2020-2021年上学期八年级期中质量检测试卷
2020-2021学年八年级上学期期中语文试题及答案

2020-2021学年八年级上学期期中语文试题(考试时间:120分钟满分:120分)班级:姓名:得分:一、积累运用(28分)1.下列词语中加点字的注音和字形都完全正确的一项是()(2分)A.溃.退(kuì)督.战(dū)畸.形(qí)油光可签.(jiàn )B.解剖.(pāo)匿.名(nì)濒.临(bīn)杳.无消息(yǎo)C.狼藉.(jí)颓.唐(tuí) 溺.死(nì) 藏污纳垢.(gòu)D.辍.学(chuò) 蹒.跚(pán ) 迁徙.(xī) 眼花缭.乱(liáo)2.下列句中加点成语使用有误的一项是()(2分)A.成都草堂是四川人民心中的文化圣殿,这是无可置疑....的。
B.枣儿的父母三年前走出大山,前往广东,除了节假日偶尔和枣儿打通电话,至今杳.无音信...。
C.我们的语文老师读起书来声音清脆,声调抑扬顿挫....,我们都为之着迷。
D.假冒伪劣产品一度肆虐,老百姓对只追求利益的商家深恶痛疾....。
3.下列句子中没有语病的一项是( )(2分)A.在“一带一路”的推进过程中,中国将同哈萨克斯坦一道圆梦、筑梦、追梦。
B.航天员举着国旗,通过摄像机镜头送出了节日的问候。
C.在高速公路上行驶,双手要保证时刻握在方向盘上,切记不要一手握方向盘,一手打电话。
D.共享单车具有快捷、方便、灵活,已成为广大市民出行的重要交通工具之一。
4.请选出下列选项中排序正确的一项()(2分)①关于它的起源,最初是祛除暑热疫病、禳灾止恶的活动。
②逐渐形成了缅怀先贤、忠君爱国的传统。
③经过几千年的文化积累和节俗传承,吃粽子、赛龙舟、纪念屈原已经成为当今流传范围最广的端午节俗活动,融进了世代中华儿女的生活记忆。
④端午节,是入夏后的第一个重要节日,也是我国首个入选世界非物质文化遗产的传统节日。
⑤汉魏以后,被附加了纪念屈原、伍子胥等历史人物的内涵。
2020-2021学年八上期中数学试卷

福清市2020-2021学年第一学期八年级期中质量检测数 学 试 卷(考试时间:120分钟,满分:150分)一、选择题(每小题4分,共40分)1.已知∠A =37°,∠B =53°,则△ABC 为( ) A . 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 以上都有可能2.下列图形中,不一定是轴对称图形的是( ) A . 等腰三角形 B. 正多边形 C. 直角三角形 D. 圆3.多边形的内角和不可能是( )A .360° B. 720° C. 810° D. 2160° 4.等腰三角形的一边长等于4,一边长等于9,则这个等腰三角形的周长为( ) A .17B. 20C. 22D. 17或225.根据下列已知条件,能够画出唯一的△ABC 的是( )A. AB =3,∠C =90°B. AB =3,BC =4,AC =8C. AB =3,BC =4,∠C =30°D. AB =3,∠B =40°,∠C =30°6.如图,用三角尺可按下面方法画角平分线:在已知的∠AOB 的两边上,分别 取OM =ON ,再分别过点M ,N 作OA ,OB 的垂线,交点为P ,画射线OP , 则OP 平分∠AOB .其理论依据是( ) A. SSS B. AAS C. SASD. HL7.如图,△ABC 中,∠B =55°,∠C =30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连结AD ,则∠BAD 的度数为( )8.如图,在△ABC 中,AD 是它的角平分线,AB =8 cm ,AC =6 cm ,则:ABD ACD S S ∆∆=( ) A . 3 : 4B. 4 : 3C. 16 : 9D. 9 : 16 9.如图,等边△ABC 中,BE =CD ,AD ,CE 相交于点F , AG ⊥CE 于点G ,下列结论不一定成立的是( ) A .∠AFE =∠ACBB . AG =CGC. AF =2GFD. AC =AE +CD10.如图,在△ABC 中,AB AC =,10BC =,60ABC S ∆=,EF 垂直平分AB ,交AB 于点E ,交AC 于点F ,分别在EF 与BC 上确定点P 和点D ,使PB PD +最小,则这个最小值为( ) A . 10B . 11C. 12D. 13FECB AA . 65°B. 60°C. 55°D. 45°第7题图 第8题图 第9题图 第10题图二、填空题(每小题4分,共24分)11.一个多边形的每个外角都等于36°,则这个多边形的边数为 . 12.已知点A (m ,2),B (3,n )关于x 轴对称,则m +n =________.13.如图,AB 与CD 相交于点O ,OA =OD ,要使△AOC ≌△DOB ,并且依据的是“SA S ”,则需要补充的一个条件是 .14.如图,工人师傅制作长方形门框时,常用木条固定,使其不变形,这种做法的依据是 . 15.已知等腰三角形的一个内角等于40°,则该等腰三角形的顶角度数为 .16.如图,△ABD 中,∠A =60°,点B 为线段DE 的中点,EF ⊥AD ,交AB 于点C ,若AC =4,BC =3,则AD =______.三、解答题(共86分)17.(8分)如图,D 是AB 上一点,E 是AC 上一点,BE ,CD 相交于点F , ∠A =62°,∠ACD =35°,∠ABE =20°. 求∠BFD 的度数.18.(8分)如图,AB =CD ,DE ⊥AC ,BF ⊥AC ,垂足分别为E 、F ,AE =CF .求证∠A =∠C .19.(8分)如图,在△ABC 中,∠B =90°,D 是BC 上一点,且AB =BD ,AD =CD .求∠CAD 的度数.BDCOA20.(10分)如图,已知△ABC ,∠BAC =90°.(1)尺规作图:作BC 边的高AD (不写作法,保留作图痕迹); (2)求证:∠C =∠BAD .21.(10分)如图,已知A (-2,1),B (-1,4)两点,连接AB 、AO 、BO .(1)画出与△OAB 关于y 轴对称的△OA 1B 1,其中点A 的对称点为A 1,点B 的对称点为B 1,并写出A 1,B 1的坐标:A 1( , ),B 1( , );(2)在y 轴上画出点P ,使得△ABP 的周长最小(简要说明如何确定点P 位置,不必写出理由); (3)点C 在坐标轴上,且满足△ABC 是等腰三角形,写出其中两个符合条件的点C 的坐标: C 1( , ),C 2( , ).22.(8分)2020年上半年,福清市如火如荼地进行创建“全国文明城市”工作,其中“口袋公园”是创建文明城市的一项重要工程。
安徽省合肥市2020-2021学年八年级期中检测道德与法治试卷(含答案)

安徽省合肥市庐阳实验学校2020-2021学年度第一学期期中教学质量检测八年级《道德与法治》试卷一、单项选择题【30分】【每小题2分】下列各题4个备选答案中,只有一个最符合题意,请选出正确答案并填在下面答题卡中题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案1、八年级学生小明积极观看新闻联播,了解时政要闻。
这表明()A.我们的社会生活绚丽多彩B. 个人是社会的有机组成部分C.人们对社会生活的感受是一成不变的D.我们应该积极融入社会,关心社会发展2、吴京是电影《战狼2》的导演,是谢楠的丈夫,是吴所谓的父亲,是吴彬的学生。
这表明()A.人的身份是通过社会关系确定的 B.在不同的社会关系中,人们具有相同的身份C.人的身份是通过家庭关系确定的 D.人的身份是通过亲子关系确定的3、针对两幅漫画反映的现象,下列做法错误的是()A.广泛浏览各种网站,丰富课余生活 B.学会辨析网络信息,自觉抵制不良信息C.自觉远离网络谣言,不信谣、不传谣 D.增强社会责任感,传播网络正能量4、下列三个材料共同的寓意是( )A.单音与和声 B.公平与公正 C.平等与尊重 D.礼貌与自信5、规则保证我们学习和活动的顺利进行,保证社会公共生活有序、安全、和谐和文明。
坚定维护规则需要我们( )①从自身做起②自觉维护规则③不断改变规则④提醒、监督、帮助他人遵守规则A.①②③ B.②③④ C.①②④ D.①③④6、为了培养学生的诚信意识,某校考虑在考试时设立“诚信考场”(即考试不安排老师监考,考场纪律全靠考生自觉遵守)。
对此,同学们有人赞成,有人反对。
你的看法是( ) A.反对,因为所有同学都会作弊 B.反对,因为讲诚信做不了轰轰烈烈的大事C.赞成,因为诚信是人们的一种有形资产 D.赞成,因为诚信是一个人安身立命之本7、拾获他人的钱物不还、扰乱社会治安的行为分别属于( )A.行政违法行为、民事违法行为 B.民事违法行为、行政违法行为C.民事违法行为、刑事违法行为 D.刑事违法行为、行政违法行为8、在社会生活中,未成年人难免会受到伤害,常常需要帮助。
山东省青岛市青大附中八年级2020-2021学年第一学期期中考试数学试题(pdf版,有答案)

2020-2021学年度第一学期期中质量检测八年级数学试题(满分:120分时间:120分)一、选择题(本大题共8个小题,每题只有一个正确答案,每题3分,共24分)1.9的算术平方根是( )A.3B.3C.±3D.± 32.给出下列四个说法:①由于0.3,0.4,0.5不是勾股数,所以以0.3,0.4,0.5为边长的三角形不是直角三角形;②由于以0.5,1.2,1.3为边长的三角形是直角三角形,所以0.5,1.2,1.3是勾股数;③若a,b,c是勾股数,且c最大,则一定有a2+b2=c2;④三个整数a,b,C是直角三角形的三边长,则2a,2b,2c一定是勾股数,其中正确的是( )A.①②B.②③C.③④D.①④3.下列各式:①2,②13,③8,④27片中,最简二次根式有( )A.1个B.2个C.3个D.4个4.昌平公园建成于1990年,公园内有一个占地10000平方米的静明湖,另外建有弘文阁、碑亭,文节亭、诗田亭、逸步桥、牌楼等园林景观及古建筑。
如图,分别以正东、正北方向为x轴、y轴建立平面直角坐标系,如果表示文节亭的点的坐标为(2,0),表示园中园的点的坐标为(-1,2),则表示弘文阁所在的点的坐标为( )A.(-2,-3)B.(-2,-2)C.(-3,-3)D.(-3,-4) 5.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(小时)之间的函数关系用图象可以表示为图中的( )6.如图,已知圆柱的底面直径BC=(),高AB=3,小虫在圆柱表面爬行,从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程为( )A.32B.35C.65D.627.如果 2.37-≈1.333,23.7-≈2.872,那么2370-约等于( ) A. 28.72 B. 0.2872 C. 13.33 D. 0.13338.一次函数y1=k1x+a和y2=k2x+b的图象如图所示,下列结论正确的有( )①a>0; ②y1随x的增大而减小;③k1>k2; ④当x<3时,y1<y2 .A.1个B.2个C.3个D.4个二、填空题(本大题共8个小题,每题3分,共24分)9.在平面直角坐标系内,点M(-9,12)到x轴的距离是 .10.在△ABC中,给出以下4个条件:①∠C=90°;②∠A+∠B=∠C;③a:b:c=3:4:5;④∠A:∠B:∠C=3:4:5;从中任取一个条件,可以判定出△ABC是直角三角形的有 .(填序号)11.如果一个整数a的平方根是3x-2和5x+6,则a= .12.如图,AD=1,点A,B在数轴上,点A表示-1,点B表示2,者以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于点M,则点M表示的数为 .第12题图 第13题图13.如图,矩形ABCD中,AB=6,BC=8,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积是 .14.在平面直角坐标系中,直线y=2x-2不动,将坐标系向上平移了3个单位长度后得到新的平面直角坐标系,此时该直线对应的函数关系式为 .15.课间,小聪拿老师的等腰直角三角板玩,不小心掉到两墙之间(如图),∠ACB=90°,AC=BC,从三角板的刻度可知AB=20cm,小聪很快就知道了砌墙砖块的厚度(每块砖的厚度相等)为 cm.第15题图 第16题图16.如图,在直角坐标系中,已知点P0的坐标为(2,2),将线段OP0按逆时针方向旋转45°,再将其长度伸长为0P0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OP n(n为正整数),则点P2021的坐标为 .三、作图题(本大题满分6分)17.如图,△ABC在直角坐标系内的位置如图,且C点坐标是(-2,1).(1)则点A的坐标 和点B的坐标 ;(2)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称;(3)请直接写出△A1B1C1的面积.四、解答题(本大题共7个小题,满分66分) 18.计算题(本小题共四个小题,每题4分,共16分)(1)32+312−2 (2)34×678−42(3)(5−3)7+(11+3)(11−3) (4)26+12×3−121219.(本小题满分6分)已知如图,四边形ABCD 中,∠B=90°,AB=B,BC=6,CD=24,AD=26,求这个四边形的面积.20.(本小题满分6分)观察下列各式:①f(1)=2−12;②f(2)= 3−22;③f(3)= 2−32;④f(4)= 5−22;… 回答下列问题:(1)利用你观察到的规律直接写出f(n)= ; (2)计算(22018+2)[f 1+f 2+f 3+⋯+f 2017].21.(本小题满分8分)在平面直角坐标系中,有A(-2,a+1),B(a-1,4),C (b-2,b)三点.(1)当点C在y轴上时,求点C的坐标;(2)当AB∥x轴时,求A,B两点间的距离;(3)当CD⊥x轴于点D,且CD=1时,求点C的坐标.22.(本小题满分10分)甲、乙两人相约周末登崂山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,且当乙提速后,乙的登山上升速度是甲登山上升速度的3倍,且根据图象所提供的信息解答下列问题:(1)乙在A地时距地面的高度b为 米;t的值为 ;(2)请求出甲在登山全程中,距离地面高度y(米)与登山时间x(分)之间的函数关系式;(3)已知AB段对应的函数关系式为y=30x-30,则登山多长时间时,甲、乙两人距地面的高度差为70米?(直接写出答案)23.(本小题满分10分)阅读材料解答问题:自主学习:在平面直角坐标系中,对于任意两点的“非常距离”给出如下定义:若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|;若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.例如:如图1所示,点P1(1,2),点P2(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“非常距离”为|2-5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点)问题解决:(1)计算:平面直角坐标系中两点A(-1,0),B(2,3)的“非常距离”.应用拓展:(2)已知点C(67,0),点D为y轴上的一个动点;①若点C与点D的“非常距离”为3,则点D的坐标为 ;②在D点运动过程中,点C与点D的“非常距离”的最小值为 ; 问题延伸:(3)已知:E是直线y=34x+3上的一个动点,如图2,点F的坐标是(0,1),求点E与点F的“非常距离”的最小值及相应点E的坐标.24.(本小题满分10分)如图,在平面直角坐标系中,0为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且∣m−n−3∣+2n−6=0,点P从A出发,以每秒1个单位的速度沿射线A0匀速运动,设点P的运动时间为t秒. (1)求0A、0B的长;(2)连接PB,设△POB的面积为S,用t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.2020-2021学年度第一学期期中质量检测八年级数学试题参考答案1 2 3 4 5 6 7 8B C A B B D C B9、12 10、①②③ 11、FGF12、10−113、H3F14、y=2x-5 15、I4I626 16、(0,-22022)17、(1)(0,3)、(-4,4) (2)略 (3)518、(1)G72 (2)62 (3)16−65 (4)619、144 20、(1)f(n)= n+1−n2(2)201721、(1)(0,2) (2)4 (3)(-3,-1)22、(1)30 11 (2)y=10x+100 (3)3 10 1323、(1)3 (2)①(0,3)或(0.-3) ②67(3)8HE(-8H,I3H)24、(1)OA=6,OB=3(2)0≤t≤6时,S=9 - 67t ;t>6时,S=67t - 9(3)存在.t=3或9。
山东省青岛市莱西市2020-2021学年八年级上学期期中语文试题(解析版)

C.择其善者/而从之D.学而不思/则罔,思而不学/则殆
13.选出加点的“之”字的用法与其他三项不同的一项()
A.择其善者而从之B.友人惭,下车引之
C.孔子使子路取水试之D.此盖为宥座之器
14.把文中画横线的句子翻译成现代汉语。
(1)孔子使子路取水试之。
【注】(1)欹(qī):倾斜;(2)宥座:座位右边 “宥”通“右”。(3)中:这里指装水到一半。(4)恶(wū):哪里,怎么。
11.下列加点词解释错误的一项是()
A.此盖为宥座之器为:是B.不知为不知,是知也是:这
C.学而不思则罔罔:迷惑D.满则覆覆:覆盖
12.下列句子朗读时的停顿不正确的一项是()
故选A。
3.下列句子中加横线ຫໍສະໝຸດ 成语使用正确的一项是()A.在暑期社会实践活动中,同学们既体验到合作之趣,又享受了天伦之乐。
B.楼房鳞次栉比,公路平坦通畅,河流重现清澈,这些是我市推进新农村建设以来呈现出的新景象。
C.今年猪肉大幅涨价,疯涨速度令人叹为观止,猪肉价格应当涨,但是不应过快大幅上涨。
D.面对我市多年来冬季大气污染严重的状况,市政府下大力气整治,终于妙手回春。据2018年环境监测显示:优级天数增加,重污染天数减少。
(6)岑参《行军九日思长安故园》中,寄托诗人对饱经忧患人民的同情和对和平的渴望的诗句是:______,____。
(7)李益《夜上受降城闻笛》中表现征人满怀愁绪,凝望故乡,思念家乡的诗句是:___,___。
(8)七年级(1)班在年级篮球赛中输掉了首场比赛队员们顿时垂头丧气。队长用《<论语>十二章》中的“_______,______”鼓励队员,要大家坚定信心,迎接下一场挑战。
2020-2021年仁爱版八年级上学期期中检测卷(一)

2020-2021年仁爱版八年级上学期期中试卷一、听力理解第一节听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳答案。
每段对话读两遍。
1. What's Linlin's favorite sport?A. Playing football.B. Playing volleyball.C. Playing tennis.2. Who wants to smoke here?A. Lin Tao.B. Linda.C. Lily.3. Does Kangkang have to see a doctor or a dentist?A. Yes, he does.B. A doctor.C. A dentist.4. What does Helen mean?A. She thinks the doctor will come soon.B. She doesn't like doctors.C. She thinks she will be fine.5. What does the man usually have for lunch?A. BeefB. Chicken.C. Sandwiches.第二节听下面几段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳答案。
每段对话或独白读两遍。
听下面一段对话,回答第6至第7两个小题。
6. Where are Jack and his mother talking?A. At home.B. At school.C. In a shop.7. What would Jack like to eat?A. Some chicken.B. A cake.C. Some fish.听下面一段独白,回答第8至第10三个小题。
8. What does the boy do when he' s tired?A. Lie down.B. Never work. Listen to music or watch TV for a rest.C. Go out for a walk.9. How often does the boy exercise?A. Sometimes.B. Never.C. Every day.10. What helps the boy study better?A. Having a good rest when he is tired.B. Doing exercise and listening to music.C. Having a healthy eating habit and enough exercise.第三节听下面一篇短文。
2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套

2020-2021学年第一学期期中考试试卷八年级数学一、选择题(本大题共10小题,每小题2分,共20分)1.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的A .B .C .D .2.在平面直角坐标系中,点P (1,﹣2)的位置在A .第一象限B .第二象限C .第三象限D .第四象限3.等腰三角形两边长分别为2和4,则这个等腰三角形的周长为A .6B .8C .10D .8或104.今年10月环太湖中长跑中参赛选手达到21780人,这个数精确到千位表示约为( ) A .2.2×104B .22000C .2.1×104D .225.如图,在数轴上表示实数7+1的点可能是A .PB .QC .RD .S6.如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是AB 的中点,AB 绕着点O 上下转动.当A 端落地时,∠OAC =20°,跷跷板上下可转动的最大角度(即∠A ′OA )是 A .80° B .60° C .40° D .20°7.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是 A .AD =BDB .AE =ACC .ED +EB =DBD .AE +CB =AB8.由下列条件不能判定△ABC 为直角三角形的是A .a =,b =,c =B .∠A +∠B =∠C C .∠A :∠B :∠C =1:3:2D .(b +c )(b ﹣c )=a 29.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积等于A .6B .8C .9D .1810.如图,在四边形ABCD 中,AB =AC =BD ,AC 与BD 相交于H ,且AC ⊥BD .①ABPQ RS(第5题)ABCA 'B 'O(第6题)(第7题)∥CD ;②△ABD ≌△BAC ;③AB 2+CD 2=AD 2+CB 2;④∠ACB +∠BDA =135°.其中真命题的个数是A .1B .2C .3D .4二、填空题(本大题共8小题,每空2分,共16分) 11.81的算术平方根是 ▲ .12.在平面直角坐标系中,点P (-1,2)关于x 轴的对称点的坐标为 ▲ . 13.如图,在R t △ABC 中,CD 是斜边AB 上的中线,若AB =20,则CD = ▲ . 14.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则线段AE = ▲ .15.如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A 所代表的正方形的边长是 ▲ .16.如图,在△ABC 中,AB =AC ,∠B =66°,D ,E 分别为AB ,BC 上一点,AF ∥DE ,若∠BDE =30°,则∠F AC 的度数为 ▲ .17.如图,数轴上点A 、点B 表示的数分别中1和5,若点A 是线段BC 的中点,则点C 所表示的数是 ▲ .18.已知:如图,ΔABC 中,∠A =45°,AB =6,AC =24,点D 、E 、F 分别是三边AB 、BC 、CA 上的点,则ΔDEF 周长的最小值是 ▲ .AB CD E(第14题)AB CD(第13题)(第15题)ABCDH(第10题)(第9题)A BCF DE(第16题)(第17题)(第18题)FEDCBA三、解答题(本大题共9题,共64分) 19.(8分)(1)计算:()234272-+-; (2)已知:4x 2=20,求x 的值.20.(4分)如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C .CDBA21.(6分)如图,在△ABC 中,AD ⊥BC ,AB =10,BD =8,∠ACD =45°. (1)求线段AD 的长;(2)求△ABC 的周长.22.(6分)已知点A (1,2a -1),点B (-a ,a -3) . ①若点A 在第一、三象限角平分线上,求a 值.②若点B 到x 轴的距离是到y 轴距离的2倍,求点B 所在的象限.23.(8分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB ,在图③中已画出点A .按下列要求画图:(1)在图①中,以格点为顶点,AB 为一边画一个等腰三角形ABC ; (2)在图②中,以格点为顶点,AB 为一边画一个正方形;(3)在图③中,以点A 为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形,这个正方形的面积= .24.(8分)如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在BC 、AB 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数.25.(8分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.26.(8分)如图,在Rt△ABC中,∠ACB=90°,AD、BE、CF分别是三边上的中线.(1)若AC=1,BC=.求证:AD2+CF2=BE2;(2)是否存在这样的Rt△ABC,使得它三边上的中线AD、BE、CF的长恰好是一组勾股数?请说明理由.(提示:满足关系a2+b2=c2的3个正整数a、b、c称为勾股数.)27.(8分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.2020~2021学年度第一学期期中考试八年级数学试题一、选择题(共10小题,每小题3分,共30分) 1.下列图形中不是轴对称图形的是( )2.在平面直角坐标系中,点P (-3,2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.三角形中最大的内角不能小于( ) A .30°B .45°C .60°D .90°4.下列关于两个三角形全等的说法: ① 三个角对应相等的两个三角形全等 ② 三条边对应相等的两个三角形全等③ 有两边和它们的夹角对应相等的两个三角形全等 ④ 有两边和其中一边上的高对应相等的两个三角形全等 正确的说法个数是( ) A .1个 B .2个 C .3个 D .4个 5.在平面直角坐标系中,点P (2,-3)关于x 轴的对称点是( )A .(-2,3)B .(2,3)C .(-2,-3)D .(-3,2) 6.如图所示,∠A =28°,∠BFC =92°,∠B =∠C ,则∠BDC 的度数是( )A .85°B .75°C .64°D .60°7.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别是D 、E ,AD 、CE 交于点H .已知EH =EB =3,AE =5,则CH 的长是( ) A .1B .2C .53D .358.如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( ) A .6个B .7个C .8个D .9个9.如图,AB =2,BC =AE =6,CE =CF =7,BF =8,四边形ABDE 与△CDF 面积的比值是( ) A .21B .32C .43 D .110.如图,在△ABC 中,BC 的垂直平分线DF 交△ABC 的外角平分线AD 于点D ,DE ⊥AB 于点E ,且AB >AC ,则( ) A .BC =AC +AEB .BE =AC +AEC .BC =AC +AD D .BE =AC +AD二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个多边形的内角和是外角和的2倍,则它的边数是___________12.设△ABC 的三边长分别为a 、b 、c ,其中a 、b 满足|a +b -6|+(a -b +4)2=0,则第三边长c 的取值范围是_____________13.点M (-5,3)关于直线x =1的对称点的坐标是___________14.如图所示,在△FED 中,AD =FC ,∠A =∠F .如果用“SAS ”证明△ABC ≌△FED ,只需添加条件_____________即可15.在△ABC 中,高AD 、BE 所在的直线相交于点G ,若BG =AC ,则∠ABC 的度数是_____16.如图,在Rt △ABC 中,∠C =90°,BC =6,AC =8,一条线段PQ =AB =10,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,如果以A 、P 、Q 为顶点的三角形与△ABC 全等,则AP =____________三、解答题(共8小题,共72分)17.(本题8分)解方程组:(1) ⎩⎨⎧=-=-32373y x y x(2) ⎩⎨⎧=-=+5342y x y x18.(本题8分)如图所示,在△ABC 中:(1) 画出BC 边上的高AD 和中线AE(2) 若∠B =30°,∠ACB =130°,求∠BAD 和∠CAD 的度数19.(本题8分)如图,点B 、E 、C 、F 在同一直线上,且AB =DE ,AC =DF ,BE =CF ,请将下面说明△ABC ≌△DEF 的过程和理由补充完整解:∵BE =CF (_____________)∴BE +EC =CF +EC即BC =EF在△ABC 和△DEF 中⎪⎩⎪⎨⎧===__________________BC DF AB )()(∴△ABC ≌△DEF (__________)20.(本题8分)如图所示,D是边AB的中点,△BCD的周长比△ACD的周长大3 cm,BC=8 cm,求边AC的长21.(本题8分)已知,如图所示,CE⊥AB与E,BF⊥AC与F,且BD=CD,求证:(1) △BDE≌△CDF(2) 点D在∠BAC的角平分线上22.(本题10分)如图,设△ABC和△CDE都是等边三角形,并且∠EBD=90°,求证:(1) △ACE≌△BCD(2) 求∠AEB的度数23.(本题10分)如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F(1) 直接写出∠AFC的度数(2) 请你判断并写出FE与FD之间的数量关系(3) 如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD 与AC之间的数量关系并说明理由24.(本题12分)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E.已知AO=m,BO=n,且m、n 满足(n-6)2+|n-2m|=0(1) 求A、B两点的坐标(2) 若点D为AB中点,求OE的长(3) 如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P 的坐标2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.下面的图形中,是轴对称图形的是()A.B.C.D.2.下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3)D.a2﹣2a+1=(a+1)23.利用尺规进行作图,根据下列条件作三角形,画出的三角形不唯一的是()A.已知三条边B.已知两边和夹角C.已知两角和夹边D.已知三个角4.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS5.已知一个三角形有两边相等,且周长为25,若量得一边为5,则另两边长分别为()A.10,10 B.5,10 C.12.5,12.5 D.5,156.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1 B.1 C.﹣3 D.37.如图,已知AB∥CF,E为DF的中点,若AB=8cm,CF=5cm,则BD为()A.2cm B.3cm C.4cm D.1cm8.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°9.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣710.如图,△BDC′是将矩形纸片ABCD沿BD折叠得到的,BC′与AD交于点E,则图中共有全等三角形()A.2对B.3对C.4对D.5对11.已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC 对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+AB/AD=B.2BC=5CFC.∠AEB+22°=∠DEF D.4AB/BD =12.如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm二.填空题(共6小题,满分18分,每小题3分)13.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.14.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.15.已知:在△ABC中,AH⊥BC,垂足为点H,若AB+BH=CH,∠ABH=70°,则∠BAC= °.16.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF= .17.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.18.我们将1×2×3×…×n记作n!(读作n的阶乘),如2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是.三.解答题(共7小题)19.因式分解:(1)9a2﹣4(2)ax2+2a2x+a320.如图,△ABC三个顶点的坐标分别为A(4,5)、B(1,0)、C(4,0).(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出A1点的坐标;(2)在y轴上求作一点P,使△PAB的周长最小,并求出点P的坐标及△PAB的周长最小值.21.如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.22.若m2﹣2m n+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+()=0,即()2+()2=0.根据非负数的性质,∴m=n=阅读上述解答过程,解答下面的问题,设等腰三角形ABC的三边长a、b、c,且满足a2+b2﹣4a﹣6b+13=0,求△ABC的周长.23.如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)求∠5、∠7的度数.24.如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,证明:AB=FA+BD;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.25.如图,某学校(A点)与公路(直线L)的距离AB为300米,又与公路车站(D点)的距离AD为500米,现要在公路上建一个小商店(C点),使CA=CD,求商店与车站之间的距离CD的长.参考答案一.选择题1. D.2. C.3. D.4. D.5. A.6. A.7. B.8. B.9. B.10. C.11. A.12. C.二.填空题13. 4.14. 24.15. 75°或35°16. 4.17..18. 2016.三.解答题19.解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)220.解:(1)如图所示,由图可知 A1(﹣4,5);(2)如图所示,点P即为所求点.设直线AB1的解析式为y=kx+b(k≠0),∵A(4,5),B1(﹣1,0),∴,解得,∴直线AB1的解析式为y=x+1,∴点P坐标(0,1),∴△PAB的周长最小值=AB1+AB=+=5+.21.证明:如图,∵AF=CD,∴AF+CF=CD+CF,即AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.22.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,即(m﹣n)2+(n﹣4)2=0.根据非负数的性质,∴m=n=4,故答案为:n2﹣8n+16;m﹣n;n﹣4;4;已知等式变形得:(a﹣2)2+(b﹣3)2=0,所以a=2,b=3,第一种情况2,2,3,周长=7;第二种情况3,3,2,周长=8.23.解:(1)CO是△BCD的高.理由如下:∵BC⊥CD,∴∠DCB=90°,∴∠1=∠2=∠3=45°,∴△DCB是等腰直角三角形,∴CO是∠DCB的角平分线,∴CO⊥BD(等腰三角形三线合一);(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,∴∠5=30°,又∵∠5=∠6,∴∠6=30°,∴在直角△AOB中,∠7=180°﹣90°﹣30°=60°.24.(本题满分8分)(1)证明:如图1,∵BE⊥CD,即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.……………………………………………………………(1分)∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.∵AB=AC,∴△FAB≌△DAC.………………………………………………(2分)∴FA=DA.………………………………………………∴AB=AD+BD=FA+BD.………………………………………(4分)(2)如图2,当D在AB延长线上时,AF=AB+BD,…………(6分)理由是:同理得:△FAB≌△DAC,∴AF=AD=AB+BD;如图3,当D在AB反向延长线上时,BD=AB+AF,…………………(8分)理由是:同理得:△FAB≌△DAC,∴AF=AD,∴BD=AB+AD=AB+AF.25.解:∵AB⊥l于B,AB=300m,AD=500m.∴BD==400m.设CD=x米,则CB=(400﹣x)米,x2=(400﹣x)2+3002,x2=160000+x2﹣800x+3002,800x=250000,x=312.5m.答:商店与车站之间的距离为312.5米.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm2.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CADC.BE=DC D.AD=DE5.下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a6[来6.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个顶点处的正六边形地砖有()A.3块B.4块C.5块D.6块7.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC ≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE8.到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高9.如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有()A.1个B.2个C.3个D.4个10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 个B.7 个C.8 个D.9个二.填空题(共6小题,满分18分,每小题3分)11.计算(2m2n2)2•3m2n3的结果是.12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.13.等腰三角形的一个外角是80°,则其底角是度.14.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.15.如图,在Rt△ABC中,斜边AB的垂直平分线交边AB于点E,交边BC于点D,如果∠B=28°,那么∠CAD= 度.16.在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为.三.解答题(共9小题,满分72分)17.(6分)计算:(1)(12a3﹣6a2+3a)÷3a;(2)(x﹣y)(x2+xy+y2).18.(6分)如图,∠A=50°,OB、OC为角平分线,求∠BOC.19.(8分)如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线BM对称的△A1B1C1;(2)写出AA1的长度.20.(8分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)(3)已知6x﹣5y=10,求[(﹣2x+y)(﹣2x﹣y)﹣(2x﹣3y)2]÷4y的值.21.(8分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.22.(8分)已知一个等腰三角形的三边长分别为2x﹣1、x+1、3x﹣2,求这个等腰三角形的周长.(1)完成部分解题过程,在以下解答过程的空白处填上适当的内容.解:①当2x﹣1=x+1时,解x= ,此时构成三角形(填“能”或“不能”).②当2x﹣1=3x﹣2时,解x= ,此时构成三角形(填“能”或“不能”).(2)请你根据(1)中两种情况的分类讨论,完成第三种情况的分析,若能构成等腰三角形,求出这个三角形的周长.24.(10分)已知,△ABC是等边三角形,过点C作CD∥AB,且CD=AB,连接BD交AC于点O(1)如图1,求证:AC垂直平分BD;(2)点M在BC的延长线上,点N在AC上,且MD=NM,连接BN.①如图2,点N在线段CO上,求∠NMD的度数;②如图3,点N在线段AO上,求证:NA=MC.25.(10分)已知△ABC是等边三角形,点D,E,F分别是边AB,BC,AC的中点,点M是射线EC上的一个动点,作等边△DMN,使△DMN与△ABC在BC边同侧,连接NF.(1)如图1,当点M与点C重合时,直接写出线段FN与线段EM的数量关系;(2)当点M在线段EC上(点M与点E,C不重合)时,在图2中依题意补全图形,并判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)连接DF,直线DM与直线AC相交于点G,若△DNF的面积是△GMC面积的9倍,AB=8,请直接写出线段CM的长.参考答案与试题解析一.选择题1.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16, 16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.2.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.3.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.4.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.5.【解答】解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=a,故本选项错误;D、(a2)3=a6,正确.故选:D.6.【解答】解:因为正六边形的内角为120°,所以360°÷120°=3,即每一个顶点周围的正六边形的个数为3.故选:A.7.【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.8.【解答】解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:B.9.【解答】解:∵AB=AC,∠BAC=∠DAE,AE=AD,∴ABE≌△ACD,故①正确.∵ABE≌△ACD,∴∠AEB=∠ADC.∵∠AEB+∠AEF=180°,∴∠AEF+∠ADC=180°,∴∠BFD=180°﹣∠EAD=180°﹣70°=110°,故③正确.∵AE平分∠BAC,∴∠EAC=35°.又∵∠DAE=70°,∴AC平分∠EAD.又∵AE=AD,∴AC⊥EF,AC平分EF.∴AC是EF的垂直平分线,故④正确.由已知条件无法证明BE=EF,故②错误.故选:C.10.【解答】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:原式=4m4n4•3m2n3=12m6n7,故答案是:12m6n7.12.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是八.13.【解答】解:与80°角相邻的内角度数为100°;当100°角是底角时,100°+100°>180°,不符合三角形内角和定理,此种情况不成立;当100°角是顶角时,底角的度数=80°÷2=40°;故此等腰三角形的底角为40°.故填40.14.【解答】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD,OD=OF,即OE=OF=OD=4,∴△ABC的面积是:S△AOB+S△AOC+S△OBC=×AB×OE+×AC×OF+×BC×OD=×4×(AB+AC+BC)=×4×21=42,故答案为:42.15.【解答】解:在Rt△ABC中,∠B=28°,∴∠CAB=90°﹣28°=62°,∵DE垂直平分AB,∴AD=BD,∴∠DAB=∠B=28°,∴∠CAD=∠CAB﹣∠DAB=62°﹣28°=34°.故答案为:34.16.【解答】解:如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵AD=12,点E是边AC的中点,∴AD=BE=12,∴PE+PC的最小值是12.故答案为12,三.解答题(共9小题,满分72分)17.【解答】解:(1)(12a3﹣6a2+3a)÷3a;=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1;(2)(x﹣y)(x2+xy+y2).=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.18.【解答】解:∵OB、OC为角平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∵∠ABC+∠ACB=180°﹣∠A,∠OBC+∠OCB=180°﹣∠BOC,∴2∠OBC+2∠OCB=180°﹣∠A,∴180°﹣∠A=2(180°﹣∠BOC),∴∠BOC=90°+∠A=90°+×50°=115°.19.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)由图可知,点A与点A1之间10个格子,所以AA1的长度为10.20.【解答】解:(1)原式=﹣a6b3+2a2b•9a4b2=﹣a6b3+18a6b3=17a6b3(2)原式=[a+(2b﹣c)][a﹣(2b﹣c)]=a2﹣(2b﹣c)2=a2﹣(4b2﹣4bc+c2)=a2﹣4b2+4bc﹣c2(3)当6x﹣5y=10时,∴3x﹣2.5y=5原式=[4x2﹣y2﹣(4x2﹣12xy+9y2)]÷4y=(12xy﹣10y2)÷4y=3x﹣2.5y=522.【解答】解:(1)①当2x﹣1=x+1时,解x=2,此时3,3,4,能构成三角形.②当2x﹣1=3x﹣2时,解x=1,此时1,2,1不能构成三角形.故答案为2,能,1,不能;(2)③当x+1=3x﹣2,解得x=,此时2,,能构成三角形.23.【解答】解:接OA,OB后,可证∠OAP=∠OBP=90°,其依据是直径所对圆周角为直角;由此可证明直线PA,PB都是⊙O的切线,其依据是经过半径外端且垂直于这条半径的直线是圆的切线,证明过程如下:由作图可知OP为⊙C的直径,∴∠OAP=∠OBP=90°,即OA⊥PA、OB⊥PB,∵OA、OB是⊙O的半径,∴OP是⊙O的切线.故答案为:直径所对圆周角为直角,经过半径外端且垂直于这条半径的直线是圆的切线.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共6小题,满分18分,每小题3分)1.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形2.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 5.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(2,﹣1)6.如右图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有()A.3个B.4个C.5个D.6个二.填空题(共8小题,满分24分,每小题3分)7.如图,点E在△ABC边BC的延长线上,CD平分∠ACE,若∠A=70°,∠DCA=65°,则∠B的度数是.8.(3分)如图,在△ABC中,∠B=40°,∠C=28°,点D在BA的延长线上,则∠CAD的大小为.9.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.10.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.11.在△ABC中,∠C=∠A=∠B,则∠A= 度.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).13.已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),则ab的值为.14.在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长= .三.解答题(共4小题,满分24分,每小题6分)15.(6分)等腰三角形一腰上的中线,分别将该三角形周长分成30cm 和33cm,试求该等腰三角形的底边长.16.(6分)如图,点F是△ABC的边BC延长线上一点.DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.17.(6分)如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.(6分)如图所示,已知在△ABC中,AB=AC,D为线段BC上一点,E为线段AC上一点,且AD=AE.(1)若∠ABC=60°,∠ADE=70°,求∠BAD与∠CDE的度数;(2)设∠BAD=α,∠CDE=β,试写出α、β之间的关系并加以证明.四.解答题(共3小题,满分21分,每小题7分)19.(7分)已知:如图,△ABC中,D是BC延长线上一点,E是CA 延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.20.(7分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数.21.(7分)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠C=40°,求∠BAD的度数;(2)若AC=5,DC=4,求△ABC的周长.五.解答题(共2小题,满分16分,每小题8分)22.(8分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).23.(8分)已知:如图1所示,等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN经过点A,BD⊥MN于点D,CE⊥MN于点E.(1)试判断线段DE、BD、CE之间的数量关系,并说明理由;(2)当直线MN运动到如图2所示位置时,其余条件不变,判断线段DE、BD、CE之间的数量关系.六.解答题(共2小题,满分17分)24.(8分)如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.25.(9分)如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C 逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α.参考答案一.选择题1. A.2. B.3. B.4. D.5. A.6. B.二.填空题7.60°.8.68°.9. 6.10.37.11. 60.12.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又 AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).13. 214. 9三.解答题16.解:在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=∠A+∠B=30°+50°=80°.18.解:(1)∵AB=AC,∴∠B=∠C=60°,∴∠BAC=60°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠DAE=40°,∴∠BAD=∠BAC﹣∠DAE=20°,∵∠AED=∠CDE+∠C,∴∠CDE=70°﹣60°=10°.(2)结论:α=2β,理由是:设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,∵∠ACB=∠ABC,∴∠ACB=,∵∠ADE=∠AED,∴∠AED=,∴β=∠AED﹣∠ACB=﹣==,∴α=2β;19.证明:∵∠ACD是△ABC的一个外角,∴∠ACD>∠BAC,∵∠BAC是△AEF的一个外角,∴∠BAC>∠E,∴∠ACD>∠E.20.解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.21.(1)解:∵EF垂直平分AC,∴AE=CE,∴∠C=∠EAC=40°,∵AD⊥BC,BD=DE,∴AB=AE,∴∠B=∠BEA=2∠C=80°,∴∠BAD=90°﹣80°=10°;(2)由(1)知:AE=EC=AB,∵BD=DE,∴AB+BD=DE+AE=DE+CE=DC,∴C△ABC=AB+BC+AC=2DC+AC=2×4+5=13..25.解:(1)全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF;证明:∵∠ACB1+∠A1CF=∠ACB1+∠BCD=90°∴∠A1CF=∠BCD∵A1C=BC∴∠A1=∠CBD=45°∴△CBD≌△CA1F;∴CF=CD,∵CA=CB1,∴AF=B1D,∵∠A=∠EB1D,∠AEF=∠B1ED,∴△AEF≌△B1ED,∵AC=B1C,∠ACD=∠B1CF,∠A=∠CB1F,∴△ACD≌△≌△B1CF.(2)在△CBB1中。
2020-2021学年八年级上学期期中检测试题 (英语)含答案

第一部分听力(共四节,满分25分)第一节:听句子,选出与句子内容相关的图画,并将所选答案的字母代号填入题前的括号内。
每个句子听两遍。
(5分)()1、A . B. C.()2、A. B. C.()3、A. B.C.()4、A. B. C.()5、A. B. C.第二节:听句子,选出与所听句子内容相符的正确答语,并将所选答案的字母代号填入题前的括号内。
每个句子听两遍。
(5分) ( )6、A. I like pandas. B. They’re from China. C. Because they are cute.( )7、A. No, It’s not beautiful. B. Thank you.C. Is that great?( )8、A. I went to New York City. B. It was great.C. I like my vacation.( )9、A. Exercising is good for our health. B. I exercise every day. C. I like exercising.( )10、A. How about going shopping?. B. Don’t worry.C. Good idea.第三节听对话,选出相应问题的正确答案,并将其字母代号填入题前括号内。
每段对话听两遍。
(5分)听第一段对话,回答第11,12小题。
( )11、Where did Sally go on vacation?A. stayed at home.B. did homework.C. went to the beach.( )12、What did Bob do on vacation?A. watched TV.B. visited his uncle.C. studied for math test.听第二段对话,回答第13~15小题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上学期期中质量检测试卷
八年级 数学
一、选择题.(本题共8小题,每小题3分,满分24分)
1.已知A ∠、B ∠为Rt ABC ∆的两个锐角,54B ∠=︒,则A ∠的度数为( )
A .60︒
B .36︒
C .56︒
D .46︒
2.在直角三角形中,若勾为3,股为4,则弦为( )
A .5
B .6
C .7
D .8
3.如图,AC BC =,AC OA ⊥,CB OB ⊥,则Rt AOC Rt BOC ∆∆≌的理由是( )
A .SSS
B .ASA
C .SAS
D .HL
4.如图所示,在ABC ∆中,90C ∠=︒,AD 平分BAC ∠,30BC =,:3:2BD CD =,则点D 到AB 的距离为( )
A .18
B .12
C .15
D .无法确定
5.如果一个多边形的内角和与外角和相等,那么这个多边形是( )
A .四边形
B .五边形
C .六边形
D .七边形
6.如图,在ABCD Y 中,4AD =,点E 、F 分别是BD 、CD 的中点,则EF 等于( )
A .2
B .3
C .4
D .5
7.下列说法正确的是( )
A .平行四边形的对角线互相平分且相等
B .矩形的对角线相等且互相平分
C .菱形的对角线互相垂直且相等
D .正方形的对称轴是正方形的对角线
8.如图,已知四边形ABCD 是菱形,8AC =,6BD =,DH AB ⊥于点H ,则DH =( )
A .245
B .125
C .12
D .24
二、填空题.(本题共8小题,每小题4分,满分32分)
9.在ABC ∆中,若B ∠与C ∠互余,则ABC ∆是_________三角形.
10.如图:在Rt ABC ∆中,CD 是斜边AB 上的中线,若20A ∠=︒,则BDC ∠=_________.
11.直角三角形的直角边长分别为5,12,斜边长为x ,则2
x =__________.
12.如图,60AOB ∠=︒,CD OA ⊥于D ,CE OB ⊥于E ,且CD CE =,则DOC ∠=_______.
13.七边形的内角和是________.
14.王明、杨磊两家所在位置关于学校成中心对称,如果王明距学校500米,那么他们两家相距______米.
15.在ABCD Y 中,10AB =,6AD =,AC BC ⊥,则BD =________.
16.在矩形纸片ABCD 中,10AD cm =,4AB cm =,按如图方式折叠,使点B 与点D 重合,折痕为EF ,则DE =_________cm .
三、解答题.(共8小题,满分64分)
17.如图,在ABC ∆中,已知::1:2:3B A C ∠∠∠=,10AB cm =.
(1)求证:ABC ∆为直角三角形.
(2)求AB 边上的中线长.
18.如图,在ABC ∆中,AB AC =,D 为BC 的中点,DE AB ⊥,DF AC ⊥,垂足分别E 、F ,求证:DE DF =.
19.如图,在ABCD Y 中,AC 是对角线,BE AC ⊥,DF AC ⊥,垂足分别为点E 、F ,求证:AE CF =.
20.如图,在四边形ABCD 中,AC CD ⊥,ADC ∆的面积为2
30cm ,12DC cm =,3AB cm =,4BC cm =.
(1)试判断ABC ∆的形状.
(2)求ABC ∆的面积.
21.如图,ABO ∆与CDO ∆关于点O 成中心对称,点E 、F 在线段AC 上,且AF CE =,求证:FD BE =.
22.在正方形ABCD 中,AF BE =,AE 与DF 相交于点O .
(1)求证:DAF ABE ∆∆≌.
(2)求AOD ∠的度数.
23.如图,在ABCD Y 中,AE BC ⊥于点E ,延长BC 至点F ,使CF BE =,连接AF ,DE ,DF .
(1)求证:四边形AEFD 是矩形.
(2)若6AB =,8DE =,10BF =,求AE 的长.
24.如图,在Rt ABC ∆中,90B ∠=︒,BC =30C ∠=︒,点D 从点C 出发沿AC 方向以每秒2个单位长度的速度向点A 运动,同时点E 从点A 出发沿AB 方向以每秒1个单位长度的速度向点B 运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D ,E 运动的时间是t 秒(0t >).过点D 作DF BC ⊥于点F ,连接DE 、EF .
(1)求AB 、AC 的长;
(2)求证:AE DF =;
(3)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由.。