八年级数学下册《19.2平行四边形》教案4 (新版)沪科版
沪科版八年级数学下册教学设计《第19章四边形19.2平行四边形(第3课时)》

沪科版八年级数学下册教学设计《第19章四边形19.2平行四边形(第3课时)》一. 教材分析本节课的内容是沪科版八年级数学下册第19章四边形中的19.2平行四边形,这是第3课时。
教材首先介绍了平行四边形的定义及其性质,接着讲述了如何判定一个四边形是平行四边形。
这部分内容是学生对四边形知识的进一步拓展,也是后续学习其他四边形的基础。
二. 学情分析学生在之前的学习中已经掌握了四边形的性质,对本节课的内容有一定的认知基础。
但平行四边形的性质较为复杂,需要学生通过大量的练习来熟练掌握。
同时,学生需要在学习过程中培养空间想象能力和逻辑思维能力。
三. 教学目标1.理解平行四边形的定义及其性质。
2.学会判定一个四边形是否为平行四边形。
3.培养学生的空间想象能力和逻辑思维能力。
4.提高学生解决实际问题的能力。
四. 教学重难点1.平行四边形的定义及其性质。
2.如何判定一个四边形是平行四边形。
3.平行四边形在实际问题中的应用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等多种教学方法,引导学生主动探究、积极思考,提高学生的学习兴趣和参与度。
六. 教学准备1.准备相关的多媒体教学课件。
2.准备一些实际问题供学生练习。
3.准备答案和解析。
七. 教学过程1.导入(5分钟)通过一个实际问题引出平行四边形的概念,激发学生的学习兴趣。
2.呈现(10分钟)介绍平行四边形的定义及其性质,引导学生理解和记忆。
3.操练(10分钟)让学生通过一些练习题来巩固所学知识,教师及时给予指导和解答。
4.巩固(5分钟)通过小组合作,让学生共同完成一个案例分析,进一步巩固平行四边形的性质和判定方法。
5.拓展(10分钟)引导学生思考平行四边形在实际问题中的应用,提高学生的解决问题的能力。
6.小结(5分钟)对本节课的内容进行总结,强调平行四边形的性质和判定方法。
7.家庭作业(5分钟)布置一些相关的练习题,让学生回家后巩固所学知识。
8.板书(5分钟)在黑板上写出本节课的主要内容和关键点,方便学生复习。
八年级数学下册19.2平行四边形教学设计新版沪科版

八年级数学下册19.2平行四边形教学设计新版沪科版一. 教材分析八年级数学下册19.2平行四边形教学设计,这部分内容是新版沪科版教材中的重要组成部分。
通过对平行四边形的性质和判定定理的学习,使学生能够更深入地理解图形的内在联系,培养学生的空间想象能力和逻辑思维能力。
教材中通过丰富的例题和练习题,帮助学生巩固所学知识,提高解题能力。
二. 学情分析学生在学习本节课之前,已经掌握了四边形的性质,具备了一定的图形的观察和分析能力。
但平行四边形的性质和判定定理较为抽象,需要学生在教师的引导下,通过观察、操作、思考、交流和归纳等过程,逐步理解和掌握。
同时,学生需要熟练运用平行四边形的性质解决实际问题。
三. 说教学目标1.知识与技能目标:理解平行四边形的性质,掌握平行四边形的判定定理,能运用平行四边形的性质解决实际问题。
2.过程与方法目标:通过观察、操作、思考、交流和归纳等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队协作能力和自主学习能力。
四. 说教学重难点1.教学重点:平行四边形的性质和判定定理。
2.教学难点:平行四边形的性质和判定定理在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和引导发现法,引导学生主动探究,合作交流。
2.教学手段:利用多媒体课件、几何画板等软件,辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过复习四边形的性质,引出平行四边形,激发学生的学习兴趣。
2.自主学习:让学生独立观察和分析平行四边形的性质,引导学生发现平行四边形的特征。
3.合作交流:分组讨论平行四边形的性质,让学生在合作中发现问题、解决问题,培养学生的团队协作能力。
4.归纳总结:教师引导学生总结平行四边形的性质,明确平行四边形的判定定理。
5.练习巩固:让学生通过练习题,巩固所学知识,提高解题能力。
6.拓展延伸:引导学生思考平行四边形在实际生活中的应用,提高学生的实践能力。
八年级数学下册19.2平行四边形教案(新版)沪科版

(也可以过点C作CF∥AB交DE的延长线于F点,证明方法与上面大体相同)方法2:如图(2),延长DE到F,使EF=DE,连接CF、CD和AF,又AE=EC,所以四边形ADCF是平行四边形.所以AD∥FC,且AD=FC.因为AD=BD,所以BD∥FC,且BD=FC.所以四边形ADCF是平行四边形.所以DF∥BC,且DF=BC,因为DE= DF,所以DE∥BC且DE= BC.
平行四边形
教学
目标
知识与能力:理解三角形中位线的概念,掌握它的性质.能较熟练地应用三角形中位线性质进行有关的证明和计算.
过程与方法:经历探索、猜想、证明的过程,进一步发展推理论证能力.感悟几何学的推理方法.
情感态度价值观:培养学生合情推理意识,形成几何思维分析思路,体会几何学在日常生活中的应用价值.
重难点
重点:掌握和运用三角形中位线的性质.难点:三角形中位线性质的证明(辅助线的添加方法)
教
学
过程Βιβλιοθήκη 一、导入新课、揭示目标(2分钟左右)
理解三角形中位线的概念,掌握它的性质.
2、能较熟练地应用三角形中位线性质进行有关的证明和计算.
二、学生自学,质疑问难(10分钟左右)
自学提纲:
阅读课本79页内容,思考下列问题:
〖拓展〗利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?(让学生口述理由)
例1、求证:经过三角形一边中点与另一边平行的直线必平分第三边
例2已知:如图(1),在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.
沪科版八年级数学下册教学设计《第19章四边形19.2平行四边形(第2课时)》

沪科版八年级数学下册教学设计《第19章四边形19.2平行四边形(第2课时)》一. 教材分析本节课是沪科版八年级数学下册第19章四边形中的第2课时,主要内容是平行四边形的性质。
教材通过引入生活中的实例,引导学生探究平行四边形的性质,进而掌握平行四边形的判定方法。
本节课的内容是学生对四边形知识的进一步拓展,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了四边形的概念及其性质,具备了一定的探究能力和合作精神。
但部分学生在空间想象方面仍有困难,对于平行四边形的判定方法可能一时间难以理解。
因此,在教学过程中,要关注学生的个体差异,引导他们通过实际操作和合作交流,更好地理解和掌握平行四边形的性质。
三. 教学目标1.知识与技能目标:使学生掌握平行四边形的性质,能运用平行四边形的性质解决一些简单问题;2.过程与方法目标:培养学生通过观察、操作、猜想、验证等方法探究数学问题的能力;3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的合作精神。
四. 教学重难点1.重点:平行四边形的性质及其应用;2.难点:平行四边形的判定方法。
五. 教学方法采用问题驱动法、合作交流法、直观演示法等,引导学生通过观察、操作、猜想、验证等过程,自主探究平行四边形的性质。
六. 教学准备1.教师准备:教材、多媒体课件、平行四边形的模型或图片、剪刀、彩笔等;2.学生准备:课本、练习本、剪刀、彩笔等。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的平行四边形图片,如电梯、教室的窗户等,引导学生观察并说出它们的共同特点。
进而提出本节课的研究主题——平行四边形的性质。
2.呈现(10分钟)教师通过多媒体课件,展示平行四边形的性质,引导学生认真观察,并尝试用自己的语言描述这些性质。
教师在呈现过程中,引导学生发现平行四边形的性质与之前学过的四边形性质的联系和区别。
3.操练(10分钟)教师分发平行四边形的模型或图片,让学生分组进行观察和操作,尝试验证平行四边形的性质。
沪科版初中数学八年级下册数学19.2平行四边形(第四课时)课程教学设计

19.2平行四边形(第四课时)地址B301主人19.2 平行四形(4)第 4科任教教课1.掌握定理“过三角形一边中点且平行另一边的直线均分第三边”。
2.掌握中位线的观点和三角形中位线定理。
目标3.能够应用三角形中位线观点、定理及平行四边形的性质、判断进行相关的论证和计算,进一步提升学生的应用能力。
要点:三角形中位线的概论与三角形中位线性质。
重点难点:三角形中位线定理的证明,需要增添适合的协助线证明。
【活 1】回旧知1.你学了平行四形的哪些性?2.你学了平行四形的哪些判断方法?【活 2】三角形中位定理的推例 5:求:三角形一中点与另一平行的直必均分第三。
1.要修业生按意画,2.合形写已知、求,3.学生剖析。
已知:如 20-22,△ABC 中,点 D AB 的中点, DE∥BC 交 AC 于点 E。
充求: AE=EC剖析:就是明段 AE=CE, 前面已,方法有( 1)段中点;(2)同一个三角形中,等角等;( 3)全等三角形相等;( 4)平行四形相等;( 5)在两平行的平行段相等;( 6)平行的距教离相等 .( 7)平行四形的角相互均分,合本号⋯⋯4.(多媒体演示明程)明:点 C 作 CF△BA 交 DE 的延于点F。
学△DE∥ BC 即 DF∥ BC△四形 BCFD 是平行四形。
即 CF BD△BD=DA, 且 BD 与 DA 在一条直上。
过△ CF DA .△四形DCFA 平行四形。
20-22△AE=EC(平行四边形的对角线相互均分)程 5.请同学们给线段 DE 取一个名字连结三角形两边中点的线段,叫做三角形的中位线。
6.由上边的证明,你能获得对于DE 的什么结论?不难得出:三角形中位线定理:三角形的中位线平行于第三边,而且等于第三边的一半。
【活动 3】想想:你还有其余的证明方法吗?(1) .要修业生按题意绘图,(2) .联合图形写已知、求证,( 3) .带学生剖析。
4.教师给出证明方法2已知:如图20-23,点 D 、E 分别为△ABC 的边 AB 、 AC 的中点。
八年级数学沪科版 第19章 四边形19.2.4 由对角线的关系判定平行四边形【教案】

第4课时由对角线的关系判定平行四边形形要想判定定理,由于E 、F 在对角线上,显然用对角线互相平分来判定.证明:连结BD 交AC 于O.是平行四边形四边形即平行四边形ABCD OFEO CFOC AE AO CFAE OD OB ,OC OA ABCD ∴=-=-∴===∴ΘΘ(对角线互相平分的四边形是平行四边形)这道题,还可以利用CFB AED ,DFC ABE ∆≅∆∆≅∆用对边相等或平行来判定平行四边形,相比之下使用对角线较简便. 思考: 1、若BE ∥DF ,四边形BFDE 是平行四边形吗? 2、若BE ⊥AC 于E DF ⊥AC 于F ,四边形BFDE 是平行四边形吗?3、若BE=DF ,四边形BFDE 是平行四边形吗? 例2已知:四边形ABCD, ∠A=∠C ,∠B=∠D求证:四边形ABCD 是平行四边形 平行四边形的判定定理4:两组对角分别相等的四边形是平行四边形。
符号语言∵ ∠A=∠C, ∠B=∠D (已知)∴四边形ABCD 是平行四边形(两组对角分别相等的四边形是平行四边形。
)3.如图:已知在△ABC 中,AB=AC ,D 为BC 上任意一点,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F ,求证:DE+DF=AC. 四、巩固新知,当堂训练(15分钟)1若AC=10cm ,BD=8cm ,那么当AO=__ _cm ,DO=__ _cm 时,四边形ABCD 为平行四边形.2.已知:如图,ABCD 中,点E 、F 分别在CD 、AB 上,DF ∥BE ,EF 交BD 于点O .求证:EO=OF .3、已知:如图在平行四边形ABCD 中, E ,F 分别是AB ,CD 上的两点,且AE=CF ,求证:BD 、EF 互相平分. 五、课堂小结平行四边形的判定方法有哪些? 六、课堂作业,必做:1、已知,如图,平行四边形ABCD 的AC 和BD 相交于O 点,经过O 点的直线交BC 和AD 于E 、F ,求证:四边形B AOCDEFFEBCADAB D CBEDF是平行四边形.(用两种方法)选做2、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F.求证:四边形AECF是平行四边形.课外作业:板书设计教学反思。
2023-2024学年八年级数学下册19.2平行四边形教学设计 新版沪科版

2023-2024学年八年级数学下册19.2平行四边形教学设计新版沪科版一. 教材分析《新版沪科版》的八年级数学下册19.2节主要介绍平行四边形的性质。
本节课的内容是学生学习了四边形的性质后,进一步深入研究平行四边形的特性和运用。
教材通过丰富的例题和练习,帮助学生理解和掌握平行四边形的性质,为学生后续学习几何图形的变换和解决实际问题奠定基础。
二. 学情分析八年级的学生已经掌握了四边形的性质,具备一定的空间想象能力和逻辑思维能力。
但学生在解决实际问题时,往往不能灵活运用所学知识。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生将理论知识与实际问题相结合,提高学生的解决问题的能力。
三. 教学目标1.知识与技能:使学生理解和掌握平行四边形的性质,能够运用平行四边形的性质解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生团结协作、勇于探索的精神。
四. 教学重难点1.重点:平行四边形的性质及运用。
2.难点:如何引导学生发现并证明平行四边形的性质。
五. 教学方法1.引导发现法:教师引导学生观察、操作、猜想、验证,发现平行四边形的性质。
2.合作交流法:学生分组讨论,分享学习心得,培养团队协作能力。
3.实例分析法:教师通过举例子,帮助学生理解并运用平行四边形的性质。
六. 教学准备1.教学课件:制作包含动画、图片、例题的教学课件。
2.学习素材:收集一些关于平行四边形的实际问题。
3.练习题:准备一些有关平行四边形的练习题,用于课堂巩固和课后作业。
七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾四边形的性质,为新课的学习做好铺垫。
例如:“同学们,我们已经学习了四边形的性质,那么请问四边形有哪些特性呢?”呈现(10分钟)1.教师通过课件展示平行四边形的图形,引导学生观察并提问:“请大家观察这些平行四边形,你们能发现它们有什么共同的特点吗?”2.教师邀请学生上台演示,操作课件中的平行四边形,使其发生变换,观察变换后的图形,提问:“同学们,你们发现变换后的图形有什么特点吗?”操练(10分钟)1.教师提出问题:“请大家猜想一下,平行四边形有哪些性质?”2.学生分组讨论,分享猜想结果。
八年级数学下册 19.2 平行四边形(第1课时)教案 (新版)沪科版

平行四边形教学目标:(一)知识与技能:1、理解并掌握平行四边形的定义;2、掌握平行四边形的性质定理1及性质定理2;3、理解两条平行线的距离的概念;4、培养学生综合运用知识的能力(二)过程与方法经历探索平行四边形的有关概念和性质的过程,发展学生的探究意识和合情推理的能力。
(三)情感态度与价值观培养学生严谨的思维和勇于探索的思想意识,体会几何知识的内涵与实际应用价值。
重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.难点:运用平行四边形的性质进行有关的论证和计算.教学过程第一步:导入课题:引入:在四边形中,最常见、价值最大的是平行四边形,如竹篱笆格子、推拉门、汽车防护链、书本等,都是平行四边形,平行四边形有哪些性质呢?复习:1、什么是四边形?四边形的一组对边有怎样的位置关系?2、一般四边形有哪些性质?第二步:探究新知;【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?已知:如图平行四边形ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作平行四边形ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:略总结:1、平行四边形的定义:(1)定义:两组对边分别平行的四边形叫做平行四边形。
(2)几何语言表述∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形(3)定义的双重性具备“两组对边分别平行”的四边形,才是“平行四边形”,反过来,“平行四边形”就一定具有“两组对边分别平行”性质。
(4)平行四边形的表示:用表示,如 ABCD2、平行四边形的性质(1)共性:具有一般四边形的性质(2)特性:(板书)角平行四边形的对角相等边平行四边形的对边相等推论夹在两条平行线间的平行线段相等注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角3、两条平行线的距离(定义略)注意:(1)两相交直线无距离可言(2)与两点的距离、点到直线的距离的区别与联系第三步:应用举例:例(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明略.例:(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《19.2 平行四边形》
教学目标:
掌握用一组对边平行且相等来判定平行四边形的方法.
教学重点、难点:
重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.难点:平行四边形的判定定理与性质定理的综合应用.
教学步骤:
1.复习提问:
(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:
①具有一般四边形的性质(内角和是).
②角:平行四边形的对角相等,邻角互补.
边:平行四边形的对边相等.
教师检验学生的学习知识的情况.
2.探究:
请学生在纸上画两个全等的平行四边形,分别记作□ABCD和□EFGH,并连接对角线AC、BD 和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将□ABCD绕点O旋转,观察它还和□EFGH重合吗?你能从中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?
结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;
(2)平行四边形的对角线互相平分.
3.例习题分析:
例1(补充)已知:如图,□ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.
求证:OE=OF,AE=CF,BE=DF.
证明:在□ABCD中,
AB∥CD,
∴∠1=∠2.∠3=∠4.
又OA=OC(平行四边形的对角线互相平分),
∴△AOE≌△COF(ASA).
∴OE=OF,AE=CF(全等三角形对应边相等).
∵□ABCD,∴AB=CD(平行四边形对边相等).
∴AB-AE=CD-CF.即BE=FD.
4.随堂练习
在平行四边形中,周长等于48,
(1)已知一边长12,求各边的长
(2)已知AB=2BC,求各边的长
(3)已知对角线AC、BD交于点O,△AOD与△AOB的周长的差是10,求各边的长.
5.课堂小结:平行四边形的判定方法:
(1)两组对边分别平行
(2)两组对边分别相等
(3)对角线互相平分
(4)两组对角分别相等
(5)一组对边平行且相等
6.课后练习
1).判断题:
(1)相邻的两个角都互补的四边形是平行四边形;()
(2)两组对角分别相等的四边形是平行四边形;()
(3)一组对边平行,另一组对边相等的四边形是平行四边形;()
(4)一组对边平行且相等的四边形是平行()
(5)对角线相等的四边形是平行四边形;()
(6)对角线互相平分的四边形是平行四边形()
2).延长△ABC的中线AD至E,使DE=AD.求证:四边形ABEC是平行四边形.
3).在四边形ABCD中,(1)AB∥CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO=BO;(6)AB=CD.选择两个条件,能判定四边形ABCD是平行四边形的共有________对.(共有9对)。