]
n
l
x
)
an
1
nl
l f ( ) cos n d
l
l
bn
1 l
l l
f ( )sin n
l
d
其中
n
2 1
(n 0) (n 0)
周期函数f(x)可以理解为由正弦波(含余弦与正 弦函数)叠加而成,其中an,bn为叠加的权值,表 示信号在不同频率时刻的谱幅值大小。
显然,当信号具有对称性(偶)特征时,bk=0,
g(x)=
a0 +
(anco s
n1
n
l
x
bn
sin
n
l
x
)
❖ 在l→∞时的极限形式就是所要寻找的非 周期函数f(x)的傅里叶展开。
f(x)= 0 A() cos xd 0 B()sin xd
其中
1
A(ω)= f(ξ)sinωξdξ
B(ω)=
1
f(ξ)cosωξdξ
复数形式的傅里叶积分
f(x)= F(ω) ei x dω
零初始条件
T0 (0) 0
1 l
l
( )d
o
Tn (0)
n
2 l
l
( ) cos
n
d
o
l
❖Tn(t)的常微分方程在初始条件下的解:
Tn
(t)=
e [
n2 2 l2
a2
t
fn
n2 2a2
(t)e l2
t
dt
n
fn (t)dt]
u(x,t)=
{
e [
n2 2a2 l2
t
n0
fn
n2 2a2
l 1[F (n) (s)] (1)n t n f (t)
❖Laplace变换的性质
积分性质:
l
t 0
f
(t)dt
1 F(s) s
l
1
s
F
(s)ds
f (t) t
周期函数的像函数性质:设 f (t) 是 [0 , )内以T为
周期的函数,且 f (t) 在一个周期内逐段光滑,则
.
l[
(t)e l2
t
dt
n
fn
(t
)dt
]
}cos
n
l
x
4.3无界空间的有源导热问题
❖ 1.一维无源导热问题和基本解 ❖ 2. 一维热传导问题 ❖ 3.一维有源导热问题。
❖傅里叶变换法求解无界细杆的热传 导问题
ut a2uxx f (x,t) u |t0 0
( x ,t 0)
U ' (t; k) k 2a2U (t; k) F(t; k) U (t; k) |t0 0
到的函数一般均约定在 t 0的部分为零.
换句话说,函数 f (t) 等价于函数 f (t)u(t).
注3:像函数F (s)通常仅在复平面s上的某个区域内 存在,称此区域为存在域,它一般是一个右半平 面.当函数 f (t)只要不比某个指数函数增长得快时, 则它的Laplace变换一定存在,因此我们所接触 到的绝大多数函数的Laplace变换都是存在的.在 进行Laplace变换时,常常略去存在域.
❖ 如要求 f (0) f (l) 0
这时应延拓为奇的周期函数,因为
sin
n
l
x│x
0
=0,
sin n
l
x∣x
l
=0;
如要求 f ' (0) f ' (l) 0
这时应延拓为偶的周期函数,因为余弦级 数的和的导数在 x 0 和 xl 为零
❖ 对于函数u(x,t),-l<x<l,t≥0,展开为傅里叶级 数时,可将t视为参数,仅关于x展开为傅 里叶级数
u(x,t)=a0
(t)+
n1
(an
(t
)co
s
n
l
x
bn
(t
)
sin
n
l
x
)
其中展开系数不是常数,而是关于t的函数,
1
an (t) nl
l u( ,t) cos n d
l
l
1
bn (t) l
l u( ,t) sin n
l
l
d
4.2 傅里叶变换
❖ 一般说来,定义在区间(-∞<x<∞)上的函数 f(x)是非周期的,不能展开为傅里叶级数。为 了研究这样的函数的傅里叶展开问题,可试 将非周期函数f(x)看作是某个周期函数g(x)于 周期2l→∞时的极限情形。这样,g(x)的傅里 叶级数展开式
§1 Laplace变换的定义、性质
❖ Laplace变换所考虑的对象通常是定义在 [0 , )上的 实值函数 f (t)
Laplace(正)变换: