PN结的伏安特性与温度特性测量
PN结温度特性与伏安特性的研究

实验报告
课程名称普通物理实验2 实验项目PN结温度特性与伏安特性的研究专业班级姓名学号
指导教师成绩日期2022年9月11日
图1 PN结温度传感器
实验报告内容:一实验目的二实验仪器(仪器名称、型号)三实验原理(包括文字叙述、公式和原理图)四.实验内容与步骤五、实验原始数据和数据处理六.实验结果七.分析讨论(主要分析实验的误差来源和减小误差的方法,对实验过程和实验结果的评价和对实验方法或实验装置的建议等)八.思考题
也是常数;
,
温度时的
即为灵敏度
这是非线性项可知,
的普遍规律。
此外,由公式可知,减小
就可
图2 二线制电路图
图3 三线制电路图
图5 I F−V F曲线)求玻尔兹曼常数K并计算误差
K=q
T
ln
I F
2
I F
1
(V F
1
−V F
2
)=1.393(10−23J/K)
E=Δ
X ×100%=1.393−1.38
1.38
×100%=0.93%
图6 V F −T 曲线
)计算灵敏度S 和禁带宽度E g (0) 曲线得:
=∆V F ∆T ⁄=−0.0023(V ℃⁄)=−2.3(mV ℃⁄) E g (0)=qV g (0)=1.2026eV
六、实验结果。
PN结特性试验报告

PN结正向电压温度特性研究五、实验内容与步骤1.测量PN 结正向伏安特性曲线。
由式(4)可以看出,在温度不变的条件下,PN 结的正向电流IF与电压VF呈指数曲线关系,本实验要求绘出室温和t=40℃两条PN 结伏安曲线。
用坐标纸绘出相应曲线。
2.测量恒流条件下PN 结正向电压随温度变化的关系曲线。
本实验要求测出IF=50μA 条件下PN 结正向电压随温度变化曲线。
实验中每隔5℃测一个数据,直至加热到85℃。
要先记下室温时PN 结的电压V F值。
用坐标纸绘出相应曲线。
3.确定PN 结的测温灵敏度和被测PN 结材料的禁带宽度。
(1)以t 作横出坐标,V F作纵坐标,作t-VF曲线。
正确地采用两点式求斜律的方法,计算PN结温度传感器的灵敏度S六、实验数据与处理1、PN 结正向伏安特性曲线表一:注I=50μA时,U=483mV电压/V0.250.2750.30.3250.350.3750.40.4250.45室温电流/μA0.50.9 1.63 5.49.315.223.133.3 40度电流/μA 1.6 2.8 4.98.213.320.830.241.153.9绘制成曲线如下系列2为40度时的伏安特性曲线,系列一为室温(25.1度)时的伏安特性曲线由计算机进行拟合可知,I-U满足指数关系的可信度很高。
2、恒流条件下PN结正向电压随温度变化的关系曲线。
表二注:I=50μA 室温25.1℃时U=483mV温度/℃40455055606570758085电压/mV443415406391373356344334319308计算机绘图如下:曲线拟合得U=-2.9t+551.1(mV),相关系数R2=0.9902,可信度很高即灵敏度S=2.9mV/℃计算得V F(t0)=478.3mV由可以算出禁带宽度Eg(t0)=1.34eV与理论值1.21eV的相对误差为(1.34-1.21)/1.21*100%=11%七、误差分析1、测量U-T曲线时,升温过快导致调节电流不及时;2、温度计示数有一定延迟。
pn结的伏安特性与温度特性测量(精)

PN结的伏安特性与温度特性测量半导体PN结的物理特性是物理学和电子学的重要基础内容之一。
使用本实验的仪器用物理实验方法,测量PN结扩散电流与电压关系,证明此关系遵循指数分布规律,并较精确地测出玻尔兹曼常数(物理学重要常数之一),使学生学会测量弱电流的一种新方法。
本实验的仪器同时提供干井变温恒温器和铂金电阻测温U与热力学温度T关系,求得该传感器的灵敏度,并电桥,测量PN结结电压be近似求得0K时硅材料的禁带宽度。
【实验目的】1、在室温时,测量PN结扩散电流与结电压关系,通过数据处理证明此关系遵循指数分布规律。
2、在不同温度条件下,测量玻尔兹曼常数。
3、学习用运算放大器组成I-V变换器测量10-6A至10-8A的弱电流。
U与温度关系,求出结电压随温度变化的灵敏度。
4、测量PN结结电压be5、计算在0K时半导体(硅)材料的禁带宽度。
6、学会用铂电阻测量温度的实验方法和直流电桥测电阻的方法。
【实验仪器】FD-PN-4型PN结物理特性综合实验仪(如下图),TIP31c型三极管(带三根引线)一只,长连接导线11根(6黑5红),手枪式连接导线10根,3DG6(基极与集电极已短接,有二根引线)一只,铂电阻一只。
【实验原理】1、PN 结伏安特性及玻尔兹曼常数测量由半导体物理学可知,PN 结的正向电流-电压关系满足:[]1/0-=KT eU e I I (1)式(1)中I 是通过PN 结的正向电流,I 0是反向饱和电流,在温度恒定是为常数,T 是热力学温度,e 是电子的电荷量,U 为PN 结正向压降。
由于在常温(300K)时,kT /e ≈0.026v ,而PN 结正向压降约为十分之几伏,则KT eU e />>1,(1)式括号内-1项完全可以忽略,于是有:KT eU e I I /0= (2)也即PN 结正向电流随正向电压按指数规律变化。
若测得PN 结I-U 关系值,则利用(1)式可以求出e /kT 。
PN结正向伏安特性与温度的研究

温度对pn结正向伏安特性的实验研究
实验设备
需要使用恒温箱、电流表、 电压表等设备,以及pn 结二极管样品。
实验步骤
在恒温箱中设定不同的温度, 测量不同温度下的正向电压和 电流值,记录数据并进行分析 。
实验结果
通过实验数据可以观察到随 着温度升高,正向电流增大 ,正向电压略有减小。
温度对pn结正向伏安特性的应用前景
Part
02
pn结正向伏安特性
pn结正向伏安特性的定义与原理
定义
pn结正向伏安特性是指在正向偏置 条件下,pn结的电压-电流关系特性 。
原理
当外加正向电压时,pn结内部的电场 被削弱,电子和空穴的扩散运动增强 ,形成正向电流。随着正向电压的增 加,正向电流也相应增加。
影响pn结正向伏安特性的因素
研究不足与展望
01 02 03
实验条件限制
虽然实验结果与理论模型基本一致,但由于实验条件的限 制,部分高温度下的数据点存在一定的误差。未来可以通 过改进实验设备和方法,提高实验数据的准确性和可靠性 。
理论模型简化
为了简化分析,本研究采用了简化的理论模型。然而,实 际pn结的物理过程可能更加复杂,涉及到更多的物理效应 。未来可以进一步完善理论模型,以更准确地描述pn结的 物理特性。
感谢您的观看
STEP 03
能源转换
STEP 02
利用pn结正向伏安特性随温 度变化的特性,可以开发新型 能源转换器件,如热电转换器 等。
STEP 01
电子器件优化
了解温度对pn结正向伏安特 性的影响,有助于优化电子器 件的性能,提高其稳定性。
温度传感器
利用pn结正向伏安特性随温 度变化的特性,可以制作温 度传感器,用于测量温度。
PN结正向压降温度特性及正向伏安特性的研究

PN结正向压降温度特性及正向伏安特性的研究PN结正向压降温度特性及正向伏安特性的研究随着半导体元件的不断发展,越来越多的应用场景需要对PN结的正向压降温度特性和正向伏安特性有更深入的了解。
本文将通过理论分析和实验验证的方式,对这两个特性进行详细研究。
首先,我们来看PN结正向压降温度特性。
PN结的正向压降是指在正向偏置的情况下,PN结两端的电压降。
正向压降与PN结内的载流子浓度有关,载流子浓度越高,正向压降越小。
同时,温度的变化也会对正向压降产生影响。
一般来说,正向压降随着温度的升高而减小。
这是因为在高温下,载流子浓度会增加,使得PN结内电场的分布变得更加均匀,从而减小了正向压降。
但是,在非常高的温度下,由于载流子的热激发效应,反向偏置电压也会增加,进而导致正向压降的增加。
因此,在设计半导体元件时需要考虑温度对正向压降的影响。
其次,我们来看PN结的正向伏安特性。
正向伏安特性描述了PN结在正向偏置下的电流与电压之间的关系。
根据欧姆定律,正向电流与正向电压成正比,即I = Is * (exp(qV / (nkT)) - 1),其中I为正向电流,V 为正向电压,Is为逆饱和电流,q为电子电荷量,k为玻尔兹曼常数,T 为绝对温度,n为器件的非理想因子。
从这个公式可以看出,正向电流与温度成正比,也就是说,随着温度的升高,正向电流也会增加。
这是因为在高温下,载流子的热激发效应增强,使得正向电流增大。
但是,需要注意的是,当温度达到一定值时,PN结可能会因为过热而损坏。
为了验证以上理论分析,我们进行了实验研究。
首先,我们搭建了一个实验平台,用来测试PN结的正向压降温度特性和正向伏安特性。
实验中,我们分别采用了不同的温度和正向偏置电压,测量了PN结两端的电压和电流。
实验结果与理论分析基本吻合,验证了我们的理论模型的准确性。
综上所述,PN结的正向压降温度特性和正向伏安特性对于半导体元件的设计和使用非常重要。
了解这两个特性的变化规律可以帮助我们选择合适的工作温度和正向偏置电压,以确保半导体元件的正常工作。
FD-PN-4 PN结物理特性综合实验仪说明书

FD-PN-4PN 结物理特性综合实验仪(扩散电流c I 与结电压eb U 关系,结电压eb U 与温度T 关系)说 明 书上海复旦天欣科教仪器有限公司中国上海FD-PN-4型PN结物理特性综合实验仪(PN结的伏安特性与温度特性测量仪)一、概述半导体PN结的物理特性是物理学和电子学的重要基础内容之一。
本仪器用物理实验方法,测量PN结扩散电流与电压关系,证明此关系遵循指数分布规律,并较精确地测出玻尔兹曼常数(物理学重要常数之一),使学生学会测量弱电流的一种新方法。
本仪器同时提供干井变温恒温器和铂金电阻测温电桥,测量PN结结电压U与热力学温度T关系,求得be该传感器的灵敏度,并近似求得0K时硅材料的禁带宽度。
本仪器提供实验物理内容丰富、概念清晰、测量结果准确度高。
本仪器主要供大专院校普通物理实验教学用。
仪器稳定可靠,结构设计合理,很适用于教学用。
二、用途1、测量PN结扩散电流与结电压关系,通过数据处理证明此关系遵循指数分布规律。
2、较精确地测量玻尔兹曼常数。
(误差一般小于2%)3、学习用运算放大器组成电流—电压变换器测量10-6A至10-8A的弱电流。
4、测量PN结结电压U与温度关系,求出结电压随温度变化的灵敏度。
be5、近似求得0K时半导体(硅)材料的禁带宽度。
6、学会用铂电阻测量温度的实验方法和直流电桥测电阻的方法。
三、仪器组成及技术特性本仪器由四部分组成:1、直流电源±15V直流电源一组,即[+15V—0V(地)—-15V];1.5V直流电源一组2、数字电压表三位半数字电压表0—2V一只;四位半数字电压表0—20V一只;3、实验板由运算放大器LF356、印刷引线、接线柱、多圈电位器组成。
TIP31型三极管外接。
4、恒温装置干井式铜质可调节恒温恒温控制器控温范围,室温至80℃;控温精度0.01℃;5、测温装置铂电阻及电阻组成直流电桥测温0℃(Ω=00.100R)。
四、保养和维护1、接±12V或±15V,但不可接大于15V电源。
PN结的伏安特性与温度特性测量

PN结正向压降与温度特性的研究【实验目的】1.研究pn结正向压降与温度之间的关系。
2.提出利用pn结的这个特性设计温度传感器的方案。
【实验仪器】1. pn结物理特性实验仪。
2. 保温杯。
3. 开水、冰块等。
【实验原理】1.理想的pn结正向电流IF 和压降VF 存在如下近似关系式中,q 为电子电量,K=1.38×10-23J•K-1为玻尔兹曼常数,T 为热力学温度,Im 为反向饱和电流,它的大小其中C 是与半导体截面积、掺杂浓度等因素有关的常数;γ是热学中的比热比,也是一个常数;Vg(0)是热力学温度T=0 时,PN 结材料的能带结构中,它的导带底、价带顶之间的电势差—8212 —半导体材料的能带理论中,把有电子存在的能量区域称作价带,空着的能量区域叫导带,而电子不能存在的能量区域叫禁带。
将式(2)带入式(1),两边取对数可得(3)其中,。
式(3)是PN 结温度传感器的基本方程。
当正向电流IF 为常数时,V 1 是线性项,Vn 1 是非线性项,这时正向压降只随温度的变化而变化,但其中的非线性项Vn 1引起的非线性误差很小(在室温下,γ=1.4 时求得的实际响应对线性的理论偏差仅为0.048mV)。
因此,在恒流供电情况下,PN 结的正向压降VF 对温度T 的依赖关系只取决于线性项V 1,即在恒流供电情况下,正向压降VF 随温度T 的升高而线性地下降,这就是PN 结测温的依据。
我们正是利用这种线性关系来进行实验测量。
必须指出,上述结论仅适用于掺入半导体中的杂质全部被电离且本征激发可以忽略的温度区间,对最常用的硅二极管,温度范围约为-50℃—50℃,若温度超出此范围,由于杂质电离因子减小或本征激发的载流子迅速增加,VF —T 的关系将产生新的非线性。
更为重要的是,对于给定的PN 结,即使在杂质导电和非本征激发的范围内,其线性度也会随温度的高低有所不同,非线性项Vn 1 随温度变化特征决定了VF —T 的线性度,使得VF —T 的线性度在高温段优于低温段,这是PN 结温度传感器的普遍规律。
PN结正向伏安特性随温度变化的实验设计

PN结正向伏安特性随温度变化的实验设计周党培;陈业仙【摘要】讨论了不同温度下PN结的正向伏安特性的测量方法,设计了利用TH-J 型PN结正向压降温度特性测试仪研究PN结正向伏安特性曲线随温度变化的实验,定性地分析了PN结正向伏安特性随温度变化的规律;利用Excel进行指数拟合测定了波尔兹曼常数,并确定了常温下PN结的反向饱和电流,从而定量地描述PN结的正向伏安特性曲线,取得了较为准确的实验结果。
%The measuring method of positive volt-ampere characteristics of PN junction at different temperature is introduced.The experiment of variation of positive volt-ampere characteristics of PN junction with temperature based on the instrument of model TH-J which is used to research the relation of PN junction forward voltage drop and temperature is designed.The Boltzmann constant and the reverse saturation current of the PN junction on normal temperature are measured.The positive volt-ampere characteristics of PN junction and its variation with temperature can be described quantitatively and qualitatively,and the good experiment results are reached.【期刊名称】《实验科学与技术》【年(卷),期】2012(010)002【总页数】4页(P11-14)【关键词】PN结;正向伏安特性;波尔兹曼常数;反向饱和电流;物理实验【作者】周党培;陈业仙【作者单位】五邑大学物理实验中心,广东江门529020;五邑大学教务处,广东江门529020【正文语种】中文【中图分类】O475近年来,环保节能成为了人们的热点话题,半导体照明作为新一代节能光源备受关注,因此LED相关专业如雨后春笋般在工科院校中争相开设,半导体物理相关知识自然成了工科学生普及教育的一个重要内容,然而由于种种原因,相应的实验教学却显得有点滞后。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PN结正向压降与温度特性的研究
【实验目的】
1.研究pn结正向压降与温度之间的关系。
2.提出利用pn结的这个特性设计温度传感器的方案。
【实验仪器】
1、 pn结物理特性实验仪。
2、保温杯。
3、开水、冰块等。
【实验原理】
1、理想的pn结正向电流IF 与压降VF 存在如下近似关系
式中,q 为电子电量,K=1、38×10-23J•K-1为玻尔兹曼常数,T 为热
力学温度,Im 为反向饱与电流,它的大小
其中C 就是与半导体截面积、掺杂浓度等因素有关的常数;γ就是热学中的比热比,也就是一个常数;Vg(0)就是热力学温度T=0 时,PN 结材料的能带结构中,它的导带底、价带顶之间的电势差—8212 —半导体材料的能带理论中,把有电子存在的能量区域称作价带,空着的能量区域叫导带,而电子不能存在的能量区域叫禁带。
将式(2)带入式(1),两边取对数可得
(3)
其中,。
式(3)就是PN 结温度传感器的基本方程。
当正向电流IF为常数时,V1 就是线性项,Vn1 就是非线性项,这时正向压降只随温度的变化而变化,但其中的非线性项Vn1引起的非线性误差很小(在室温下,γ=1、4 时求得的实际响应对线性的理论偏差仅为0、048mV)。
因此,在恒流供电情况下,PN 结的正向压降VF 对温度T 的依赖关系只取决于线性项V1,即在恒流供电情况下,正向压降VF 随温度T
的升高而线性地下降,这就就是PN 结测温的依据。
我们正就是利用这种线性关系来进行实验测量。
必须指出,上述结论仅适用于掺入半导体中的杂质全部被电离且本征激发可以忽略的温度区间,对最常用的硅二极管,温度范围约为-50℃—50℃,若温度超出此范围,由于杂质电离因子减小或本征激发的载流子迅速增加,VF —T 的关系将产生新的非线性。
更为重要的就是,对于给定的PN 结,即使在杂质导电与非本征激发的范围内,其线性度也会随温度的高低有所不同,非线性项Vn 1 随温度变化特征决定了VF —T 的线性度,使得VF —T 的线性度在高温段优于低温段,这就是PN 结温度传感器的普遍规律。
同时从式(1)、(2)、(3)可以瞧出,对给定的PN 结,正向电流IF 越小非线性项越小,这说明减小IF ,可以改善线性度。
2、PN 结的结电压be U 与热力学温度T 关系测量。
实验线路 测温电路
通过调节实验电路中电源电压,使上电阻两端电压保持不变,即电流I =100μA 。
同时用电桥测量铂电阻T R 的电阻值,通过查铂电阻值与温度关系表,可得恒温器的实际湿度。
从室温开始每隔5℃-10℃测一定be U 值(即V 1)与温度θ(℃)关系,求得T U be -关系。
当PN 结通过恒定小电流(通常电流I =1000μA),由半导体理论可得be U 与T 近似关系:
go be U ST U += (3)
式中S ≈-2、3C mV o
/为PN 结温度传感器灵敏度。
由go U 可求出温度0K 时半导体材料的近似禁带宽度go E =go qU 。
硅材料的go E 约为1、20eV 。
【实验内容与步骤】
1、VF(tS)的测量与调零
(1)开启测试仪电源,电源开关在机箱后面,预热数分钟。
(2)将“测量选择”开关(简称K)拨到IF 的位置,由“IF 调节”使IF=50μА,记录初始测量温度tS(一般与当时的室温tR 相同),再将K 拨到VF 的位置,记下VF(tS)值,最后将K 置于ΔV 的位置,由“ΔV 调零”使ΔV=0,准确记录以上数据。
有时因实验失败,需要重新进行测量时,PN 结所在处的温度无法降到室温,这时可根据实验条件选取一个合适的起始温度,记录下该温度值,即可开始测量,测量过程与上面完全相同。
(1)开启加热电源(指示灯即亮),先将控温电流开关旋钮旋至0、3A,再逐步提高控温加热电流,实验过程中每测量三个点控温电流增加0、1A 即可。
(2)记录对应的ΔV 与T,为了减小测量误差,便于处理数据,实验中按ΔV 每改变10mV 或15mV立即读取一组数据,将数据填入拟定的表格中。
2、测定曲线
(1)开启加热电源(指示灯即亮),先将控温电流开关旋钮旋至0、3A,再逐步提高控温加热电流,
实验过程中每测量三个点控温电流增加0、1A 即可。
(2)记录对应的ΔV 与T,为了减小测量误差,便于处理数据,实验中按ΔV 每改变10mV 或15mV立即读取一组数据,将数据填入拟定的表格中。
【注意事项】
1.为保持加热均匀,在整个实验过程中,升温速率要慢,即控温电流一开始不可选择过大,且最
高温度最好控制在120℃左右。
2.在实验过程中应保证PN 结正向电流为恒定电流,并保持在50μА上。
3.ΔV 在实验开始时应调零,在实验过程中不可再调节。
【数据记录及处理】
1、实验起始温度tS= ____℃起始正向压降VF(tS)= ____mV 工作电流IF=____μА
控温电流(A)ΔV(mV)t1(℃)T=(273、1+t1) (K)。