高中物理专题三:力与曲线运动专题练习题
高中物理 曲线运动 大题 解答题专题练习(含答案)

曲线运动大题练习学校:___________姓名:___________班级:___________考号:___________一、解答题1.某同学设计了一个粗测玩具小车经过凹形桥模拟器最低点时的速度的实验。
所用器材有:玩具小车(可视为质点)、压力式托盘秤、凹形桥模拟器(圆弧部分的半径为R=0.20m)。
将凹形桥模拟器静置于托盘秤上,如图所示,托盘秤的示数为1.00kg;将玩具小车静置于凹形桥模拟器最低点时,托盘秤的示数为1.40kg;将小车从凹形桥模拟器某一位置释放,小车经过最低点后滑向另一侧,此过程中托盘秤的最大示数为1.80kg,凹形桥模拟器与托盘间始终无相对滑动。
取重力加速度g=10 m/s2,求:凹形桥模拟器托盘秤(1)玩具小车的质量m;(2)玩具小车经过凹形桥模拟器最低点时对其压力的大小F;(3)玩具小车经过最低点时速度的大小v。
2.如图所示,细绳的一端固定在竖直杆MN的M点,另一端系一质量为m的小球,绳长为L.第一次对杆施加水平向右的恒力,可使细绳与竖直杆间的夹角θ1保持不变;第二次使小球绕轴线在水平面内做匀速圆周运动,细绳与竖直杆间的夹角也为θ1后,继续使转速加大,可使细线与竖直杆间的夹角为θ2(θ2>θ1),此时小球在另一个水平面做稳定的圆周运动.求:(1)杆向右运动的加速度;(2)小球做圆周运动,细绳与竖直杆间的夹角也为θ1时,小球的动能;(3)在第二次做圆周运动的过程中,对小球做的功.3.如图所示,小球A质量为m,固定在长为L的轻细直杆一端,并随杆一起绕杆的另一端O点在竖直平面内做圆周运动.当小球经过最高点时,速度大小为1v=求:(1)小球到达最高时杆对球的作用力1F;(2)当小球经过最低点时,杆对球的作用力的大小27F mg=,求小球线速度的大小2v.4.如图:直杆上O1O2两点间距为L,细线O1A2A长为L,A端小球质量为m,要使两根细线均被拉直,杆应以多大的角速度ω转动.5.如图所示,质量m=1kg的小球用细线拴住,线长l=0.5m,细线所受拉力达到18F=N时就会被拉断。
高考必备物理曲线运动技巧全解及练习题(含答案)及解析

高考必备物理曲线运动技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x=v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.2.如图所示,水平实验台A 端固定,B 端左右可调,将弹簧左端与实验平台固定,右端 有一可视为质点,质量为2kg 的滑块紧靠弹簧(未与弹黄连接),弹簧压缩量不同时, 将滑块弹出去的速度不同.圆弧轨道固定在地面并与一段动摩擦因素为0.4的粗糙水平地面相切D 点,AB 段最长时,BC 两点水平距离x BC =0.9m,实验平台距地面髙度h=0.53m ,圆弧半径R=0.4m ,θ=37°,已知 sin37° =0.6, cos37° =0.8.完成下列问題:(1)轨道末端AB 段不缩短,压缩弹黄后将滑块弹出,滑块经过点速度v B =3m/s ,求落到C 点时速度与水平方向夹角;(2)滑块沿着圆弧轨道运动后能在DE 上继续滑行2m,求滑块在圆弧轨道上对D 点的压力大小:(3)通过调整弹簧压缩量,并将AB 段缩短,滑块弹出后恰好无碰撞从C 点进入圆弧 轨道,求滑块从平台飞出的初速度以及AB 段缩短的距离. 【答案】(1)45°(2)100N (3)4m/s 、0.3m 【解析】(1)根据题意C 点到地面高度0cos370.08C h R R m =-=从B 点飞出后,滑块做平抛运动,根据平抛运动规律:212C h h gt -= 化简则0.3t s =根据 BC B x v t = 可知3/B v m s =飞到C 点时竖直方向的速度3/y v gt m s == 因此tan 1y Bv v θ==即落到圆弧C 点时,滑块速度与水平方向夹角为45° (2)滑块在DE 阶段做匀减速直线运动,加速度大小fa g mμ== 根据222E D DE v v ax -=联立两式则4/D v m s =在圆弧轨道最低处2DN v F mg m R-= 则100N F N = ,即对轨道压力为100N .(3)滑块弹出恰好无碰撞从C 点进入圆弧轨道,说明滑块落到C 点时的速度方向正好沿着轨迹该出的切线,即0tan yv v α''= 由于高度没变,所以3/y y v v m s '== ,037α=因此04/v m s '= 对应的水平位移为01.2AC x v t m ='= 所以缩短的AB 段应该是0.3AB AC BC x x x m ∆=-=【点睛】滑块经历了弹簧为变力的变加速运动、匀减速直线运动、平抛运动、变速圆周运动,匀减速直线运动;涉及恒力作用的直线运动可选择牛顿第二定律和运动学公式;而变力作用做曲线运动优先选择动能定理,对匀变速曲线运动还可用运动的分解利用分运动结合等时性研究.3.如图所示,光滑的水平平台上放有一质量M =2kg ,厚度d =0.2m 的木板,木板的左端放有一质量m =1kg 的滑块(视为质点),现给滑块以水平向右、的初速度,木板在滑块的带动下向右运动,木板滑到平台边缘时平台边缘的固定挡板发生弹性碰撞,当木板与挡板发生第二次碰撞时,滑块恰好滑到木板的右端,然后水平飞出,落到水平地面上的A点,已知木板的长度l=10m,A点到平台边缘的水平距离s=1.6m,平台距水平地面的高度h=3m,重力加速度,不计空气阻力和碰撞时间,求:(1)滑块飞离木板时的速度大小;(2)第一次与挡板碰撞时,木板的速度大小;(结果保留两位有效数字)(3)开始时木板右端到平台边缘的距离;(结果保留两位有效数字)【答案】(1) (2)v=0.67m/s (3)x=0.29m【解析】【分析】【详解】(1)滑块飞离木板后做平抛运动,则有:解得(2)木板第一次与挡板碰撞后,速度方向反向,速度大小不变,先向左做匀减速运动,再向右做匀加速运动,与挡板发生第二次碰撞,由匀变速直线运动的规律可知木板两次与挡板碰撞前瞬间速度相等.设木板第一次与挡板碰撞前瞬间,滑块的速度大小为,木板的速度大小为v由动量守恒定律有:,木板第一与挡板碰后:解得:v=0.67m/s(3)由匀变速直线运动的规律:,,由牛顿第二定律:解得:x=0.29m.【点睛】对于滑块在木板上滑动的类型,常常根据动量守恒定律和能量守恒定律结合进行研究.也可以根据牛顿第二定律和位移公式结合求出运动时间,再求木板的位移.4.如图所示,ABCD是一个地面和轨道均光滑的过山车轨道模型,现对静止在A处的滑块施加一个水平向右的推力F,使它从A点开始做匀加速直线运动,当它水平滑行2.5 m时到达B点,此时撤去推力F、滑块滑入半径为0.5 m且内壁光滑的竖直固定圆轨道,并恰好通过最高点C,当滑块滑过水平BD部分后,又滑上静止在D处,且与ABD等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s2,求:(1)水平推力F的大小;(2)滑块到达D点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N(2)(3)t=1 s ;【解析】【分析】【详解】(1)由于滑块恰好过C点,则有:m1g=m1从A到C由动能定理得:Fx-m1g·2R=m1v C2-0代入数据联立解得:F=1 N(2)从A到D由动能定理得:Fx=m1v D2代入数据解得:v D=5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t =1 s此时滑块的位移为:x 1=v D t -a 1t 2,木板的位移为:x 2=a 2t 2,L =x 1-x 2,代入数据解得:L =2.5 m v 共=2 m/s x 2=1 m达到共同速度后木板又滑行x ′,则有:v 共2=2μ2gx ′,代入数据解得:x ′=1.5 m木板在水平地面上最终滑行的总位移为:x 木=x 2+x ′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.5.地面上有一个半径为R 的圆形跑道,高为h 的平台边缘上的P 点在地面上P′点的正上方,P′与跑道圆心O 的距离为L (L >R ),如图所示,跑道上停有一辆小车,现从P 点水平抛出小沙袋,使其落入小车中(沙袋所受空气阻力不计).问:(1)当小车分别位于A 点和B 点时(∠AOB=90°),沙袋被抛出时的初速度各为多大? (2)要使沙袋落在跑道上,则沙袋被抛出时的初速度在什么范围内?(3)若小车沿跑道顺时针运动,当小车恰好经过A 点时,将沙袋抛出,为使沙袋能在B 处落入小车中,小车的速率v 应满足什么条件?【答案】(1)()2A gv L R h =-22()2B g L R v h+=(2)0((L R v L R -≤≤+(3)1(41)0,1,2,3...)2v n n π=+= 【解析】 【分析】 【详解】(1)沙袋从P 点被抛出后做平抛运动,设它的落地时间为t ,则h=12gt 2解得t =(1) 当小车位于A 点时,有x A =v A t=L-R (2)解(1)(2)得v A =(L-R当小车位于B 点时,有B B x v t ==3)解(1)(3)得Bv (2)若小车在跑道上运动,要使沙袋落入小车,最小的抛出速度为v 0min =v A =(L-R 4) 若当小车经过C 点时沙袋刚好落入,抛出时的初速度最大,有x c =v 0max t="L+R" (5)解(1)(5)得 v 0max =(L+R所以沙袋被抛出时的初速度范围为(L-R ≤v 0≤(L+R (3)要使沙袋能在B 处落入小车中,小车运动的时间应与沙袋下落时间相同 t AB =(n+14)2Rv π(n=0,1,2,3…)(6)所以t AB解得v=12(4n+1)n=0,1,2,3…). 【点睛】本题是对平抛运动规律的考查,在分析第三问的时候,要考虑到小车运动的周期性,小车并一定是经过14圆周,也可以是经过了多个圆周之后再经过14圆周后恰好到达B 点,这是同学在解题时经常忽略而出错的地方.6.如图所示,粗糙水平地面与半径 1.6m R =的光滑半圆轨道BCD 在B 点平滑连接, O 点是半圆轨道BCD 的圆心, B O D 、、三点在同一竖直线上,质量2kg m =的小物块(可视为质点)静止在水平地面上的A 点.某时刻用一压缩弹簧(未画出)将小物块沿AB 方向水平弹出,小物块经过B 点时速度大小为10m/s (不计空气阻力).已知10m AB x =,小物块与水平地面间的动摩擦因数=0.2μ,重力加速度大小210m/s g =.求:(1)压缩弹簧的弹性势能;(2)小物块运动到半圆轨道最高点时,小物块对轨道作用力的大小; (3)小物块离开最高点后落回到地面上的位置与B 点之间的距离. 【答案】(1)140J (2)25N (3)4.8m 【解析】(1)设压缩弹簧的弹性势能为P E ,从A 到B 根据能量守恒,有212P B AB E mv mgx μ=+ 代入数据得140J P E =(2)从B 到D ,根据机械能守恒定律有2211222B D mv mv mg R =+⋅ 在D 点,根据牛顿运动定律有2Dv F mg m R+=代入数据解得25N F =由牛顿第三定律知,小物块对轨道作用力大小为25N (3)由D 点到落地点物块做平抛运动竖直方向有2122R gt = 落地点与B 点之间的距离为D x v t = 代入数据解得 4.8m x =点睛:本题是动能定理、牛顿第二定律和圆周运动以及平抛运动规律的综合应用,关键是确定运动过程,分析运动规律,选择合适的物理规律列方程求解.7.如图所示,表面光滑的长方体平台固定于水平地面上,以平台外侧的一边为x 轴,在平台表面建有平面直角坐标系xoy ,其坐标原点O 与平台右侧距离为d=1.2m 。
高中物理曲线运动经典练习题全集(含答案)

《曲线运动》超经典试题1、关于曲线运动,下列说法中正确的是( AC )A. 曲线运动一定是变速运动B. 变速运动一定是曲线运动C. 曲线运动可能是匀变速运动D. 变加速运动一定是曲线运动【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。
变速运动可能是速度的方向不变而大小变化,则可能是直线运动。
当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。
做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。
2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,而保持F2、F3不变,则质点( A )A.一定做匀变速运动B.一定做直线运动C.一定做非匀变速运动D.一定做曲线运动【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。
由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。
在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是F1的方向和速度方向不在一条直线上)。
3、关于运动的合成,下列说法中正确的是( C )A. 合运动的速度一定比分运动的速度大B. 两个匀速直线运动的合运动不一定是匀速直线运动C. 两个匀变速直线运动的合运动不一定是匀变速直线运动D. 合运动的两个分运动的时间不一定相等【解析】根据速度合成的平行四边形定则可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。
两个匀速直线运动的合运动一定是匀速直线运动。
两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。
高中物理曲线运动典型题及答案

高中物理曲线运动典题及答案一、单选题(本大题共14小题,共56.0分)1.某一滑雪运动员从滑道滑出并在空中翻转时经多次曝光得到的照片如图所示,每次曝光的时间间隔相等。
若运动员的重心轨迹与同速度不计阻力的斜抛小球轨迹重合,A,B,C和D表示重心位置,且A和D处于同一水平高度。
下列说法正确的是A. 相邻位置运动员重心的速度变化相同B. 运动员在A、D位置时重心的速度相同C. 运动员从A到B和从C到D的时间相同D. 运动员重心位置的最高点位于B和C中间2.在光滑的水平面上,质量m=1kg的物块在的水平恒力F作用下运动,如图所示为物块的一段轨迹。
已知物块经过P、Q两点时的速率均为v= 4m/s,用时为2s,且物块在P点的速度方向与PQ连线的夹角α=30°.关于物块的运动,下列说法正确的是( )A. 水平恒力F=4NB. 水平恒力F的方向与PQ连线成90°夹角C. 物块从P点运动到Q点的过程中最小速率为2m/sD. P、Q两点的距离为8m3.如图所示,从匀速运动的水平传送带边缘,垂直弹入一底面涂有墨汁的棋子,棋子在传送带表面滑行一段时间后随传送带一起运动.以传送带的运动方向为x轴,棋子初速度方向为y轴,以出发点为坐标原点,棋子在传送带上留下的墨迹为( )A. B. C. D.4.如图所示,水平桌面上有一涂有黑色墨水的小球,给小球一个初速度使小球向右做匀速直线运动,它经过靠近桌边的竖直木板ad边前方时,木板开始做自由落体运动。
若木板开始运动时,cd边与桌面相齐平,则小球在木板上留下的墨水轨迹是( )A. B.C. D.5.如图所示,长度为l的轻杆上端连着一质量为m的小球A(可视为质点),杆的下端用铰链固接于水平地面上的O点.置于同一水平面上的立方体B恰与A接触,立方体B的质量为M.今有微小扰动,使杆向右倾倒,各处摩擦均不计,而A与B刚脱离接触的瞬间,杆与地面夹角恰为37°(sin37°=0.6,cos37°=0.8),重力加速度为g,则下列说法正确的是( )A. A、B质量之比为27∶25B. A落地时速率为√2glC. A与B刚脱离接触的瞬间,A、B速率之比为3∶5D. A与B刚脱离接触的瞬间,B的速率为√3gl56.一带有乒乓球发射机的乒乓球台如图所示,水平台面的长和宽分别为L1和L2,中间球网高度为ℎ.发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3ℎ.不计空气的作用,重力加速度大小为g.若乒乓球的发射速率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v的最大取值范围是( )A. L12√g6ℎ<v<L1√g6ℎB. L14√gℎ<v<√(4L12+L22)g6ℎC. L12√g6ℎ<v<12√(4L12+L22)g6ℎD. L14√gℎ<v<12√(4L12+L22)g6ℎ7.在爆炸实验基地有一发射塔,发射塔正下方的水平地面上安装有声音记录仪。
曲线运动的性质与条件------高中物理模块典型题归纳(含详细答案)

曲线运动的性质与条件------高中物理模块典型题归纳(含详细答案)一、单选题1.一辆汽车在水平公路上转弯,沿曲线由M向N行驶,速度逐渐减小,下图中分别画出了汽车转弯时所受合力F的四种方向,你认为正确的是()A. B. C. D.2.如图所示,一物体在水平恒力的作用下沿光滑水平面做曲线运动,当物体从M点运动到N 点时,其速度方向恰好改变了90°,则物体从M点到N点的运动过程中,物体的速度将()A.不断增大B.不断减小C.先增大后减小D.先减小后增大3.关于曲线运动,下面叙述正确的是()A.曲线运动一定是变速运动B.变速运动一定是曲线运动C.物体做曲线运动时,所受外力的合力一定是变力D.物体做曲线运动时,所受外力的合力可能与速度方向在同一直线上4.关于物体做曲线运动的条件,下列说法正确的是()A.物体在恒力作用下不可能做曲线运动B.物体在变力作用下一定做曲线运动C.做曲线运动的物体所受的力的方向一定是变化的D.合力方向与物体速度方向既不相同、也不相反时,物体一定做曲线运动5.关于曲线运动,下列说法正确的是()A.曲线运动不一定是变速运动B.做曲线运动的物体可以没有加速度C.曲线运动可以是匀速率运动D.做曲线运动的物体加速度一定恒定不变6.一个物体在光滑水平面上沿曲线MN运动,如图所示,其中A点是曲线上的一点,虚线1、2分别是过A点的切线,已知该过程中物体所受到的合外力是恒力,则当物体运动到A点时,合外力的方向可能是()A.沿F1或F5的方向B.沿F2或F4的方向C.沿F2的方向D.不在MN曲线所决定的水平面内7.物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力的性质(大小、方向、作用点)不变,物体的运动情况可能是()A.静止B.匀加速直线运动C.匀速直线运动D.匀速圆周运动8.如图所示,一质点做曲线运动从M点到N点速度逐渐减小,当它通过P点时,其速度和所受合外力的方向关系可能正确的是()A. B. C. D.9.若已知物体的速度方向和它所受合力的方向,如图所示,可能的运动轨迹是()A. B. C. D.10.物体在几个力作用下做匀速直线运动,今将一个力撤掉,关于质点运动的说法:()A.物体一定做匀变速运动B.物体可能做匀速直线运动C.物体做曲线运动D.物体一定做变速直线运动11.关于曲线运动,下列说法正确的是()A.曲线运动不一定是变速运动B.曲线运动可以是匀速运动C.做曲线运动的物体一定有加速度D.做曲线运动的物体加速度一定恒定不变12.如图所示,若已知物体运动初速度v0的方向及该物体受到的恒定合外力F的方向,图中虚线表示物体的运动轨迹,下列正确的是()A. B.C. D.13.下列有关曲线运动的说法错误的是()A.做匀速圆周运动的物体所受的合外力方向一定与速度方向垂直B.速度方向发生变化的运动一定是曲线运动C.曲线运动的加速度可以保持恒定D.速率保持不变的运动可以是曲线运动14.在弯道上高速行驶的赛车,突然后轮脱离赛车,关于脱离的后轮的运动情况,以下说法正确的是( )A.仍然沿着汽车行驶的弯道运动B.沿着与弯道垂直的方向飞出C.沿着脱离时轮子前进的方向做直线运动,离开弯道D.上述情况都有可能15.下列说法正确的是()A.竖直平面内做匀速圆周运动的物体,其合外力可能不指向圆心B.匀速直线运动和自由落体运动的合运动一定是曲线运动C.曲线运动的物体所受合外力一定为变力D.火车超过限定速度转弯时,车轮轮缘将挤压铁轨的外轨16.一辆汽车在水平公路上转弯,沿曲线由M向N行驶,速度逐渐减小.如图所示,分别画出了汽车转弯时所受合力的四种方向,你认为正确的是()A. B. C. D.二、多选题17.质量为m的物体,在F1、F2、F3三个共点力的作用下做匀速直线运动,保持F1、F2不变,仅将F3的方向改变90°(大小不变)后,物体可能做()A.加速度大小为的匀变速直线运动B.加速度大小为的匀变速直线运动C.匀速圆周运动D.加速度大小为的匀变速曲线运动18.如图所示,平面直角坐标系xOy与水平面平行,在光滑水平面上一做匀速直线运动的质点以速度v通过坐标原点O,速度方向与x轴正方向的夹角为α,与此同时给质点加上沿x 轴正方向的恒力F x和沿y轴正方向的恒力F y,则此后()A.因为有F x,质点一定做曲线运动B.如果F y<F x,质点相对原来的方向向y轴一侧做曲线运动C.如果F y=F x tan α,质点做直线运动D.如果F x>F y cot α,质点相对原来的方向向x轴一侧做曲线运动19.下列关于曲线运动的说法,正确的是()A.曲线运动的加速度可能为零B.曲线运动可以是匀速运动C.曲线运动可以是匀变速运动D.曲线运动一定是变速运动20.一辆汽车在水平公路上转弯,沿曲线由M向N行驶.图中分别画出了汽车转弯时所受合力F的方向,可能正确的是()A. B. C. D.21.若已知物体的速度方向和它所受合力的方向,如图所示,可能的运动轨迹是()A. B. C. D.22.一质点以水平向右的恒定速度v通过P点时受到一个恒力F的作用,则此后该质点的运动轨迹可能是图中的()A.aB.bC.cD.d23.如图所示为一个做匀变速曲线运动的质点的轨迹示意图,已知在B点时的速度与加速度相互垂直,则下列说法中正确的是()A.D点的速率比C点的速率小B.A点的加速度与速度的夹角大于90°C.A点的加速度比D点的加速度大D.从A到D加速度与速度的夹角一直减小24.关于曲线运动下列说法中正确的是()A.某点瞬时速度的方向就在曲线上该点的切线上B.曲线运动一定是变速运动C.做曲线运动的物体的速度方向时刻改变D.曲线运动不一定是变速运动25.关于曲线运动的速度,下列说法正确的是()A.速度的大小与方向都在时刻变化B.速度的方向不断发生变化,速度的大小不一定发生变化C.速度的大小不断发生变化,速度的方向不一定发生变化D.质点在某一点的速度方向是在曲线的这一点的切线方向26.物体受到几个外力的作用而做匀速直线运动,如果撤去其中的一个力而保持其余的力的大小方向都不变,则物体可能做()A.匀减速直线运动B.匀速圆周运动C.匀加速直线运动D.匀加速曲线运动答案一、单选题1.【答案】C【解析】【解答】解:汽车从M点运动到N,曲线运动,必有些力提供向心力,向心力是指向圆心的;汽车同时减速,所以沿切向方向有与速度相反的合力;向心力和切线合力与速度的方向的夹角要大于90°,所以选项ABD错误,选项C正确.故答案为C.【分析】汽车在水平的公路上转弯,所做的运动为曲线运动,故在半径方向上合力不为零且是指向圆心的;又是做减速运动,故在切线上合力不为零且与瞬时速度的方向相反,分析这两个力的合力,即可看出那个图象时对的.2.【答案】D【解析】【解答】曲线运动的轨迹在速度方向与合力方向之间,对M、N点进行分析可知开始时恒力与速度夹角为钝角,后来夹角为锐角,则物体的速度先减小后增大,D符合题意。
高中物理曲线运动21个典型题

高中物理曲线运动21个典型题典型例题1——关于飞机轰炸飞机在离地面720m的高度,以70的速度水平飞行,为了使飞机上投下的炸弹落在指定的轰炸目标上,应该在离轰炸目标的水平距离多远的地方投弹?(不计空气阻力取)可以参考媒体展示飞机轰炸目标的整个过程以及分析,帮助理解.解:设水平距离为子弹飞行的时间:水平距离典型例题2——关于变速运动火车上的平抛运动在平直轨道上以的加速度匀加速行驶的火车上,相继下落两个物体下落的高度都是2.45m.间隔时间为1s.两物体落地点的间隔是2.6m,则当第一个物体下落时火车的速度是多大?(取)分析:如图所示、第一个物体下落以的速度作平抛运动,水平位移,火车加速到下落第二个物体时,已行驶距离.第二个物体以的速度作平抛运动水平位移.两物体落地点的间隔是2.6m.解:由位置关系得:物体平抛运动的时间:由以上三式可得点评:解本题时,作出各物体运动情况的草图对帮助分析题意十分重要.先后作平抛运动的物体因下落高度相同,所以运动的时间相同,但下落的时间不同于火车加速度运动的时间,不要混淆.典型例题3——关于三维空间上的平抛运动分析光滑斜面倾角为,长为,上端一小球沿斜面水平方向以速度抛出(如图所示),小球滑到底端时,水平方向位移多大?解:小球运动是合运动,小球在水平方向作匀速直线运动,有①沿斜面向下是做初速度为零的匀加速直线运动,有②根据牛顿第二定律列方程③由①,②,③式解得说明:中学阶段研究的曲线运动一定是两维空间(即平面上的)情况,因此,该题首先分析在斜面上的分运动情况.研究曲线运动必须首先确定分运动,然后根据“途径”处理.典型例题4——关于小船过河的一系列问题一艘小船在200m宽的河中横渡到对岸,已知水流速度是2m/s,小船在静水中的速度是4m/s,求:①当船头始终正对着对岸时,小船多长时间到达对岸,小船实际运行了多远?②如果小船的路径要与河岸垂直,应如何行驶?消耗的时间是多少?③如果小船要用最短时间过河,应如何?船行最短时间为多少?【分析与解答】①在解答本题的时候可由此提问:船头始终正对河岸代表什么含义.(①题的答案:50秒,下游100米)②路径与河岸垂直——船的实际运动——船的合运动(在两个分运动的中间,并与河岸垂直)(②题的答案:与上游河岸成60°,57.7s)③分析本题,可以得到求t最小的方法:1、河宽一定,要想使时间最少应使垂直河岸方向的分速度最大,即正对河岸航行,则.2、或者由三个式子一一分析.一定,又有最小值,即河宽,便可以求出渡河最短时间.(③题的答案:50s)典型例题5——关于拉船分运动的分解判断在高处拉低处小船时,通常在河岸上通过滑轮用钢绳拴船,若拉绳的速度为4m/s,当拴船的绳与水平方向成60°时,船的速度是多少?(8m/s)【分析与解答】:在分析船的运动时,我们发现船的运动产生了两个运动效果:绳子在不断缩短;而且绳子与河岸的夹角不断减小,所以我们可以将船的运动——实际运动——合运动分解成沿绳子方向的运动和垂直绳子方向所做的圆周运动,因此可以将船的运动分为:1、船沿水平方向前进——此方向为合运动,求合速度v.2、小船的运动可以看成为沿绳子缩短方向的运动和垂直绳子方向做圆周运动的合运动.所以根据题意,船的速度大小与绳子的运行速度之间的关系是:典型例题6——关于汽车通过不同曲面的问题分析一辆质量t的小轿车,驶过半径m的一段圆弧形桥面,求:(重力加速度)(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大?(2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大?(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?解:(1)汽车通过凹形桥面最低点时,在水平方向受到牵引力F和阻力f.在竖直方向受到桥面向上的支持力和向下的重力,如图(甲)所示.圆弧形轨道的圆心在汽车上方,支持力与重力的合力为,这个合力就是汽车通过桥面最低点时的向心力,即.由向心力公式有:,解得桥面的支持力大小为根据牛顿第三定律,汽车对桥面最低点的压力大小是N.(2)汽车通过凸形桥面最高点时,在水平方向受到牵引力F和阻力f,在竖直方向受到竖直向下的重力和桥面向上的支持力,如图(乙)所示.圆弧形轨道的圆心在汽车的下方,重力与支持力的合力为,这个合力就是汽车通过桥面顶点时的向心力,即,由向心力公式有,解得桥面的支持力大小为根据牛顿第三定律,汽车在桥的顶点时对桥面压力的大小为N.(3)设汽车速度为时,通过凸形桥面顶点时对桥面压力为零.根据牛顿第三定律,这时桥面对汽车的支持力也为零,汽车在竖直方向只受到重力G作用,重力就是汽车驶过桥顶点时的向心力,即,由向心力公式有,解得:汽车以30 m/s的速度通过桥面顶点时,对桥面刚好没有压力.典型例题7——细绳牵引物体做圆周运动的系列问题一根长的细绳,一端拴一质量的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:(1)小球通过最高点时的最小速度?(2)若小球以速度通过周围最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动.【分析与解答】(1)小球通过圆周最高点时,受到的重力必须全部作为向心力,否则重力G 中的多余部分将把小球拉进圆内,而不能实现沿竖直圆周运。
高中物理曲线运动经典练习题全集(答案)

《曲线运动》超经典试题1、关于曲线运动,下列说法中正确的是(AC )A. 曲线运动一定是变速运动B. 变速运动一定是曲线运动C. 曲线运动可能是匀变速运动D. 变加速运动一定是曲线运动【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。
变速运动可能是速度的方向不变而大小变化,则可能是直线运动。
当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。
做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。
2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,而保持F2、F3不变,则质点(A )A.一定做匀变速运动B.一定做直线运动C.一定做非匀变速运动D.一定做曲线运动【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。
由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。
在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是F1的方向和速度方向不在一条直线上)。
3、关于运动的合成,下列说法中正确的是(C )A. 合运动的速度一定比分运动的速度大B. 两个匀速直线运动的合运动不一定是匀速直线运动C. 两个匀变速直线运动的合运动不一定是匀变速直线运动D. 合运动的两个分运动的时间不一定相等【解析】根据速度合成的平行四边形定则可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。
两个匀速直线运动的合运动一定是匀速直线运动。
两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。
(物理)高考物理曲线运动试题(有答案和解析)

(物理)高考物理曲线运动试题( 有答案和解析 )一、高中物理精讲专题测试曲线运动1.以下列图,在风洞实验室中,从 A 点以水平速度 v0向左抛出一个质最为m 的小球,小球抛出后所受空气作用力沿水平方向,其大小为F,经过一段时间小球运动到 A 点正下方的 B 点处,重力加速度为 g,在此过程中求(1)小球离线的最远距离;(2) A、 B 两点间的距离;(3)小球的最大速率 v max.【答案】(1)mv22m2 gv2( 3)v0F24m2g2 0(2)0F2F F 2【解析】【解析】(1)依照水平方向的运动规律,结合速度位移公式和牛顿第二定律求出小球水平方向的速度为零时距墙面的距离;(2)依照水平方向向左和向右运动的对称性,求出运动的时间,抓住等时性求出竖直方向A、 B 两点间的距离;(3)小球到达 B 点时水平方向的速度最大,竖直方向的速度最大,则 B 点的速度最大,依照运动学公式结合平行四边形定则求出最大速度的大小;【详解】(1)将小球的运动沿水平方向沿水平方向和竖直方向分解水平方向: F=ma x2v0= 2a x x m解得:x m=mv2 2F(2)水平方向速度减小为零所需时间t1=v 0a x总时间 t= 2t1竖直方向上:y= 1 gt2= 2m2 gv022 F 2(3)小球运动到 B 点速度最大v x=v0V y=gtv max= v x2v y2=vF 24m2g 2 F【点睛】解决此题的要点将小球的运动的运动分解,搞清分运动的规律,结合等时性,运用牛顿第二定律和运动学公式进行求解.2.以下列图,在竖直平面内有一倾角θ=37°的传达带BC.已知传达带沿顺时针方向运行的速度 v=4 m/s , B、 C两点的距离 L=6 m。
一质量 m=0.2kg 的滑块(可视为质点)从传达带上端 B 点的右上方比 B 点高 h=0. 45 m 处的 A 点水平抛出,恰好从 B 点沿 BC方向滑人传达带,滑块与传达带间的动摩擦因数μ,取重力加速度g=10m/s 2, sin37 = °,cos37°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B.ω取不同值时,Q所受静摩擦力始终指向圆心,而P所受摩擦力可能指向圆心,也可能背离圆心.
C.ω取不同值时,P所受静摩擦力始终指向圆心,而Q所受静摩擦力都指向圆心,也可能背离圆心.
D.ω取不同值时,P和Q所受静摩擦力都有可能指向圆心,也都有可能背离圆心.
专题三、力与曲线运动
【例2】如图所示,墙壁上落有两只飞镖,它们是从同一位置水平射出的,飞镖A与竖直墙壁成53角,飞镖B与竖直墙壁成37角,两者相距为d,假设飞镖的运动是平抛运动,求射出点离墙壁的水平距离?(sin37=0.6,cos37=0.8)
训练题如图2-1所示,两个相对斜面的倾角分别为37°和53°,在斜面顶点把两个小球以同ቤተ መጻሕፍቲ ባይዱ大小的初速度分别向左、向右水平抛出,小球都落在斜面上。若不计空气阻力,则A、B两个小球的运动时间之比为()
6.如图1-2-4所示,半径为r的圆形转筒,绕其竖直中心轴OO/转动,小物块a靠在圆筒的内壁上,它与圆筒间的动摩擦因数为μ.现使小物块不下落,圆筒转动的角速度至少为()
A. B. C. D.
7.一个质点在恒力F的作用下,由O点运动到A的轨迹如图1-2-5所示,在A点时速度的方向与x轴平行,则恒力F的方向可能沿()
D.物体下滑过程中的加速度大小不变,方向始终指向球心
一、选择题
1.如图所示,从倾角为θ的足够长斜面上的A点,先后将同一个小球以不同的初速度水平向右抛出.第一次初速度为υ1,球落到斜面上时瞬时速度方向与斜面夹角为α1;第二次初速度为υ2,球落到斜面上时瞬时速度方向与斜面夹角为α2.不计空气阻力,若υ1>υ2,则α1α2(填>、=、<).
4.最近,科学家在望远镜中看到太阳系外某一恒星有一行星,并测得它围绕该恒星运行一周所用的时间为1200年,它与该恒星的距离为地球到太阳距离的100倍。假定该行星绕恒星运行的轨道和地球绕太阳运行的轨道都是圆周,仅利用以上两个数据可以求出的量有
A.恒星质量与太阳质量之比B.恒星密度与太阳密度之比( )
C.行星质量与地球质量之比D.行星运行速度与地球公转速度之比
2.如图所示,从倾角为θ= 30°的斜面顶端以初动能E= 6J向下坡方向平抛出一个小球,则小球落到斜面上时的动能E′为J.
3.已知引力常量G、月球中心到地球中心的距离r和月球绕地球运行的周期T。仅利用这三个数据,可以估算出的物理量有( )
A.月球的质量B.地球的质量
C.地球的半径D.月球绕地球运行速度的大小
5.如图1-2-3半径为R的大圆盘以角速度ω旋转,如图,有人站在盘边P点上,随盘转动.他想用枪击中在圆盘中心的目标O,若子弹速度为vo,则()
A. 枪应瞄准目标O射击
B.应瞄准PO的右方偏过角射击,且cos=ωR/v0
C. 应瞄准PO的左方偏过θ角射击,且tan=ωR/v0
D.应瞄准PO的左方偏过角射击,且sin=ωR/v0
A.向心加速度为B.向心力为m(g+)
C.对球壳的压力为D.受到的摩擦力为μm(g+)
训练题质量为m的物体从半径为R的半球形碗的碗口下滑到碗的最低点的过程中,
如果摩擦力的作用使得物体的速度大小不变,如图所示,那么()
A.因为速率不变,所以物体的加速度为零
B.物体下滑过程中受的合外力越来越大
C.物体下滑过程中的摩擦力大小不变
A、+x轴B、-x轴
C、+y轴D、-y轴
8.如图1-2-6所示,水平圆盘可绕通过圆心的竖直轴转动,盘上放两个小物体P和Q,它们的质量相同,与圆盘的最大静摩擦力都是fm,两物体中间用一根细线连接,细线过圆心,P离圆心距离为r1,Q离圆心距离为r2,且r1<r2,两物体随盘一起以角速度ω匀速转动,在ω的取值范围内P和Q始终相对圆盘无滑动,则()
A、1:1 B、4:3
C、16:9 D、9:16
训练题从空中同一地点沿水平方向同时抛出两个小球,它们的初速度方向相反、大小分别为 ,求经过多长时间两小球速度方向间的夹角为90°?
【例4】质量为m的物体沿着半径为R的半球形金属球壳滑到最低点时的速度大小为υ,如图所示,若物体与球壳之间的摩擦因数为μ,则物体在最低点时的 ()