Transcytosis_ Crossing Cellular Barriers
医学寄生虫学名解(带英文)

1.互利共生(mutualism):两种生物生活在一起,双方均受益,并互相依赖,称为互利共生。
2.片利共生(commensalism):两种生物生活在一起,其中一方从共同生活中获利,另一方既不获益,也不受害,这种关系称片利共生。
3.寄生现象(parasitism):两种生物生活在一起,其中一方从中获利,而另一方受到损害,这种关系称为寄生现象。
4.体外寄生虫(ectoparasite):寄生在宿主体表或暂时侵犯表皮组织的寄生虫为体外寄生虫。
5.体内寄生虫(endoparasite):寄生在宿主体内组织、器官、细胞内或体液中的寄生虫为体内寄生虫。
6.永久性寄生虫(permanent parasite):永久性寄生虫是指在宿主体内发育成熟的寄生虫,成虫必须营寄生生活,或全部生活阶段均营寄生生活的寄生虫。
7.暂时性寄生虫(temporary parasite):有些寄生虫仅在叮咬时接触、侵袭宿主,然后离去,称为暂时性寄生虫。
8.专性寄生虫(obligatory parasite):专性寄生虫在宿主外不能生存,其生活史全部,或至少部分阶段营寄生生活,其成虫营寄生生活,幼虫可营自生生活和(或)寄生生活。
9.兼性寄生虫(facultative parasite):兼性寄生虫是在适宜条件下营自生生活或营寄生生活的寄生虫,但在正常情况下营自生生活,偶然进入人体可营寄生生活。
10.偶然寄生虫(accidental parasite):进入或附着于非正常宿主,但不能在此宿主中长期寄生的寄生虫称为偶然寄生虫。
11.终宿主(definitive or final host):寄生虫的成虫或有性阶段寄生的宿主称为终宿主。
12.中间宿主(intermediate host):寄生虫的幼虫或无性阶段寄生的宿主称为中间宿主。
13.转续宿主(paratenic host):某些蠕虫幼虫侵入非正常宿主,虽能存活,但不能发育为成虫,长期保持幼虫阶段,当此幼虫有机会进入正常宿主,才能继续发育为成虫,这种非正常宿主称为转续宿主。
碧云天生物技术 Min6 (小鼠胰岛β细胞) 产品说明书

碧云天生物技术/Beyotime Biotechnology订货热线:400-168-3301或800-8283301订货e-mail:******************技术咨询:*****************网址:碧云天网站微信公众号Min6 (小鼠胰岛β细胞)产品编号产品名称包装C7406 Min6 (小鼠胰岛β细胞) 1支/瓶产品简介:Organism Tissue Morphology Culture Properties Mus musculus (Mouse) Pancreas Epithelial Adherent本细胞株详细信息如下:General InformationCell Line Name Min6 (Mouse Islet Β Cells)Synonyms Min6; MIN-6; Mouse INsulinoma 6Organism Mus musculus (Mouse)Tissue PancreasCell Type -Morphology EpithelialDisease Mouse insulinomaStrain -Biosafety Level* -Age at Sampling 13 weeksGender -Genetics -Ethnicity -Applications -Category Transformed cell line* Biosafety classification is based on U.S. Public Health Service Guidelines, it is the responsibility of the customer to ensure that their facilities comply with biosafety regulations for their own country.CharacteristicsKaryotype -Virus Susceptibility -Derivation -Clinical Data -Antigen Expression -Receptor Expression -Oncogene -Genes Expressed -Gene expressiondatabases -Metastasis -Tumorigenic -Effects -Comments -Culture MethodDoubling Time -Methods for Passages Wash by PBS once then 0.05% trypsin-EDTA solution and incubate at room temperature, observe cells under an inverted microscope until cell layer is dispersed (usually 1 minute)Medium DMEM (high glucose) 10% FBS+0.05mM 2-Mercaptoethanol MCH2 / 5 C7406 Min6 (小鼠胰岛β细胞)400-1683301/800-8283301 碧云天/BeyotimeSpecial Remarks -Medium Renewal -Subcultivation Ratio 1:5 to 1:15 Growth Condition 95% air+ 5% CO 2, 37ºC Freeze medium DMEM (high glucose)+20% FBS+10% DMSO ,也可以订购碧云天的细胞冻存液(C0210)。
皮肤性病学名词解释之欧阳道创编

【名词解释】1、Epidermal melainin unit:表皮黑素单元。
1个黑素细胞可通过其树枝状突起向周围的10~36个角质形成细胞提供黑素,形成1个黑素单元。
2、Desmosome:桥粒。
是角质形成细胞间连接的主要结构,由相邻的细胞膜发生卵圆形致密增厚而共同构成。
3、Hemidesmosome:半桥粒。
是基底细胞与与下方基底膜带之间的主要结构,由角质形成细胞真皮侧胞膜的不规则突起与基底膜带相互嵌合而成,其结构类似于半个桥粒。
4、丘疹:为局限性、充实性、浅表性皮损,隆起于皮面,直径小于1厘米,可由表皮或真皮浅层细胞增殖、代谢产物聚集或炎性细胞浸润引起。
5、斑疹:皮肤粘膜的局限性颜色改变。
皮损与周围皮肤平齐,无隆起或凹陷,大小可不一,形状可不规则,直径一般小于2厘米。
6、苔藓样变:也称苔藓化,即局限性皮肤增厚,常由搔抓、摩擦及皮肤慢性炎症所致。
表现为皮嵴隆起,皮沟加深,皮损界限清楚。
见于慢性瘙痒性皮肤病(神经性皮炎、慢性湿疹等)。
7、尼氏征:又称棘层松解征,可有四种阳性表现:手指推压水疱一侧,可使水疱沿推压方向移动;手指轻压疱顶,疱液可向四周移动;稍用力在外观正常皮肤上推擦,表皮即剥离;牵扯已破损的水疱壁时,可见水疱以外的外观正常皮肤一同剥离。
常见于天疱疮。
8、斑丘疹:形态介于斑疹与丘疹之间的稍隆起皮损称斑丘疹。
9、角化不良:是指表皮或附属器中个别细胞过早角化,表现为胞核浓缩变小,胞浆嗜伊红深染。
可见于良性疾病如毛囊角化病,也可见于恶性疾病如鳞状细胞癌。
10、角珠:鳞状细胞癌中角化不良细胞呈同心圆排列,近中心部逐渐角化,称为角珠。
11、假上皮瘤样增生:表皮不规则增生,棘层高度肥厚,表皮突不规则延伸可达汗腺水平,常见于慢性感染灶边缘。
12、海绵水肿:棘细胞间水肿,细胞间液体增多,细胞间隙增宽,细胞间桥拉长而清晰可见,形似海绵,故名海绵水肿。
13、棘层松解:由于表皮细胞间桥变性,细胞间粘合力丧失,细胞失去紧密联系而呈松解状态,致使形成表皮内裂隙、水疱或大疱。
Cell biology名词解释

1.Cell biology,cytbiology. 细胞生物学,是研究细胞基本生命活动规律的科学,它在不同层次上研餿结构和功能,发育和调控,以及细胞间关系和在细胞整体上的作用. municating junction 通迅连接,介导细胞间的物质运输,化学或电化学信号的传递,除有机械性的细胞连接作用外,还可以在细胞间形成电耦联或代谢耦联.3.desmosome 桥粒,细胞内锚蛋白形成的特殊的盘状致密胞质体,一侧与细胞内中间丝相连,另一侧与粘连蛋白相连,分布在承受强拉力的组织中.4.lysosome 溶酶体,由单层膜围绕,内含多种酸性水解酶类的囊泡状细胞器,主要功能是进行细胞内的消化,在维持细胞正常代谢和防御等方面有重要作用.5.active transport 主动运输,由介质介导的物质逆浓度梯度或电化学梯度从低浓度一侧向高浓度一侧跨膜运输的方式.6.cotransport 协同运输,间接消耗ATP的主动运输方式,物质跨膜运输的直接动力来源于膜内外两侧的电化学浓度梯度,而维持梯度是通过质子泵或钠钾泵消耗ATP来实现的.7.endocytosis 胞吞作用,细胞膜内陷形成囊泡,将外界物质裹入细胞的过程.8.pinocytosis 胞饮作用,连续摄取细胞基质中的液体,形成的囊泡直径一般小于150nm.9.phagocytosis 吞噬作用,胞吞物为较大颗粒,如微生物或较大的细胞残片,形成的囊泡直径一般大于250nm10.exocytosis 胞吐作用,将细胞内的分泌泡或某些膜泡内的物质通过细胞膜运出细胞的过程.11.signal sequence 信号序列,存在于蛋白质一级结构的线性序列,有些信号序列在完成蛋白质的定向转移后便被信号肽酶切除.12.signal patch 信号斑,存在于完成折叠的蛋白质中,构成信号斑的信号序列可以不相邻,折叠后构成蛋白质分选的信号.13.signal recognition particle 信号识别颗粒,由6种不同蛋白质和一个由300个核苷酸构成的7SRNA组成的核糖核蛋白复合体,属于GTP结合蛋白.14.co translational translocation共翻译转运途径,在信号肽的指导下,新生肽边合成边转运入粗面内质网,随后经高尔基体运至溶酶体,细胞质膜或分泌到细胞外.15.vesicular transport膜泡运输,蛋白质以不同类型的转运小泡从粗面内质网合成部分转运到高尔基体再分选到细胞的各部分.16.cell communication细胞通迅,一个细胞发出的信号通过介质传递到另一个细胞并与靶细胞相应受体相互作用,通过细胞信号转导在细胞内产生一系列生理生化变化,最终表现为细胞整体的生物学效应的过程.17.double messenger system双信使系统,胞外信号与G蛋白耦联受体结合,激发质膜上的PLC,使质膜上的PIP2水解成DAG和IP3两个第二信使.胞外信号转为胞内信号,分别激发IP3-CA2+和DAG-PKC两个信号转导途径.18.cytoskeleton细胞骨架,以三种蛋白质纤维为主要成份的网络结构,主要由三种不同的蛋白质纤丝组成,包括,微管微丝,中间丝.19.nucleosome核小体,由一个200bp左右的DNA超螺旋和一个组蛋白八聚体和一分子组蛋白H1构成的染色体基本结构单位.20.genome基因级,生物贮存在单倍染色体组中的总遗传信息.21.karyotype染色体组在细胞发育中期的表型,包括染色体的大小数目形态特征的总和.22.ribosome核糖体,由数种rRNA和核糖体蛋白组成的大分子复合物,具有一个大亚基和一个小亚基,是蛋白质合成的场所.23.giant chromosome巨大染色体,在某些细胞中,特别是一些处于发育时期的细胞中可观察到特殊的,体积很大的染色体.24.cell differentiation细胞分化,由一种相同的细胞类型经细胞分裂后逐渐形成形态,结构,功能的稳定性差异,产生不同类型的细胞群体的过程.25.apoptosis细胞凋亡,一个主动的由基因决定的自动结束生命的过程.。
寄生虫学课件 利什曼阴道毛滴虫

宫颈草莓样突起
阴道粘膜充血、出血
Ⅴ流行
呈世界性分布,以女性20~40岁年龄组感染 率最高,平均感染率为28%。 传染源:为滴虫性阴道炎患者和无症状带虫 者或男性感染者。 传染途径:
直接传播,主要通过性交传播。 间接传播,主要通过公共浴池、浴具、公 用游泳衣裤、坐式厕所而感染。
家庭聚集性
夫+ →妻+ 91% 妻+ →夫+ 31% 孩+ →父+44%,母+72%
抵抗力降低,泌尿道生理功能失调,月 经期后期、妊娠,pH近中性,血清存 在,有利于虫体和有害菌生长繁殖,此 期感染率、发病率高。
男性感染者一般无症状而呈带虫状态, 可招致配偶的连续重复感染。有时也相引 起尿道前列腺炎,出现夜尿增多,局部压 痛。 阴道毛滴虫能吞噬精子,分泌物阻碍 精子存活,因此有可能引起不孕症。
二 生活史
无鞭毛体 前鞭毛体 无鞭毛体 (人及动物体) (白蛉胃) (人及动物体)
Life cycle of Leishmania donovani
Life cycle main points 生活史小结
感染方式与感染阶段: 白蛉吸血注入前鞭毛体
寄生部位与致病虫期: 无鞭毛体(利杜体)寄生于肝、脾、骨 髓和淋巴结等处巨噬细胞内
人源型
犬源型 自然疫源型
传染源
病人
病犬
野生动物
媒介 中华白蛉(家栖) 中华白蛉(偏 吴氏白蛉
野栖)
亚力山大白蛉
易感者 地区
青少年,壮年
平原
儿童(10岁↓) 婴幼儿 (2岁↓)
丘陵山区 荒漠半开发区
分布
黄淮海地区 关中,疆南
西北,华北 东北丘陵山区
塔里木 额济纳旗
高等植物Na+ 吸收、转运及细胞内Na+ 稳态平衡研究进展

植物学通报Chinese Bulletin of Botany 2007, 24 (5): 561−571, 收稿日期: 2006-12-20; 接受日期: 2007-05-08基金项目: 863计划(No. 2006AA10Z126)、国家自然科学基金(No. 30671488)和新世纪优秀人才支持计划(No. NCET-05-0882)* 通讯作者。
E-mail: smwang@.综述.高等植物Na +吸收、转运及细胞内Na +稳态平衡研究进展张宏飞, 王锁民*兰州大学草地农业科技学院, 兰州 730000摘要 盐胁迫是影响农业生产的重要环境因素之一。
本文对植物Na +吸收的机制和途径、Na +在植物体内的长距离转运以及细胞内Na +稳态平衡的研究进展进行了概述。
参与植物Na +吸收与转运的蛋白和通道可能包括HKT 、LCT1、AKT 和NSCC 等。
其中, HKT 是植物体内普遍存在的一类转运蛋白, 能够介导Na +的吸收, 其结构中的带电氨基酸残基对于其离子选择性有着非常明显的影响。
LCT1是从小麦中发现的一类能够介导低亲和性阳离子吸收的蛋白, 然而在典型的土壤Ca 2+浓度下LCT1并不能发挥吸收Na +的功能。
AKT 家族的成员在高盐环境下可能也参与了Na +的吸收。
目前虽然还没有克隆到编码NSCC 蛋白的基因, 但是NSCC 作为植物吸收Na +的主要途径的观点已被广泛接受。
SOS1和HKT 参与了Na +在根部与植株地上部的长距离转运过程, 它们在木质部和韧皮部的Na +装载和卸载中发挥重要作用, 从而影响植物的抗盐性。
另外, 由质膜Na +/H +逆向转运蛋白SOS1、蛋白激酶SOS2以及Ca 2+结合蛋白SOS3组成的SOS 复合体对细胞的Na +稳态具有重要的调节作用, 单子叶和双子叶植物之间的这种调节机制在结构和功能上具有保守性。
SOS 复合体与其它位于质膜或液泡膜上的Na +/H +逆向转运蛋白以及H +泵一起调节着细胞的Na +稳态。
医学常用病理学术语英汉翻译
医学常用病理学术语英汉翻译Introduction医学常用病理学术语英汉翻译文章致力于提供医学病理学术语的准确翻译,帮助读者更好地理解医学病理学的专业术语。
以下是一些常用医学病理学术语的英汉翻译。
1. Pathology(病理学)病理学是研究疾病本质及其发生机制的科学。
它通过对疾病的分类、诊断和预后进行研究,为临床诊疗提供依据。
2. Biopsy(活组织检查)活组织检查是通过采取组织样本,经过染色、显微镜观察及其他分析方法来确认细胞或组织的病理情况。
它通常用于确定组织是否存在疾病变化,以便进行诊断和治疗。
3. Necrosis(坏死)坏死是细胞或组织受到严重损伤或死亡的过程。
常见的坏死类型包括凝固性坏死(coagulative necrosis)、液化性坏死(liquefactive necrosis)和干酪样坏死(caseous necrosis)等。
4. Metastasis(转移)转移是指恶性肿瘤的细胞或组织从一个部位扩散到其他部位的过程。
它是癌症的重要特征之一,会导致肿瘤的远处扩散,增加患者的病情复杂性。
5. Inflammation(炎症)炎症是身体对组织损伤或异物侵入的非特异性反应。
它涉及到免疫细胞的介入和炎性介质的释放,通常表现为红肿、疼痛和局部温度升高等症状。
6. Hyperplasia(增生)增生是指细胞数量的增加,可以导致组织或器官的增大。
它通常是一种可逆的病理过程,而不像癌症中的肿瘤增殖那样无止境。
7. Dysplasia(异型增生)异型增生是一种细胞形态异常的病理过程,可能是癌前病变的早期指标之一。
它通常表现为细胞形态的不规则和异常,但尚未具备恶性肿瘤的特征。
8. Carcinoma(癌症)癌症是恶性肿瘤的一种类型,其中细胞无法进行正常的调控和分化。
它可以发生在不同的组织和器官,如肺癌、乳腺癌等。
9. Sarcoma(肉瘤)肉瘤是一种恶性肿瘤,起源于身体的结缔组织,如骨髓、肌肉或软组织。
医学寄生虫学-寄生虫英文单词
Parasitology 寄生虫学Fasiolopsis buski 布氏姜片吸虫Parasite 寄生虫Paragonimus westermani卫氏并殖吸虫Parasitosis 寄生虫病Schistosomajaponicum 日本血吸虫lifecycle 生活史schistosomiasis 血吸虫病host 宿主Oneomelania 钉螺definitiveorfinalhost 终宿主cestode(Class Cestoda) 绦虫intermediatehost 中间宿主Taenia solium 链状带绦虫reserviorhost 储蓄宿主Taenia saginata 肥胖带绦虫paratenichost 转续宿主Cystieercus 囊尾蚴infectivestage 感染期cysticercosis 囊虫病epidemiology 流行病学Echinococcusgranulosus细粒棘球绦虫pathogenesis 致病机理hydatidcyst 棘球蚴concomitantimmunity 伴随免疫Protczca 原生动物亚界premunition 带虫免疫Entamoeba histolytica 溶组织内阿米巴carrier 带虫者trophozoite 滋养体ectopicparasitism 异位寄生cyst 包囊helminth 蠕虫opportunisticprotozoan 机会致病原虫nematode(Class Nematoda) 线虫(纲) malaria 疟疾Ascaris lumbricoides 似蚓蛔线虫Plasmodium vivax 间日疟原虫adultworm 成虫ringform 环形滋养体ovum(p1.ova) 卵细胞sporozoite 子孢子directsmear 直接涂片法relapse 复发Trichuris trichiura 毛首鞭形线虫recrudescence 再燃hookworm 钩虫flagellate 鞭毛虫.Ancylostoma duodonale 十二指肠钩口线虫Leishmania donovani 杜氏利什曼原虫Necator americanus 美洲板口线虫Kala-azar 黑热病larve(p1.1arvae) 幼虫leishimaniasis 利什曼病brinefloration 盐水浮集法Trichimonus vaginalis 阴道毛滴虫Trichinella spiralis 旋毛形线虫Giadia lamblia 蓝氏贾第鞭毛虫filariasis 丝虫病Toxoplasma gondii 刚地弓形虫microfilaria 微丝蚴Pneumocystis carinii 卡氏肺孢子虫Wuchereria bancrofti 班氏吴策线虫tachymite 速殖于Brugia malayi 马来布鲁线虫bradyzoite 缓殖子noctunalperiodicity 夜现周期性PhylumArthropoda 节肢动物门Enterobius vermicularis 蠕形住肠线虫insect 昆虫trematodeematoda) 吸虫(钢) vector 媒介sucker 吸盘metamorphosis 变态oralsucker 口吸盘entomology 昆虫学ventralsucker 腹吸盘tick 蜱miracidum 毛蚴mosquito 蚊cercaria 尾蚴metacercaria 后尾蚴、囊蚴Clonorchis sinensis 华枝睾吸虫。
单细胞生物的细胞内信号转导通路有哪些
单细胞生物的细胞内信号转导通路有哪些在神奇的生命世界中,单细胞生物虽然结构简单,却也拥有精妙的细胞内信号转导通路,以感知和响应周围环境的变化,并协调自身的生理活动。
这些通路如同微小而高效的信息高速公路,让单细胞生物能够在复杂多变的环境中生存和繁衍。
其中,常见的细胞内信号转导通路之一是环腺苷酸(cAMP)信号通路。
cAMP 作为细胞内的重要第二信使,在单细胞生物中发挥着关键作用。
例如在某些细菌中,当外界环境中的营养物质缺乏时,细胞会通过一系列反应产生 cAMP。
cAMP 与特定的受体蛋白结合,从而改变这些受体蛋白的活性,进而调控相关基因的表达,使细胞能够适应营养匮乏的环境。
另一个重要的信号转导通路是钙离子(Ca²⁺)信号通路。
在单细胞生物中,Ca²⁺浓度的变化可以传递各种信号。
比如在一些原生动物中,外界的刺激可能导致细胞内储存的 Ca²⁺释放,从而引起细胞的收缩、运动或者分泌等反应。
这种迅速而灵敏的信号响应机制,帮助单细胞生物能够及时应对外界的威胁或者捕捉食物。
受体酪氨酸激酶(RTK)信号通路在单细胞生物中也有存在。
尽管单细胞生物的 RTK 结构和功能可能与多细胞生物有所不同,但它们同样能够通过受体的酪氨酸磷酸化来启动下游的信号级联反应。
这可能涉及到细胞的生长、分裂以及对环境信号的感知和适应。
再者,丝裂原活化蛋白激酶(MAPK)信号通路在单细胞生物中也扮演着重要角色。
MAPK 通路可以将细胞表面受体接收到的信号传递到细胞核内,从而调节基因的表达。
对于单细胞生物来说,这有助于它们在环境变化时调整自身的代谢、生理状态和生存策略。
还有磷脂酰肌醇信号通路。
在单细胞生物中,磷脂酶 C 可以将磷脂酰肌醇二磷酸(PIP₂)水解为肌醇三磷酸(IP₃)和二酰甘油(DAG)。
IP₃可以促使细胞内钙库释放 Ca²⁺,而 DAG 则可以激活蛋白激酶 C,从而引发一系列的细胞反应。
此外,一氧化氮(NO)信号通路在一些单细胞生物中也被发现。
医学寄生虫学英语词汇大全
医学寄生虫学英语词汇大全接下来小编为大家整理了医学寄生虫学英语词汇大全,希望对你有帮助哦!医学寄生虫学英语词汇大全:Medical Parasitology 医学寄生虫学Aedes 伊蚊alternation of generations 世代交替amastigote 无鞭毛体AmoebiasisAncylostoma duodenale 十二指肠钩口线虫Anopheles 按蚊ascariasis 蛔虫病ascaris lumbricoides 似蚓蛔线虫arthropod 节肢动物bradysporozoite 迟发型子孢子bradyzoite 缓殖子Brugia malayi 马来布鲁线虫capsule 荚膜,被膜,囊胞?carrier 携带者,载体,载流子,带虫者cercaria 尾蚴?cercarial dermatitis 尾蚴性皮炎?daughter cyst 子囊?ectopic parasitism 异位寄生?egg 卵?elephantiasis 象皮肿?enterobiasis 蛲虫病?Enterobius vermiculariserythrocytic stage 红细胞内期?facultative parasite 兼性寄生虫?fasciolopsiasisfasciolopsis buskifertile egg 受精卵?filaria 丝虫?filariasis 丝虫病?filariform larvae 丝状蚴?final host 终宿主?flea 蚤?fly 蝇?gametocyte 配子体Giardia lamblia 蓝氏贾第鞭毛虫? Giardiasis 贾第虫病?gravid proglottid 孕节?helminth 蠕虫?helminthiasis 蠕虫病? hemimetabola 不全变态? hexacanth 六钩蚴?hookworm disease 钩虫病?host 宿主?human parasitology 人体寄生虫学? hydatid cyst 棘球蚴囊?hydatid diseaseimmature proglottid 幼节? immune evasion 免疫逃避? infective stage 感染阶段?infertile cyst 不育囊?larva 幼虫?larva migrans 幼虫移行症? Leishmania donovani 杜氏利什曼原虫Leishmaniasis 利什曼病?life cycle 生活史louse 虱?macrogametocyte 大配子体malaria 疟疾malaria pigment 疟色素mature proglottid 成节medical arthropodology 医学节肢动物学merozoite 裂殖子metacercaria 囊蚴microfilaria 微丝蚴microgametocyte 雄配子体,小配子体miracidium 毛蚴mosquito 蚊myiasis 蛆病Necator americanus 美洲板口线虫Nematode 线虫nocturnal periodicity 夜现周期性nymph 若虫obligatory parasite 专性寄生虫onchosphere 六钩蚴oocyst 卵囊ovum 卵,卵细胞Pagumogonimus skrjabini 斯氏狸殖吸虫paragonimiasis 肺吸虫病parasite 寄生虫parasitic zoonosis 人兽共患寄生虫parasitism 寄生paratenic host (transport host) 转续宿主plerocercoid (sparganum) 裂头蚴Pneumocystis carinii 卡氏肺孢子虫premunition 带虫免疫procercoid 原尾蚴promastigote 前鞭毛体protoscolex 原头蚴protozoon (protozoa) 原生动物pseudocyst 假包囊pupa 蛹recrudescence 再燃redia 雷蚴relapse 复发reservoir host 保虫宿主sandfly 白蛉sarcoptes mites 疥螨Sarcoptes scabiei 人疥螨scabies 疥疮Schistosoma haematobium 埃及血吸虫Schistosoma japomicum 日本血吸虫Schistosoma mansoni 曼氏血吸虫Schistosomiasis 血吸虫病schistosomule (schistosomula) 童虫schizont 裂殖体Schuffners dots 薛氏小点scolex 头节soft ticks 软蜱somatic antigen 虫体抗原sparganosis 裂头蚴病Spirometra mansoni 曼氏迭宫绦虫sporocyst 胞蚴sporozoite 子孢子sterilizing immunity 消除性免疫surface antigen 表面抗原tachysporozoite 速发型子孢子tachyzoite 速殖子taeniasis 带绦虫病tapeworm 绦虫。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Transcytosis:Crossing Cellular BarriersPAMELA L.TUMA AND ANN L.HUBBARDDepartment of Cell Biology,Johns Hopkins University School of Medicine,Baltimore,MarylandI.Introduction871 II.Documented Transcytosis In Vivo872A.Transcytosis in the vasculature873B.Transcytosis in the brain876C.Immunological protection and transcytosis879D.Role for transcytosis in the homeostasis of micronutrients881E.Additional transcytosis systems885F.Role of transcytosis in plasma membrane biogenesis in vivo885 III.In Vitro Cell Models of Transcytosis886A.What constitutes a“good”transcytotic cell model?886B.Microvascular endothelial cell models892C.Epithelial cell models893D.Transcytosis outside of the epithelial world895 IV.More About Two Different Transcytosis Systems896A.Caveolae-mediated transcytosis896B.Clathrin-mediated transcytosis898 V.Mechanisms and Molecules Regulating Transcytosis902A.Targeting machinery902B.Cytoskeleton909C.Lipids and transcytosis911D.Perturbations of transcytosis913E.Transcytosis versus direct PM delivery916 VI.Conclusion917 Tuma,Pamela L.,and Ann L.Hubbard.Transcytosis:Crossing Cellular Barriers.Physiol Rev83:871–932,2003;10.1152/physrev.00001.2003.—Transcytosis,the vesicular transport of macromolecules from one side of a cell to the other,is a strategy used by multicellular organisms to selectively move material between two environments without altering the unique compositions of those environments.In this review,we summarize our knowledge of the different cell types using transcytosis in vivo,the variety of cargo moved,and the diverse pathways for delivering that cargo.We evaluate in vitro models that are currently being used to study transcytosis.Caveolae-mediated transcytosis by endothelial cells that line the microvasculature and carry circulating plasma proteins to the interstitium is explained in more detail,as is clathrin-mediated transcytosis of IgA by epithelial cells of the digestive tract.The molecular basis of vesicle traffic is discussed,with emphasis on the gaps and uncertainties in our understanding of the molecules and mechanisms that regulate transcytosis.In our view there is still much to be learned about this fundamental process.I.INTRODUCTIONAt its simplest,transcytosis is the transport of mac-romolecular cargo from one side of a cell to the other within a membrane-bounded carrier(s).It is a strategy used by multicellular organisms to selectively move ma-terial between two different environments while main-taining the distinct compositions of those environments. Cells have other strategies not involving membrane vesi-cles to selectively move smaller cargo(ions and small solutes)across cellular barriers.Paracellular transport, the movement between adjacent cells,is accomplished by regulation of tight junction permeability,and transcellular transport,the movement of ions and small molecules through a cell,is accomplished by the differential distri-bution of membrane transporters/carriers on opposite sides of a cell.Together,these three processes contribute to the success of multicellular organisms.Physiol Rev83:871–932,2003;10.1152/physrev.00001.2003.Historically,the existence of transcytosis wasfirst postulated in the1950s by Palade in his studies of capil-lary permeability(426).He described a prominent popu-lation of small vesicles,many of which were in continuity with the plasma membrane,and hypothesized that these vesicles were the morphological equivalent of the large pore predicted by the physiologist Pappenheimer to ex-plain the high permeability of blood microvessels to mac-romolecules(428).N.Simionescu was thefirst to coin the term transcytosis to describe the vectorial transfer of macromolecular cargo within the plasmalemmal vesicles from the circulation across capillary endothelial cells to the interstitium of tissues(538).During this same period, another type of transcytosis was being discovered.Immu-nologists comparing the different types of immunoglobu-lins found in various secretions(e.g.,serum,milk,saliva, and the intestinal lumen)speculated that the form of IgA found in external secretions(called secretory IgA,due to the presence of an additional protein component)was selectively transported across the epithelial cell barrier (577,578).The pathway and origin of the component acquired during transport were actively investigated,and in1980secretory component(SC)in secretory IgA was identified as the ectoplasmic domain of the intestinal epithelial cell membrane receptor that binds dimeric IgA and transports it through multiple intracellular compart-ments to the opposite side of the cell(391,423).These two historic transcytotic systems are still actively inves-tigated today.We now know that transcytosis is a widespread transport process;a variety of cell types use it,different carriers and mechanisms have evolved to carry it out,and the cargo moved by it is diverse.Cell types:we are most familiar with transcytosis as it is expressed in epithelial tissues,which form cellular barriers between two envi-ronments.In this polarized cell type,net movement of material can be in either direction,apical to basolateral or the reverse,depending on the cargo and particular cellu-lar context of the process.However,transcytosis is not restricted to only epithelial cells.Reports of cultured osteoclasts(398,490)and neurons(221)carrying vesicu-lar cargo between two environments indicate that the strategy of vesicular transcytosis has been used else-where.Mechanisms:in intestinal cells transcytosis is a branch of the endocytic pathway,with cargo being inter-nalized via receptor-mediated(i.e.,clathrin-coated)mech-anisms and progressively sorted away from internalized material destined for other cellular destinations.How-ever,transendothelial transport in blood capillaries does not conform to this scenario,since different carriers and a more direct route are used to cross the cell.Such differences illustrate that multiple transcytotic mecha-nisms have evolved that depend on the particular cellular context.Furthermore,they illustrate that cargo in the transcytotic pathways seems able to avoid degradation in lysosomes.How?Cargo:the nature of the transcytotic cargo also varies.Although today we might think of trans-cytosis as a selective process,the originally defined sys-tem,endothelial cells of the microvasculature,moves macromolecular cargo rather nonselectively within the fluid phase of the transport vesicle or by adsorption to the vesicle membrane.Furthermore,transcytotic cargo is not limited to macromolecules.Several vitamins and ions uti-lize endocytic mechanisms and vesicular carriers as part of their transcellular sojourn.This brings up another un-solved mystery,that of a cell transcytosing particular cargo for use by other cells but also using some of it for its own metabolism.How is such apportionment made?A major goal of this review is to summarize the widespread occurrence of transcytosis and focus on its many variations.First,we present documented examples of in vivo transcytosis in mammals,using the expanded definition given above.Next,we assess the status of in vitro cell models currently used to study the different types of transcytosis.We then review in more depth the two best-studied transcytosis systems,transendothelial transport of circulating macromolecules and transcytosis of IgA in polarized epithelial cells,focusing on the simi-larities and differences of their pathways and carriers. Finally,we present current information about the molec-ular mechanisms and regulation of transcytosis.Through-out,we identify gaps in our present understanding of this process,with the hope that interested researchers willfill in those gaps with insightful experiments and definitive answers.II.DOCUMENTED TRANSCYTOSIS IN VIVO Table1documents that transcytosis is widespread. As expected,epithelial cells forming barriers between the outside world and the interstitium or between the internal world(circulation)and the interstitium are the major cells participating in transcytosis.However,the question of whether transcytosis occurs in all adult epithelia(e.g., kidney and skin)is open.While proximal tubule cells are endocytically active,only micronutrients seem to be “transcytosed”by them in vivo.Other segments of the nephron,e.g.,the collecting tubule,are more difficult to assess.Transcytosis certainly occurs in the most obvious fetal organs,the yolk sac and placenta,and it probably operates elsewhere in the developing fetus.Further ex-amination of Table1reveals that the transport of iron, vitamin B12,and the immunoglobulins IgA and IgG occurs in several organs.However,the routes and fates of the molecules are not always the same.Curiously,the routes and mechanisms by which circulating hormones gain ac-cess to their target tissues have not been extensively explored(181).Finally,although not yet examined in all polarized cells,the biogenesis of apical plasma membrane872PAMELA L.TUMA AND ANN L.HUBBARDproteins is an example of endogenous molecules using transcytosis to attain their destination.A.Transcytosis in the VasculatureThe most extensive exchange in vivo is that of plasma constituents across the endothelium that lines the inner surface of the blood vasculature.Of the three types of endothelium,continuous,fenestrated,and discontinu-ous(sinusoidal),only thefirst two form selective cellular barriers to the passage of macromolecules between the circulation and the underlying interstitium.All continuous and fenestrated endothelia throughout the vascular sys-tem are capable of the rapid and extensive bidirectional exchange of small and large molecules,but those of the capillaries and postcapillary venules are the major players in this activity(535,536,539).These two parts of the vascular tree constitute what is often called the microvas-cular exchange system,whose surface area is enormous (ϳ600m2)(Fig.1A).While fenestrated endothelia are more permeable to small solutes and water than are con-tinuous endothelia,their relative permeability to macro-molecules,and hence participation in transcytosis,is con-troversial(534).Although obvious,it is nonetheless im-portant to state that transcytosis is but one of many important functions carried out by vascular endothelial cells,which are dynamic and capable of rapid responses to local changes in the environment.1.Structural features of continuous endotheliumThe simple,squamous epithelial cells of continuous endothelium are quite distinctive morphologically(Fig. 1B).They are remarkably thin(0.2–0.5m)in regions not including nuclei.A defining feature of these and all epi-thelial cells is a basement membrane that underlies their basal surface(Fig.1C).It is made collaboratively by the endothelial and underlying interstitial cells.The most prominent intracellular feature is a population of smooth-surfaced vesicles of50–70nm diameter,some of which are in continuity with the plasma membrane facing the circulation(the apical or luminal surface),others in con-tinuity with the opposite surface(the basolateral or ablu-minal surface),and still others apparently free in the cytoplasm(Fig.1C).These vesicles,which have anϳ35-nm-diameter opening with a thin diaphragm across it, were originally termed plasmalemma vesicles but are now called caveolae(“small caves”)because of their charac-teristicflask shape(Fig.1D)(10).In continuous endothe-lial cells,the frequency of caveolae varies widely depend-ing on the organ.For example,in endothelium of skeletal muscle(the diaphragm),the estimate isϳ1,200/m3, whereas in pulmonary capillaries it is onlyϳ130/m3 (539).This variation does not correlate with permeability, suggesting other functions for caveolae.Caveolae are also found in other cell types where their functions and com-positions are actively being investigated(reviewed in Refs.9,546).An important feature of endothelial cells is their tight junctions,which represent a barrier to paracellu-lar diffusion(219).While there is good experimental evidence that the permeability of endothelial cell tight junctions changes depending on local conditions(336), the molecular basis has yet to be elucidated.The dis-covery of a large family of tight junction membrane proteins,the claudins,and their capacity to form het-eroligomeric complexes with distinct permeability properties(580),will undoubtedly provide insights into the dynamic regulation of tight junction permeability in capillaries.Important to an understanding of transcytosis in en-dothelial cells is the endocytic system,including clathrin-coated vesicles,endosomes,and lysosomes.These or-ganelles are present in all capillary endothelium but are not abundant,and they are usually located in the thicker, perinuclear regions of cells.The endocytic system is clearly functional,as attested by the delivery of modified albumins and oxidized low-density lipoproteins(LDLs)to lysosomes(296,506).But how do these cells distinguish between cargo destined for transcytosis versus that for degradation?The simplest explanation is that different cargoes use different receptors that are localized to dif-ferent entry sites in the plasma membrane(PM).How-ever,how do endothelial cells themselves utilize the same cargo that they transport for use by other cells;that is, how is the apportionment of cargo for self versus others regulated?As we shall see in section III,at least one cargo molecule(e.g.,native LDL)may use different entry ports (i.e.,caveolae versus clathrin-coated vesicles),offering the interesting possibility that the point of entry deter-mines the subsequent fate of a particular internalized cargo molecule.2.Microvascular permeability and transcytosisMicrovessels are approximately two orders of mag-nitude more permeable than other epithelia,making them leaky to the passage of circulating proteins into the inter-stitium.Most macromolecules move across capillary en-dothelium by bulk-phase not receptor-mediated mecha-nisms.Nonetheless,there is selectivity to the process, with the size and charge of cargo being important factors. Furthermore,although transport is bidirectional,the con-centration gradient extending from the blood(apical side) to the interstitium(basal side)dictates that the bulk of transport is in an apical-to-basolateral direction.Finally, different continuous capillary beds have distinctive perm-selectivities,as evidenced by the varied compositions of the lymph draining from them.The basis for high capillary permeability has been aTRANSCYTOSIS873TABLE1.Documented in vivo transcytosisOrgan System Cell Type Cargo Direction Receptor/Carrier Comments Reference No.Heart,lung, skeletalmuscle,adiposetissue Continuous capillaryendotheliumMoleculesϾ1.7nmA-BL and BL-A Fluid phase in caveolae See text See text Albumin A-BL and BL-A gp60in caveolae Albumin plays multiple roles incaveolae-mediated transcytosisthroughout the vascular tree183,378,503,602Orosomucoid A-BL and BL-A Unidentified incaveolae456IgG A-BL and BL-A FcRn in unidentifiedcarrierContributes to IgG homeostasisand prolonged half-life of IgG inbody47 Arterial endothelium LDL cholesterol A-BL Fluid-phase in caveolae Not via LDL receptor600Testis Continuous capillaryendothelium(hasmarkers of brain EC)Gonadotrophin A-BL Chorionic gonadotropinreceptor in CCVTarget is Leydig cell181,182 Transferrin(Tf)-ironA-BL Nonspecific in caveolae Not via Tf receptor236Brain Cerebral endothelium(tight continuous)Insulin A-BL Insulin receptor viaunidentified carrierRabbit,rhesus monkey,binding toisolated human brain capillaries133,431 LDL A-BL LDL receptor viaunidentified carrierIn vitro study,but LDL receptorpresent in vivo112 Iron A-BL Tf receptor via CCV Debate over FeϾϾϾTf104,476 Tf BL-A Tf receptor viaunidentified carrierApo-form preferred over holo635 IgG BL-A FcRn Efflux from brain501,634Choroid plexus Membraneassociated very little A-BL;no BL-A?Degradation in lysosomes ispredominant fate590Adultintestine M cells in Peyer’spatches of ileumAntigens,pathogensA-BL Both phagocytic andclathrin-mediateduptakeLack of thick glycocalyx thought topermit entry;1-integrin onapical PM mediates entry;transcytosis thought to bethrough prelysosome thenexocytosis259,400,402,404,492Absorptive enterocytes dIgA BL-A pIgA receptor via CCV Multiple intermediatecompartments in pathway64 Newlysynthesizedapical PMproteinsBL-A Unknown No intracellular intermediatesidentified148,355Absorptive enterocytesin terminal ileumVitamin B12A-BL Cubilin/megalin viaCCVSee Table2for molecular players128,129,515,519Liver Hepatocytes dIgA BL-A pIgA-receptor via CCV Multiple intermediatecompartments in pathway238,468Hepatocytes Newlysynthesizedapical PMproteins BL-A Unknown Entry mechanisms unknown,intermediate compartments maybe same as those of pIgA32,499Sinusoidal endothelium Ceruloplasmin A-BL Unknown Postulated to be desialylated intransit to hepatocytes570Kidney Proximal tubule cells Vitamin B12A-BL TCII;megalin-mediatedin CCVDegradation of TCII in lysosomes;unknown storage site for B12311Vitamin D A-BL D binding protein;megalin-mediated inCCV Degradation of protein carrier inlysosomes;fate of vitamin D?413Vitamin A A-BL Retinol binding protein;megalin-mediated inCCVSame fate as above347Neonatalintestine Enterocytes Maternal IgG A-BL FcRn via CCV Subsequent movement into apicalendosomes then fusion withlateral membrane1,245Yolk sac Maternal B12A-BL Cubilin?/megalin/TCII Identification of cubilin as target ofteratogenic antibodies450,516Placenta Syncytiotrophoblasts Maternal IgG A-BL FcRn Apical location of receptor543Iron A-BL Maternal Tf receptorvia unidentifiedcarrier Apical location of receptor andHFE receptor modulator;ferreportin and endogenouscopper oxidase believed tofacilitate iron release atbasolateral PM107,172,432,433Fetal capillary endothelial cells Iron,maternalIgGBL-A Tf receptor and FcRnvia unidentifiedcarriers14874PAMELA L.TUMA AND ANN L.HUBBARDFIG. 1.The ultrastructure of a capillary network,an endothelial cell,its membrane,and caveolae.A :the vascular casts of the forestomach are shown in this scanning electron micrograph.The submucosal vessels are seen under the two-dimensional mucosal capillary network.[From Imada et al.(254),copyright 1987Springer-Verlag.]B :this transmis-sion electron micrograph is representative of the ultrastructure of an endothelial cell if the capillaries indicated in A were viewed in cross section.[From Bolender (40)by copyright permission of The Rockefeller University Press.]C :a higher magni fication of the indicated region of the endothelial cell in B .The caveolae attached to both the luminal and basal plasma membrane (PM)domains are indicated.[From Fawcett (147),with permission from Journal of Histochemistry &Cytochemistry .]D :a higher magni fication of the indicated caveolae in C .Caveolae (vesicles;v)open to the blood or tissue fronts or that appear to be completely closed are indicated.[From Bruns and Palade (65)by copyright permission of The Rockefeller University Press.]TABLE1—ContinuedOrgan System Cell TypeCargo Direction Receptor/Carrier CommentsReference No.LungTrachea HRP,ferritin A-BL UnknownPresence in large endosomes;degradation also?469Upper airways IgA BL-A IgA-receptor via CCV A-BL at low levels may be entry point for pathogens273Bronchial epitheliumAlbumin A-BL Unknown Degraded fragments released at BL (Ussing chamber)269Bioactive-Fc fusion protein A-BL FcRnTransport of intact protein determined by bioassay 553Perfused rat lungAlbumin A-BL gp60in caveolae Question of which alveolar cell type involved267Mammary glandAlveolar epitheliumdIgA BL-A pIgA-receptorPresumed to be same as in intestine and liver497Iron BL-A Tf receptor viaunidenti fied carrier Transferrin synthesized by lactating gland;pathway of iron unknown 310IgGBL-A Not identi fied;not FcRnNeonatal rodent only 245Thyroid Thyroid epithelial cells ThyroglobulinA-BLMegalin-mediatedendocytosis via CCVSeparate route for Thy-T 3/T 4(lysosomes)352A,apical;BL,basolateral;HFE,hemachromatosis gene product;PM,plasma membrane;Tf,transferrin;TCII,transcobalamin II;CCV,clathrin-coated vesicle;Thy,thyroglobulin;T 3/T 4,thyroxines;pIgA,polymeric IgA;FcRn,IgG receptor;LDL,low-density lipoprotein.TRANSCYTOSIS875controversy between physiologists and morphologists for over50years.Numerous reviews documenting the his-tory,experimental details,and different interpretations have appeared in this and other journals(377,467,539, 571,608,614).Because the controversy centers on whether tight junctions or caveolae serve as the major (only)conduit for transported cargo,we will briefly recap this story.On the basis of experiments in which he compared the compositions of the blood and lymph in the hindleg muscle of cats injected with various size tracers,Pappen-heimer et al.(428)postulated in1951that plasma compo-nents(ions,small solutes,and proteins)were transported through two types of rigid pores:a small,ϳ3-to5-nm-diameter pore present at a frequency of100/m3and a large,ϳ20-to40-nm-diameter pore present at1%the frequency of the small ones(428).When the endothelium was seen at the ultrastructural level,no structures corre-sponding to the postulated pores were found.Instead, caveolae were observed,leading Bruns and Palade(65, 66)to suggest that they performed the function ascribed to the rigid pores.In the early years of this controversy, differences in the cell systems,approaches,and tracers used by researchers in the two camps often yielded con-flicting results with differences in interpretations.How-ever,both sides progressively refined their experimental approaches and have arrived at an apparent consensus: caveolae do play a role in transport across endothelia, either as fused channels(physiologists)or bonafide trans-port vesicles(cell biologists).Our position is that caveo-lae contribute to the high permeability of continuous endothelium.However,because their number exceeds the number of functional pores predicted by Pappenhei-mer’s results,there must be other functions for caveolae. In fact,they have been proposed to harbor signal trans-duction components in both active and inactive states (9,546).The recent reports of mice genetically engineered to lack the protein caveolin-1,a major component of caveolae,are particularly relevant and are discussed in section IV.Although the controversy has focused on bulk-phase transcytosis,receptor-mediated transcytosis of specific macromolecules also takes place across the endothelia of the microvasculature(Table1).Albumin and orosomu-coid are both transcytosed in competable,saturable,and temperature-dependent fashions,and caveolae mediate their transport.A putative receptor for albumin ofϳ60 kDa that is present only on continuous capillary endothe-lia has been identified by several groups(Table1),but it has not yet been cloned and sequenced.The transcytosis of IgG across continuous endothelial cells is particularly interesting,in light of the expression of the neonatal Fc receptor(FcRn)by these cells(47)and the receptor’s role in maintaining high serum IgG in the adult(Table1).Does the receptor work in both the apical-to-basal and reverse directions?Are clathrin-coated vesicles used,as they are to carry maternal IgG from the gut to the interstitium (apical to basolateral)in neonatal rodents(Table1)?Is excess IgG degraded when the endothelial FcRn receptor is saturated with its ligand,absent,or dysfunctional?If so, how?This area of endothelial cell biology deserves fur-ther study,because it might reveal the mechanism(s)used to selectively deliver a ligand(IgG)from the interstitum back to the circulation(basolateral to apical).We will return to several of these issues below.Finally,one polypeptide hormone,human luteinizing hormone/chori-onic gonadotrophin(hLH/CG),is reportedly transcytosed via clathrin-coated pits and vesicles across the continu-ous endothelium of the testis(Table1).The transport is apparently mediated by the same receptor present on Leydig cells,the target of the hormone in the testis.This system deserves further study,because it is one of two documented examples in which clathrin-coated vesicles of an endothelium transcytose cargo;the other is brain endothelia and transferrin-Fe(see sect.II B1C).B.Transcytosis in the BrainSince the19th century dye experiments of Ehrlich, the brain has been known as a“privileged”organ where access is tightly regulated so that the environment re-mains chemically stable.The brain’sfluid is different from either the blood or noncerebral tissue.The two principal gatekeepers of the brain are the cerebral capillary endo-thelium and the epithelial cells of the choroid plexus(Fig. 2A).These cellular barriers are specialized for the pas-sage of different nutrients from the blood(132,552).The capillaries move nutrients that are required rapidly and in large quantities,such as glucose and amino acids.These small molecules are transported by membrane carriers using facilitated diffusion.The choroid plexus supplies nutrients that are required less acutely and in lower quan-tities.These are folate and other vitamins,ascorbate,and deoxyribonucleotides.Their transport requires energy since the blood concentrations of these nutrients are extremely low.Of relevance to this review is experimen-tal evidence that transcytosis of a limited set of macro-molecules occurs across brain capillaries from blood to the interstitium(the blood-brain barrier)but does not occur across the epithelial cells of the choroid plexus into the cerebrospinalfluid[the blood-cerebrospinalfluid (CSF)barrier].1.Cerebral capillariesCompared with other organs,the abundance of capil-lary endothelium in brain is very high(35).At the same time, permeability is about two orders of magnitude lower than that of endothelia in peripheral organs,giving rise to the designation of this endothelium as“tight continuous”(201).876PAMELA L.TUMA AND ANN L.HUBBARDTwo features of brain endothelia are different from endo-thelia in the periphery.Brain endothelial cells have the low-est frequency of caveolae (Ͻ100/m 3),and the character of their tight junctions is in fluenced by underlying astrocytes through the actions of soluble factors,including cytokines (111,263).Claudins 1and 5as well as occludin appear to be relevant players in providing a particularly tight junction(229,289,319,385).Very little macromolecular cargo is transcytosed across the cerebral capillary endothelium.The three best-studied ligands are insulin,LDL-cholesterol,and iron;questions and controversy surround each.A)INSULIN.The finding that insulin-sensitive glucose transporters (GLUT 4)were present in the brain (312,369)led to the search for insulin receptors onendothe-FIG.2.The barriers of the blood-brain (A )and placenta (B ).A :in a ,a diagram indicating the location of the choroid plexus in the human brain is shown.In b ,the relationship between the blood,brain,and cerebrospinal fluid is shown.The dashed line follows two typical open pathways connecting the ventricular cerebrospinal fluid with the basement membrane of parenchymal blood vessels and with the basement membrane of the surface of the brain.A,astrocytic process;C,choroid plexus epithelium;Cs,choroid plexus stroma;E,endothelium of parenchymal vessel;EC,endothe-lium of choroid plexus vessel;Ep,ependyma,GJ,gap junction;N,neuron;SCSF,cerebrospinal fluid of the subarachnoid space;TJ,tight junction;VCSF cerebrospinal fluid of ventricles.[From Brightman and Reese (60)by copyright permission of The Rockefeller University Press.]B :a “low magni fication ”diagram of the chorionic villus is shown (a ).The arterio-capillary-venous network (network)is indicated at the top .[From Moe (380).]In b ,a cross section of a full-term villus is shown.The placental membrane separates the maternal blood from the fetal blood.At the end of pregnancy,this membrane becomes very thin.[From Moe (380).]In c ,a more detailed version of the chorionic villus is shown.The microvillar surfaces (MV)and basal membranes (basal)are indicated.CT,cytotrophoblast;FV,fetal vessel;SK,syncytial knot;ST syncytiotrophoblast.[From Moore and Persaud (383)by copyright permission of Saunders.]TRANSCYTOSIS877。