2017-2018学年最新江苏省无锡市中考数学第一次模拟试题及答案解析

合集下载

2018年江苏省无锡市初中毕业升学考试数学考试试题(副卷)(解析版)

2018年江苏省无锡市初中毕业升学考试数学考试试题(副卷)(解析版)

2018年江苏省无锡市中考数学试卷(副卷)一、选择题(每小题3分,共30分)1.﹣3的绝对值是()A.﹣B.﹣3C.D.32.9的算术平方根是()A.3B.﹣3C.±3D.93.若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形4.下列计算正确的是()A.3a2﹣a2=3B.(a2)3=a6C.a2•a3=a6D.a6÷a2=a35.有6个相同的小正方体搭成的几何体如图所示,则它的俯视图是()A.B.C.D.6.如图,正方形ABCD中,E是对角线AC上一点,且AE=AB,则∠AEB的度数为()A.45°B.60°C.67.5°D.70°7.若3a﹣2b=2,则代数式2b﹣3a+1的值等于()A.﹣1B.﹣3C.3D.58.蚊香长度y(厘米)与燃烧时间t(小时)之间的函数表达式为y=105﹣10t.则蚊香燃烧的速度是()A .10厘米/小时B .105厘米/小时C .10.5厘米/小时D .不能确定 9.若关于x 的不等式3x +m ≥0有且仅有两个负整数解,则m 的取值范围是( ) A .6≤m ≤9 B .6<m <9 C .6<m ≤9 D .6≤m <9 10.如图,矩形ABCD 中,AB =4,AD =2,E 为边AD 上一个动点,连结BE ,取BE 的中点G ,点G 绕点E 逆时针旋转90°得到点F ,连结CF ,则△CEF 面积的最小值是( )A .4B .C .3D .二、填空题(每小题2分,本大题共16分)11.在函数y =中,自变量x 的取值范围是 .12.因式分解:x 3﹣4x = .13.我国某铁路年输送货物的能力是11 000 000吨,这个数据用科学记数法可记为 . 14.数据﹣3,﹣1,0,2,4的极差是 .15.若圆锥的底面半径为3,母线长为4,则这个圆锥的侧面积是 .16.某种药品经过两次降价,由每盒50元调至36元,若第二次降价的百分率是第一次的2倍.设第一次降价的百分率为x ,由题意可列得方程: .17.已知点A 、B 都在反比例函数y =(x >0)的图象上,其横坐标分别是m 、n (m <n ).过点A 分别向x 轴、y 轴作垂线,垂足分别是C 、D ;过点B 分别向x 轴、y 轴作垂线,垂足分别是E 、F ,AC 与BF 交于点P .当点P 在线段DE 上、且m (n ﹣2)=3时,m 的值等于 .18.如图,点A 的坐标是(a ,0)(a <0),点C 是以OA 为直径的⊙B 上一动点,点A 关于点C 的对称点为P .当点C 在⊙B 上运动时,所有这样的点P 组成的图形与直线y =﹣x ﹣1有且只有一个公共点,则a 的值等于 .三、解答题(本大题共10小题,共84分)19.(8分)计算:(1)tan60°+(3﹣)﹣;(2)(2x﹣1)2﹣(x+1)(x﹣1).20.(8分)解方程(组):(1)=﹣3;(2)21.(6分)如图,已知五边形ABCDE是正五边形,连结AC、AD.证明:∠ACD=∠ADC.22.(6分)某市教育局组织全市中小学教师开展“请千家”活动.活动过程中,教有局随机抽取了近两周家访的教师人数及家访次数,将采集到的全部数据按家访次数分成五类,由甲、乙两人分别绘制了下面的两幅统计图(图都不完整).请根据以上信息,解答下列问题:(1)请把这幅条形统计图补充完整(画图后请标注相应的数据);(2)在采集到的数据中,近两周平均每位教师家访次;(3)若该市有12000名教师,则近两周家访不少于3次的教师约有人.23.(8分)某校4月份八年级的生物实验考查,有A、B、C、D四个考查实验,规定每位学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验.小明、小丽都参加了本次考查.(1)小丽参加实验A考查的概率是;(2)用列表或画树状图的方法求小明、小丽都参加实验A考查的概率.24.(10分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,点O在边AB 上.过点A、D的圆的圆心O在边AB上,它与边AB交于另一点E.(1)试判断BC与圆O的位置关系,并说明理由;(2)若AC=6,sin B=,求AD的长.25.(8分)A商场从某厂以75元/件的价格采购一种商品,售价是100元/件,厂家与商场约定:若商场一次性采购达到或超过400件,厂家按每件5元返利给A商场,商场没有售完的,可以以65元/件退还给厂家.设A商场售出该商品x件,问:A商场对这种商品的销量至少要多少时,他们的获利能达到9600元?26.(10分)如图,∠AOB=60°,点P为射线OA上的一动点.过点P作PC⊥OB于点C.点D在∠AOB内,且满足∠APD=∠OPC,DP+PC=10.(1)当PC=6时,求点D到OB的距离;(2)在射线OA上是否存在一定点M,使得MD=MC?若存在,请用直尺(不带刻度)和圆规作出点M(不必写作法,但要保留作图痕迹),并求OM的长;若不存在,说明理由.27.(10分)如图,在△ABC中,∠ACB=90°,AC=m,BC=n,m>n,点P是边AB上一点,连结CP,将△ACP沿CP翻折得到△QCP.(1)若m=4,n=3,且PQ⊥AB,求BP的长;(2)连结BQ,若四边形BCPQ是平行四边形,求m与n之间的关系式.28.(10分)已知:如图,在平面直角坐标系中,点P(m,m)(m>0),过点P的直线AB与x轴正半轴交于点A,与直线y=x交于点B.(1)当m=3且∠OAB=90°时,求BP的长度;(2)若点A的坐标是(6,0),且AP=2PB,求经过点P且以点B为顶点的抛物线的函数表达式.参考答案一、选择题1.﹣3的绝对值是()A.﹣B.﹣3C.D.3【分析】利用绝对值的定义求解即可.解:﹣3的绝对值是3.故选:D.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.2.9的算术平方根是()A.3B.﹣3C.±3D.9【分析】根据算术平方根的定义即可求出答案.解:9的算术平方根是3,故选:A.【点评】本题考查算术平方根的定义,解题的关键是正确理解算术平方根的定义,本题属于基础题型.3.若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解:360÷40=9,即这个多边形的边数是9,故选:C.【点评】本题考查多边形的内角和与外角和之间的关系,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.4.下列计算正确的是()A.3a2﹣a2=3B.(a2)3=a6C.a2•a3=a6D.a6÷a2=a3【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.解:A、3a2﹣a2=2a2,故此选项错误;B、(a2)3=a6,正确;C、a2•a3=a5,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.5.有6个相同的小正方体搭成的几何体如图所示,则它的俯视图是()A.B.C.D.【分析】俯视图有3列,从左到右正方形个数分别是2,2,1.解:该几何体的俯视图为故选:A.【点评】本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.6.如图,正方形ABCD中,E是对角线AC上一点,且AE=AB,则∠AEB的度数为()A.45°B.60°C.67.5°D.70°【分析】利用正方形的性质得出∠BAC=45°,再利用等腰三角形的性质得出答案.解:∵四边形ABCD是正方形,∴∠BAC=45°,∵AE=AB,∴∠BEA=∠ABE==67.5°.故选:C.【点评】本题考查的是正方形的性质、等腰三角形的性质、三角形内角和定理,正确得出∠BAE度数是解题关键.7.若3a﹣2b=2,则代数式2b﹣3a+1的值等于()A.﹣1B.﹣3C.3D.5【分析】直接利用已知将原式变形,整体代入求出答案.解:当3a﹣2b=2时,原式=﹣(3a﹣2b)+1=﹣2+1=﹣1,故选:A.【点评】此题主要考查了代数式求值,正确应用已知求出是解题关键.8.蚊香长度y(厘米)与燃烧时间t(小时)之间的函数表达式为y=105﹣10t.则蚊香燃烧的速度是()A.10厘米/小时B.105厘米/小时C.10.5厘米/小时D.不能确定【分析】函数中表达式由自变量和因变量两个因素组成,这个是一次函数,图象为一条直线,可以任选符合条件的两点求出蚊香燃烧的速度.解:设时间t1时蚊香长度为y1,时间t2时蚊香长度为y2∴y1=105﹣10t1,y2=105﹣10t2则:速度=(y1﹣y2)÷(t1﹣t2)=[(105﹣10t1)﹣(105﹣10t2)]÷(t1﹣t2)=﹣10∴蚊香燃烧的速度是10厘米/小时故选:A.【点评】本题考查了函数的解析式和图象的结合,另外图象是由点来组成.9.若关于x的不等式3x+m≥0有且仅有两个负整数解,则m的取值范围是()A.6≤m≤9B.6<m<9C.6<m≤9D.6≤m<9【分析】首先解不等式,然后根据条件即可确定m的值.解:∵3x+m≥0,∴x≥﹣,∵不等式3x+m≥0有且仅有两个负整数解,∴﹣3<﹣≤﹣2.∴6≤m<9,故选:D.【点评】此题主要考查了一元一次不等式的整数解,根据不等式的基本性质求出x的取值范围,再由x的负整数解列出关于m的不等式组,求出m的取值范围即可.10.如图,矩形ABCD中,AB=4,AD=2,E为边AD上一个动点,连结BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连结CF,则△CEF面积的最小值是()A.4B.C.3D.【分析】过点F作AD的垂线交AD的延长线于点H,则△FEH∽△EBA,设AE=x,可得出△CEF面积与x的函数关系式,再根据二次函数图象的性质求得最小值.解:过点F作AD的垂线交AD的延长线于点H,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°﹣∠BEA=∠EBA,∴△FEH∽△EBA,∴,设AE=x,∵AB=4,AD=2,∴HF=x,EH=2,DH=x,∴△CEF面积==,∴当x=1时,△CEF面积的最小值是.故选:B.【点评】本题通过构造K形图,建立△CEF面积与AE长度的函数关系式是解题的关键.二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.在函数y=中,自变量x的取值范围是x≥1.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.【点评】此题主要考查函数自变量的取值范围,解决本题的关键是当函数表达式是二次根式时,被开方数为非负数.12.因式分解:x3﹣4x=x(x+2)(x﹣2).【分析】首先提取公因式x,进而利用平方差公式分解因式得出即可.解:x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.13.我国某铁路年输送货物的能力是11 000 000吨,这个数据用科学记数法可记为 1.1×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:11 000 000吨,这个数据用科学记数法可记为1.1×107.故答案为:1.1×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.数据﹣3,﹣1,0,2,4的极差是7.【分析】根据极差的定义即可求得.解:由题意可知,极差为4﹣(﹣3)=7.故答案为:7.【点评】此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.15.若圆锥的底面半径为3,母线长为4,则这个圆锥的侧面积是12π.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.解:圆锥的侧面积=2π×3×4÷2=12π.故答案为:12π.【点评】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.16.某种药品经过两次降价,由每盒50元调至36元,若第二次降价的百分率是第一次的2倍.设第一次降价的百分率为x,由题意可列得方程:50(1﹣x)(1﹣2x)=36.【分析】设第一次降价的百分率为x,则第二次降价的百分率为2x,根据该药品的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.解:设第一次降价的百分率为x,则第二次降价的百分率为2x,依题意,得:50(1﹣x)(1﹣2x)=36.故答案为:50(1﹣x)(1﹣2x)=36.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.17.已知点A、B都在反比例函数y=(x>0)的图象上,其横坐标分别是m、n(m<n).过点A分别向x轴、y轴作垂线,垂足分别是C、D;过点B分别向x轴、y轴作垂线,垂足分别是E、F,AC与BF交于点P.当点P在线段DE上、且m(n﹣2)=3时,m的值等于.【分析】如图,A(m,),B(n,),则P(m,),通过证明△ADP∽△CEP得到=,即=,从而得到n=2m,所以m(2m﹣2)=3,然后解关于m的方程即可.解:如图,A(m,),B(n,),则P(m,),∵点P在线段DE上,AD∥CE,∴△ADP∽△CEP,∴=,即=,∴m2=(n﹣m)2,而n>m>0,∴m=n﹣m,即n=2m,把n=2m代入m(n﹣2)=2得m(2m﹣2)=3,整理得2m2﹣2m﹣3=0,解得m1=,m2=(舍去),即m的值为.故答案为.【点评】本题考查了反比例函数的性质:反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.18.如图,点A的坐标是(a,0)(a<0),点C是以OA为直径的⊙B上一动点,点A关于点C的对称点为P.当点C在⊙B上运动时,所有这样的点P组成的图形与直线y=﹣x﹣1有且只有一个公共点,则a的值等于﹣.【分析】如图,连接BC,OD,设直线y=﹣x﹣1交x轴于点E(﹣3,0),交y轴于点F(0,﹣1),首先证明OD=2BC=﹣a,推出点D的运动轨迹是以O为圆心﹣a为半径的圆,当⊙O与直线y=﹣x﹣1相切时,点P组成的图形与直线y=﹣x﹣1有且只有一个公共点,设切点为G,连接OG.想办法求出OG即可.解:如图,连接BC,OD,设直线y=﹣x﹣1交x轴于点E(﹣3,0),交y轴于点F (0,﹣1),∵AC=CD,AB=OB,∴OD=2BC=﹣a,∴点D的运动轨迹是以O为圆心﹣a为半径的圆,当⊙O与直线y=﹣x﹣1相切时,点P组成的图形与直线y=﹣x﹣1有且只有一个公共点,设切点为G,连接OG.在Rt△EOF中,∵OG⊥EF,EF==,•OE•OF=•EF•OG,∴OG=,∴a=﹣,故答案为:﹣.【点评】本题考查直线与圆的位置关系,三角形中位线定理,轨迹等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)tan60°+(3﹣)﹣;(2)(2x﹣1)2﹣(x+1)(x﹣1).【分析】(1)先算特殊角的三角函数值、去括号,再合并同类项即可求解;(2)先算完全平方公式,平方差公式,再合并同类项即可求解.解:(1)tan60°+(3﹣)﹣=+3﹣﹣=2;(2)(2x﹣1)2﹣(x+1)(x﹣1)=4x2﹣4x+1﹣x2+1=3x2﹣4x+2.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.(8分)解方程(组):(1)=﹣3;(2)【分析】(1)两边都乘以x﹣2,化分式方程为整式方程,解之求得x的值,再检验即可得;(2)利用加减消元法求解可得.解:(1)两边都乘以x﹣2,得:1=x﹣1﹣3(x﹣2),解得:x=2,检验:x=2时,x﹣2=0,∴x=2是分式方程的增根,则原分式方程无解.(2),②×2﹣①,得:5y=40,解得y=8,将y=8代入②,得:x+32=42,解得:x=10,则方程组的解为.【点评】本题主要考查解分式方程和二元一次方程组,解题的关键是掌握解分式方程的步骤和解二元一次方程组的两种消元方法.21.(6分)如图,已知五边形ABCDE是正五边形,连结AC、AD.证明:∠ACD=∠ADC.【分析】直接利用正五边形的性质得出AB=AE=BC=ED,∠B=∠E,进而得出△ABC ≌△AED(SAS),即可得出答案.证明:∵正五边形ABCDE中,∴AB=AE=BC=ED,∠B=∠E,在△ABC和△AED中,,∴△ABC≌△AED(SAS),∴AC=AD,∴∠ACD=∠ADC.【点评】此题主要考查了正多边形和圆以及等腰三角形的性质,正确把握正多边形的性质是解题关键.22.(6分)某市教育局组织全市中小学教师开展“请千家”活动.活动过程中,教有局随机抽取了近两周家访的教师人数及家访次数,将采集到的全部数据按家访次数分成五类,由甲、乙两人分别绘制了下面的两幅统计图(图都不完整).请根据以上信息,解答下列问题:(1)请把这幅条形统计图补充完整(画图后请标注相应的数据);(2)在采集到的数据中,近两周平均每位教师家访 3.24次;(3)若该市有12000名教师,则近两周家访不少于3次的教师约有9120人.【分析】(1)由3次的人数及其所占百分比可得总人数,再用总人数减去其它次数的人数求得4次的人数即可得;(2)根据加权平均数的公式计算可得;(3)用总人数乘以样本中3次、4次及5次人数和占被调查人数的比例即可得.解:(1)∵被调查的总人数为54÷36%=150(人),则家访4次的人数为150×28%=42(人),补全图形如下:(2)在采集到的数据中,近两周平均每位教师家访=3.24(次),故答案为:3.24;(3)近两周家访不少于3次的教师约有12000×=9120(人),故答案为:9120.【点评】本题主要考查了条形统计图和扇形统计图,解题时注意:条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.23.(8分)某校4月份八年级的生物实验考查,有A、B、C、D四个考查实验,规定每位学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验.小明、小丽都参加了本次考查.(1)小丽参加实验A考查的概率是;(2)用列表或画树状图的方法求小明、小丽都参加实验A考查的概率.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能的情况数,找出两位同学抽到同一实验A的情况数,即可求出所求概率.解:(1)小丽参加实验A考查的概率是,故答案为:;(2)列表如下:所有等可能的情况有16种,其中小明、小丽都参加实验A考查的只有1种情况,所以小明、小丽都参加实验A考查的概率为.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(10分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,点O在边AB 上.过点A、D的圆的圆心O在边AB上,它与边AB交于另一点E.(1)试判断BC与圆O的位置关系,并说明理由;(2)若AC=6,sin B=,求AD的长.【分析】(1)由题意可得∠CAD=∠DAO=∠ODA,可得DO∥AC,即可证OD⊥BC,则BC与圆O相切;(2)利用三角函数可求AB=10,BC=8,由sin B===,可求AO=DO=,即可求BD,CD的长,由勾股定理可求AD的长.解:(1)BC与圆O相切,理由如下:如图,连接OD∵OA=OD∴∠ODA=∠OAD,∵AD平分∠CAB∴∠CAD=∠DAO∴∠CAD=∠ODA∴DO∥AC∵AC⊥CD∴OD⊥BC,且D在圆O上,∴BC与圆O相切(2)在Rt△ABC中,∵AC=6,sin B=,∴AB=10,BC=8在Rt△BDO中,sin B===,∴30=8DO∴DO==AO∴BO=AB﹣AO=∴BD==5∴CD=BC﹣BD=3在Rt△ACD中,AD===3【点评】本题是圆的综合题,考查了圆的有关知识,切线的判定,勾股定理,锐角三角函数,熟练运用这些性质进行推理是本题的关键.25.(8分)A商场从某厂以75元/件的价格采购一种商品,售价是100元/件,厂家与商场约定:若商场一次性采购达到或超过400件,厂家按每件5元返利给A商场,商场没有售完的,可以以65元/件退还给厂家.设A商场售出该商品x件,问:A商场对这种商品的销量至少要多少时,他们的获利能达到9600元?【分析】设A商场售出该商品x件,分采购量小于400件、等于400件以及大于400件三种情况考虑:①当A商城的采购量小于400件时,利用总利润=单件利润×销售数量结合总利润达到9600元,即可得出关于x的一元一次不等式,解之取其最小值即可得出结论;②当A商城的采购量等于400件时,由利润=销售收入﹣进货成本+返利+退货钱数结合总利润达到9600元,即可得出关于x的一元一次不等式,解之取其中的最小整数即可得出结论;③当A商城的采购量大于400件时,结合②可得出销售量必须大于332件,才能保证获利达到9600元.综上,此题得解.解:设A商场售出该商品x件.①当A商城的采购量小于400件时,有(100﹣75)x≥9600,解得:x≥384,∴商城对这种商品的销量至少要384件;②当A商城的采购量等于400件时,有100x﹣400×75+65(400﹣x)+400×5≥9600,解得:x≥331,∵x为正整数,∴x≥332,∴商城对这种商品的销量至少要332件;③当A商城的采购量大于400件时,销售量必须大于332件,才能保证获利达到9600元.答:当A商场对这种商品的销量至少要332件时,他们的获利能达到9600元.【点评】本题考查了一元一次不等式的应用,分采购量小于400件、等于400件以及大于400件三种情况列出一元一次不等式是解题的关键.26.(10分)如图,∠AOB=60°,点P为射线OA上的一动点.过点P作PC⊥OB于点C.点D在∠AOB内,且满足∠APD=∠OPC,DP+PC=10.(1)当PC=6时,求点D到OB的距离;(2)在射线OA上是否存在一定点M,使得MD=MC?若存在,请用直尺(不带刻度)和圆规作出点M(不必写作法,但要保留作图痕迹),并求OM的长;若不存在,说明理由.【分析】(1)作DH⊥OB于H,PE⊥DH于E,如图1,先计算出PD=4,利用含30度的直角三角形三边的关系得到DE=PD=2,易得四边形PCHE为矩形,然后计算DH 即可;(2)如图2,延长CP到D′,使PD′=PD,则CD′=PC+PD=10,作CD′的垂直平分线交OA于M,利用∠D′P A=∠DP A=30°可判断点D、D′关于OA对称,所以MD′=MD,而MD′=MC,所以点M满足MD=MC,作MN⊥OB于N,如图2,易得MN=5,根据含30度的直角三角形三边的关系求出ON、OM即可.解:(1)作DH⊥OB于H,PE⊥DH于E,如图1,∵DP+PC=10,PC=6,∴PD=4,∵∠AOB=60°,∴∠OPC=∠APD=30°,∴∠DPE=30°,∴DE=PD=2,易得四边形PCHE为矩形,∴EH=PC=6,∴DH=DE+EH=2+6=8,即点D到OB的距离为8;(2)存在.如图2,延长CP到D′,使PD′=PD,则CD′=PC+PD=10,作CD′的垂直平分线交OA于M,则点M为所作;作MN⊥OB于N,如图2,则MN=×10=5,在Rt△OMN中,ON=MN=,∴OM=2ON=.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了点到直线的距离和含30度的直角三角形三边的关系.27.(10分)如图,在△ABC中,∠ACB=90°,AC=m,BC=n,m>n,点P是边AB上一点,连结CP,将△ACP沿CP翻折得到△QCP.(1)若m=4,n=3,且PQ⊥AB,求BP的长;(2)连结BQ,若四边形BCPQ是平行四边形,求m与n之间的关系式.【分析】(1)如图,作CH⊥AB于H.证明△PCH是等腰直角三角形即可解决问题.(2)证明AB=2n,利用勾股定理即可解决问题.解:(1)如图,作CH⊥AB于H.由翻折的性质可知:∠APC=∠QPC,∵PQ⊥P A,∴∠APQ=90°,∴∠APC=∠QPC=135°,∴∠BPC+∠QPB=135°,∵∠QPB=90°,∴∠BPC=45°,∵CH⊥AB,∴CH=PH,在Rt△ABC中,AB===5,∵•AB•CH=•AC•BC,∴CH=,BH==,∴PB=PH+BH=+=.(2)如图2中,连接BQ.由翻折不变性可知:P A=PQ,∠QPC=∠APC,∵四边形BCPQ是平行四边形,∴PQ=BC=P A=n,PQ∥BC,∴∠QPC+∠PCB=180°,∵∠BPC+∠APC=180°,∴∠PCB=∠BPC,∴PB=BC=n,∴AP=PB=n,AB=2n,在Rt△ABC中,则有(2n)2=m2+n2,∴m2=3n2,∵m>0.n>0,∴m=n.【点评】本题考查解直角三角形,翻折变换,勾股定理,平行四边形的性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考常考题型.28.(10分)已知:如图,在平面直角坐标系中,点P(m,m)(m>0),过点P的直线AB与x轴正半轴交于点A,与直线y=x交于点B.(1)当m=3且∠OAB=90°时,求BP的长度;(2)若点A的坐标是(6,0),且AP=2PB,求经过点P且以点B为顶点的抛物线的函数表达式.【分析】(1)由题意得:OA=m=3,将x=3代入y=x,可得:y=9,即可求解;(2)由CD:DA=BP:P A=1:2,PD:BC=P A:PB=2:3,求出:OC=m,CD=m,AD=m,利用OA=m+m+m=6,即可求解.解:(1)由题意得:OA=m=3,将x=3代入y=x,可得:y=9,故:点B的坐标(3,9),∴BP=6;(2)过点B作BC⊥OA于点C,过点P作PD⊥OA,由题意得:∠BOC=60°,∵PD∥BC,∴CD:DA=BP:P A=1:2,PD:BC=P A:PB=2:3,∵PD=m,OD=m,∴BC=m,在Rt△OBC中,OC=m,∴CD=m,AD=m,∴OA=m+m+m=6,解得:m=,∴点B(,),P(3,),故抛物线表达式为:y=a(x﹣)2+,将点P坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣(x﹣)2+.【点评】本题主要考查的是一次函数图象与系数的关系、抛物线的基本性质,涉及到解直角三角形、平行线分线段成比例等知识点,综合性强,由一定的难度.。

2017年江苏省无锡市南长区中考数学一模试卷带答案解析

2017年江苏省无锡市南长区中考数学一模试卷带答案解析

2017年江苏省无锡市南长区中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)﹣5的相反数是()A.5 B.±5 C.﹣5 D.2.(3分)计算的结果为()A.b B.a C.1 D.3.(3分)不等式的解集是()A.B.x>﹣2 C.x<﹣2 D.4.(3分)下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3 5.(3分)菱形具有而矩形不一定具有的性质是()A.对角线互相垂直 B.对角线相等C.对角线互相平分 D.对角互补6.(3分)如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平移2个单位,向后平移1个单位后,所得几何体的视图()A.主视图改变,俯视图改变B.主视图不变,俯视图改变C.主视图不变,俯视图不变D.主视图改变,俯视图不变7.(3分)已知圆锥的底面半径为2,母线长为4,则它的侧面积为()A.4πB.16πC.4πD.8π8.(3分)以下问题,不适合用普查的是()A.了解全班同学每周体育锻炼的时间B.某中学调查全校753名学生的身高C.某学校招聘教师,对应聘人员面试D.鞋厂检查生产的鞋底能承受的弯折次数9.(3分)图1的矩形ABCD中,E点在AD上,且AB=,AE=1.今分别以BE、CE为折线,将A、D向BC的方向折过去,图2为对折后A、B、C、D、E五点均在同一平面上的位置图.若图2中,∠AED=15°,则∠AEC的度数是()A.10°B.15°C.20°D.22.5°10.(3分)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2),(﹣1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是()A.2+2 B.3+2 C.4 D.2+3二、填空题(共8小题,每小题2分,满分16分)11.(2分)=.12.(2分)2013年清明小长假期间,无锡火车站发送旅客约21.7万人次,将21.7万用科学记数法表示为.13.(2分)使有意义的x的取值范围是.14.(2分)方程=的解是.15.(2分)设反比例函数y=与一次函数y=x+2的图象交于点(a,b),则﹣的值为.16.(2分)两块大小一样的含有30°角且斜边为4的直角三角板如图水平放置.将△CDE绕C点按逆时针方向旋转至△CD′E′,当E′点恰好落在AB上时,线段CE 在旋转过程中扫过的面积为.17.(2分)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=3,则DF的长为.18.(2分)如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x 轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,那么AD的长为.三、解答题(共10小题,满分84分)19.(8分)计算:(1)﹣|﹣3|﹣2tan30°+(﹣1+)0(2)a+2﹣.20.(8分)(1)解方程:x2+4x﹣5=0(2)解不等式组并把解集在数轴上表示出来.21.(8分)如图所示,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F,求证:BE=DF.22.(7分)标有﹣3,﹣2,4的三张不透明的卡片,除正面写有不同的数字外,其余的值都相同,将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记为一次函数解析式y=kx+b的k值,第二次从余下的两张卡片中再抽取一张,上面标有的数字记为一次函数解析式的b值.求一次函数y=kx+b的图象不经过第三象限的概率.(用树状图或列表法写出分析过程)23.(7分)中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整):请根据图中提供的信息,解答下列问题:(1)此次抽样调査中,共调査了名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果,请你估计我市100000名中学生家长中有多少名家长持反对态度?24.(8分)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).25.(10分)如图,已知AB为半圆O的直径,C为半圆O上一点,连接AC,BC,过点O作OD⊥AC于点D,过点A作半圆O的切线交OD的延长线于点E,连接BD并延长交AE于点F.(1)求证:AE•BC=AD•AB;(2)若半圆O的直径为10,sin∠BAC=,求AF的长.26.(8分)在气候对人类生存压力日趋加大的今天,发展低碳经济,全面实现低碳生活成为人们的共识,某企业采用技术革新,节能减排,经分析前5个月二氧化碳排放量y(吨)与月份x(月)之间的函数关系是y=﹣2x+50.(1)随着二氧化碳排放量的减少,每排放一吨二氧化碳,企业相应获得的利润也有所提高,且相应获得的利润p(万元)与月份x(月)的函数关系如图所示,那么哪月份,该企业获得的月利润最大?最大月利润是多少万元?(2)受国家政策的鼓励,该企业决定从6月份起,每月二氧化碳排放量在上一个月的基础上都下降a%,与此同时,每排放一吨二氧化碳,企业相应获得的利润在上一个月的基础上都增加50%,要使今年6、7月份月利润的总和是今年5月份月利润的3倍,求a的值(精确到个位).(参考数据:=7.14,=7.21,=7.28,=7.35)27.(10分)矩形纸片ABCD中,AB=5,AD=4.(1)如图1,四边形MNEF是在矩形纸片ABCD中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;(2)请用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).28.(10分)在平面直角坐标系xOy中,已知二次函数的图象经过原点及点A(1,2),与x轴相交于另一点B(3,0),将点B向右平移3个单位得点C.(1)求二次函数的解析式;(2)点M在线段OC上,平面内有一点Q,使得四边形ABMQ为菱形,求点M 坐标;(3)点P在线段OC上,从O点出发向C点运动,过P点作x轴的垂线,交直线AO于D点,以PD为边在PD的右侧作正方形PDEF(当P点运动时,点D、点E、点F也随之运动);①当点E在二次函数的图象上时,求OP的长;②若点P从O点出发向C点做匀速运动,速度为每秒1个单位长度,若P点运动t秒时,直线AC与以DE为直径的⊙M相切,直接写出此刻t的值.2017年江苏省无锡市南长区中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)﹣5的相反数是()A.5 B.±5 C.﹣5 D.【解答】解:根据相反数的含义,可得﹣5的相反数是:﹣(﹣5)=5.故选:A.2.(3分)计算的结果为()A.b B.a C.1 D.【解答】解:==a,故选B.3.(3分)不等式的解集是()A.B.x>﹣2 C.x<﹣2 D.【解答】解:﹣x+1>2,﹣x>1,x<﹣2,故选C.4.(3分)下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3【解答】解:∵抛物线对称轴为直线x=2,∴可排除B、D选项,将点(0,1)代入A中,得(x﹣2)2+1=(0﹣2)2+1=5,故A选项错误,代入C中,得(x﹣2)2﹣3=(0﹣2)2﹣3=1,故C选项正确.故选:C.5.(3分)菱形具有而矩形不一定具有的性质是()A.对角线互相垂直 B.对角线相等C.对角线互相平分 D.对角互补【解答】解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选A.6.(3分)如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平移2个单位,向后平移1个单位后,所得几何体的视图()A.主视图改变,俯视图改变B.主视图不变,俯视图改变C.主视图不变,俯视图不变D.主视图改变,俯视图不变【解答】解:主视图不变,俯视图改变,故选:B.7.(3分)已知圆锥的底面半径为2,母线长为4,则它的侧面积为()A.4πB.16πC.4πD.8π【解答】解:圆锥的侧面积=2π×2×4÷2=8π,故选D.8.(3分)以下问题,不适合用普查的是()A.了解全班同学每周体育锻炼的时间B.某中学调查全校753名学生的身高C.某学校招聘教师,对应聘人员面试D.鞋厂检查生产的鞋底能承受的弯折次数【解答】解:A、了解全班同学每周体育锻炼的时间适合用普查;B、某中学调查全校753名学生的身高适合用普查;C、某学校招聘教师,对应聘人员面试适合用普查;D、鞋厂检查生产的鞋底能承受的弯折次数不适合用普查,故选:D.9.(3分)图1的矩形ABCD中,E点在AD上,且AB=,AE=1.今分别以BE、CE为折线,将A、D向BC的方向折过去,图2为对折后A、B、C、D、E五点均在同一平面上的位置图.若图2中,∠AED=15°,则∠AEC的度数是()A.10°B.15°C.20°D.22.5°【解答】解:在长方形ABCD中,∠A=90°,AD∥BC,∵BE=2AE,∴∠ABE=30°,∴∠AEB=90°﹣∠ABE=90°﹣30°=60°,∵∠AED=15°,∴∠BED=∠AEB﹣∠AED=60°﹣15°=45°,∴∠DED′=180°﹣60°﹣45°=75°,根据翻折的性质,∠CED′=∠DED′=×75°=37.5°,∴∠AEC=∠CED﹣∠AED=22.5°.故选D.10.(3分)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2),(﹣1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是()A.2+2 B.3+2 C.4 D.2+3【解答】解:如图,作点B关于AC的对称点E,连接EP、EB、ED、EC,则PB+PD=PE+PD,因此ED的长就是PB+PD的最小值,即当点P运动到ED与AC的交点G时,△PBD的周长最小.∵A、B、C三点的坐标分别为(1,2),(﹣1,0),(3,0),点D为BC中点,∴AB==4,BC=4,AC==4,∴△ABC是等边三角形,从点D作DF⊥BE,垂足为F,因为BC=4,所以BD=2,BE=2=4,因为∠DBF=30°,所以DF=BD=1,BF=,EF=BE﹣BF=4﹣=3,DE==2,所以△PBD的周长的最小值是2+2,故选:A.二、填空题(共8小题,每小题2分,满分16分)11.(2分)=0.1.【解答】解:∵0.13=0.001∴原式=0.1.故填0.1.12.(2分)2013年清明小长假期间,无锡火车站发送旅客约21.7万人次,将21.7万用科学记数法表示为 2.17×105.【解答】解:21.7万=217 000=2.17×105.故答案为:2.17×105.13.(2分)使有意义的x的取值范围是x≤1.【解答】解:∵有意义,∴1﹣x≥0,解得:x≤1.故答案为:x≤1.14.(2分)方程=的解是x=9.【解答】解:去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解,故答案为:x=915.(2分)设反比例函数y=与一次函数y=x+2的图象交于点(a,b),则﹣的值为.【解答】解:将点(a,b)代入y=得到ab=3,将点(a,b)代入y=x+2得a+2=b,即b﹣a=2,则﹣==.故答案为.16.(2分)两块大小一样的含有30°角且斜边为4的直角三角板如图水平放置.将△CDE绕C点按逆时针方向旋转至△CD′E′,当E′点恰好落在AB上时,线段CE在旋转过程中扫过的面积为.【解答】解:∵三角板是两块大小一样斜边为4且含有30°的角,∴CE′是△ACB的中线,∴CE′=BC=BE′=2,∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,∴线段CE旋转过程中扫过的面积为:=.故答案是:.17.(2分)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=3,则DF的长为1.【解答】解:如图,延长CF交AB于G,∵AE是角平分线,CF⊥AE,∴△AGC是等腰三角形,∴AG=AC=3,CF=GF,∴BG=AB﹣AG=5﹣3=2,∵AD是中线,∴BD=CD,∴DF是△BCG的中位线,∴DF=BG=×2=1.故答案为:1.18.(2分)如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x 轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,那么AD的长为或.【解答】解:①先经过点D,即AB>3,如答图1:设直线过点A时交x轴于点E,过点D交AB于点G,交x轴于点F,作DH⊥AB,由图可知:OE=4,OF=7,DG=2,∴EF=AG=OF﹣OE=3∵直线y=﹣x∴∠AGD=∠EFD=45°∴△HGD是等腰直角三角形∴DH=GH=DG=×2=2∴AH=AG﹣GH=3﹣2=1∴AD===②先经过点B,即AB=3,如答图2:设直线过点A时交x轴于点I,过点B时交AD于点K、x轴于点J,过点D时,交AB延长线于点N、x轴于点M,并过K点作KL⊥AB,由图可知:OI=4,OJ=7,KB=2,OM=8,∴IJ=AB=3,IM=AN=4,由直线y=﹣x,易得△KLB是等腰直角三角形,∴KL=BL=KB=×2=2,∴AL=1,∴AK===,∵△ABK∽△AND,∴=,即=,即AD=.三、解答题(共10小题,满分84分)19.(8分)计算:(1)﹣|﹣3|﹣2tan30°+(﹣1+)0(2)a+2﹣.【解答】解:(1)原式=2﹣3﹣+1=﹣2;(2)原式=﹣==.20.(8分)(1)解方程:x2+4x﹣5=0(2)解不等式组并把解集在数轴上表示出来.【解答】解:(1)(x+5)(x﹣1)=0,可得x+5=0,x﹣1=0,∴x1=﹣5,x2=1;(2)由①得:x<2,由②得:x≥﹣1,则不等式组的解集为﹣1≤x<2,解集表示在数轴上,如图所示,21.(8分)如图所示,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F,求证:BE=DF.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF.22.(7分)标有﹣3,﹣2,4的三张不透明的卡片,除正面写有不同的数字外,其余的值都相同,将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记为一次函数解析式y=kx+b的k值,第二次从余下的两张卡片中再抽取一张,上面标有的数字记为一次函数解析式的b值.求一次函数y=kx+b的图象不经过第三象限的概率.(用树状图或列表法写出分析过程)【解答】解:如图所示:所有等可能的情况有6种,分别为(﹣3,﹣2);(﹣3,4);(﹣2,﹣3);(﹣2,4);(4,﹣3);(4,﹣2),其中一次函数y=kx+b的图象不经过第三象限的有(﹣3,4),(﹣2,4)共2种,则P==.23.(7分)中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整):请根据图中提供的信息,解答下列问题:(1)此次抽样调査中,共调査了200名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果,请你估计我市100000名中学生家长中有多少名家长持反对态度?【解答】解:(1)调查中学生家长总数为:50÷25%=200人.故答案为200;(2)持赞成态度的学生家长有200﹣50﹣120=30人,图①补充图为:(3)持反对态度的家长有:100000×60%=60000人.24.(8分)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).【解答】解:(1)过点B作BE⊥AD于点E,∵AB=40m,∠A=30°,∴BE=AB=20m,AE==20m,即点B到AD的距离为20m;(2)在Rt△ABE中,∵∠A=30°,∴∠ABE=60°,∵∠DBC=75°,∴∠EBD=180°﹣60°﹣75°=45°,∴DE=EB=20m,则AD=AE+EB=20+20=20(+1)(m),在Rt△ADC中,∠A=30°,∴DC==(10+10)m.答:塔高CD为(10+10)m.25.(10分)如图,已知AB为半圆O的直径,C为半圆O上一点,连接AC,BC,过点O作OD⊥AC于点D,过点A作半圆O的切线交OD的延长线于点E,连接BD并延长交AE于点F.(1)求证:AE•BC=AD•AB;(2)若半圆O的直径为10,sin∠BAC=,求AF的长.【解答】(1)证明:∵AB为半圆O的直径,∴∠C=90°,∵OD⊥AC,∴∠CAB+∠AOE=90°,∠ADE=∠C=90°,∵AE是切线,∴OA⊥AE,∴∠E+∠AOE=90°,∴∠E=∠CAB,∴△EAD∽△ABC,∴AE:AB=AD:BC,∴AE•BC=AD•AB.(2)解:作DM⊥AB于M,∵半圆O的直径为10,sin∠BAC=,∴BC=AB•sin∠BAC=6,∴AC==8,∵OE⊥AC,∴AD=AC=4,OD=BC=3,∴sin∠OAD==,∵sin∠OAD=sin∠MAD=,∴DM=,AM===,BM=AB﹣AM=,∵DM∥AE,∴=,∴AF=.26.(8分)在气候对人类生存压力日趋加大的今天,发展低碳经济,全面实现低碳生活成为人们的共识,某企业采用技术革新,节能减排,经分析前5个月二氧化碳排放量y(吨)与月份x(月)之间的函数关系是y=﹣2x+50.(1)随着二氧化碳排放量的减少,每排放一吨二氧化碳,企业相应获得的利润也有所提高,且相应获得的利润p(万元)与月份x(月)的函数关系如图所示,那么哪月份,该企业获得的月利润最大?最大月利润是多少万元?(2)受国家政策的鼓励,该企业决定从6月份起,每月二氧化碳排放量在上一个月的基础上都下降a%,与此同时,每排放一吨二氧化碳,企业相应获得的利润在上一个月的基础上都增加50%,要使今年6、7月份月利润的总和是今年5月份月利润的3倍,求a的值(精确到个位).(参考数据:=7.14,=7.21,=7.28,=7.35)【解答】解:(1)根据图象知道当x=1,p=80,当x=4,p=95,设p=kx+b,故,解得:,则p=5x+75;根据k>0,p随x增大而增大,∴当x=5时,p最大,p=5×5+75=100万元;∴5月份的利润是:100万×40=4000万元;(2)∵该企业决定从今年6月份起,每月二氧化碳排放量在上一个月的基础上都下降a%,而当x=5时,y=40,∴6月份的二氧化碳排放量为40(1﹣a%),7月份的二氧化碳排放量为40(1﹣a%)2,5月份的利润为4000万元,∴6月份的利润为100(1+50%)×40(1﹣a%),7月份的利润为100(1+50%)×(1+50%)×40(1﹣a%)2,∴100(1+50%)×40(1﹣a%)+100(1+50%)×(1+50%)×40(1﹣a%)2=3×4000,∴a=13.27.(10分)矩形纸片ABCD中,AB=5,AD=4.(1)如图1,四边形MNEF是在矩形纸片ABCD中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;(2)请用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).【解答】解:(1)正方形的最大面积是16.设AM=x(0≤x≤4),则MD=4﹣x.∵四边形MNEF是正方形,∴MN=MF,∠AMN+∠FMD=90°.∵∠AMN+∠ANM=90°,∴∠ANM=∠FMD.∵在△ANM和△DMF中,∴△ANM≌△DMF(AAS).∴DM=AN.=MN2=AM2+AN2,∴S正方形MNEF=x2+(4﹣x)2,=2(x﹣2)2+8=2(x﹣2)2+8的开口向上,∵函数S正方形MNEF对称轴是x=2,在对称轴的左侧S随x的增大而减小,在对称轴的右侧S随x的增大而增大,∵0≤x≤4,∴当x=0或x=4时,正方形MNEF的面积最大.最大值是16.(2)先将矩形纸片ABCD分割成4个全等的直角三角形和两个矩形如图1,然后拼成如图2的正方形.28.(10分)在平面直角坐标系xOy中,已知二次函数的图象经过原点及点A(1,2),与x轴相交于另一点B(3,0),将点B向右平移3个单位得点C.(1)求二次函数的解析式;(2)点M在线段OC上,平面内有一点Q,使得四边形ABMQ为菱形,求点M 坐标;(3)点P在线段OC上,从O点出发向C点运动,过P点作x轴的垂线,交直线AO于D点,以PD为边在PD的右侧作正方形PDEF(当P点运动时,点D、点E、点F也随之运动);①当点E在二次函数的图象上时,求OP的长;②若点P从O点出发向C点做匀速运动,速度为每秒1个单位长度,若P点运动t秒时,直线AC与以DE为直径的⊙M相切,直接写出此刻t的值.【解答】解:(1)设二次函数的解析式为y=ax2+bx+c,∵二次函数的图象经过原点及点A(1,2),B(3,0),∴,解得.故二次函数解析式为:y=﹣x2+3x;(2)M是AB的垂直平分线与x轴的交点,点M坐标是(1,0)(舍去);M在B点左边并且BM=AB,点M坐标是(3﹣2,0);M在B点右边并且BM=AB,点M坐标是(3+2,0);故点M坐标为(3﹣2,0)或(3+2,0);(3)①由已知可得C(6,0)如图:过A点作AH⊥x轴于H点,∵DP∥AH,∴△OPD∽△OHA,∴=,即=,∴PD=2a,∵正方形PDEF,∴E(3a,2a),∵E(3a,2a)在二次函数y1=﹣x2+3x的图象上,∴a=;即OP=.②直线AC与以DE为直径的⊙M相切,此刻t的值为t=或t=.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

无锡省锡中2017~2018学年度初三中考一模数学试卷(含答案)

无锡省锡中2017~2018学年度初三中考一模数学试卷(含答案)

无锡省锡中2017~2018学年度初三中考一模数学试卷2018.3考试说明:满分130分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内) 1.﹣2的绝对值是A .2B .﹣2C .12D .12- 2.下列运算正确的是A .236a a a ⋅=B .33a a a ÷=C .32422a a a -=D .326()a a = 3.下面四个手机应用图标中是轴对称图形的是A B C D4.如果一个多边形的内角和等于1440°,那么这个多边形的边数为 A .8 B .9 C .10 D .11 5.若圆柱的底面半径为3,母线长为5,则这个圆柱的侧面积为A .15B .12πC .15πD .30π 6则这些队员年龄的众数和中位数分别是A .15,15B .15,15.5C .15,16D .16,157.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连结AC 、AD 、BD ,若∠BAC =35°,则∠ADC 的度数为 A .35° B .65° C .55° D .70°第7题 第8题 第9题8.如图,在菱形ABCD 中,AC 、BD 相交于点O ,E 为AB 的中点,且DE ⊥AB ,若AC =6,则DE 的长为A .3B .C .D .49.如图,矩形ABCD 的顶点A 和对称中心在反比例函数(0ky k x=≠,0)x >上,若矩形ABCD 的面积为8,则k 的值为A .8B .C .D .410.如图,点A 是直线y =﹣x 上的动点,点B 是x 轴上的动点,若AB =2,则△AOB 面积的最大值为A .2B 1C 1D . 第10题二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上) 11.因式分解:39a a -= .12.据统计,2018无锡市春节黄金周共接待游客约3020000人次,这个数据用科学记数法可表示为 .13.函数y =中自变量x 的取值范围是 . 14.分式方程213x x =-的解是 . 15.如图,在△ABC 中,∠ABC =90°,∠C =25°,DE 是边AC 的垂直平分线,连结AE ,则∠BAE 等于 .第15题 第16题 第17题16.如图,四边形ABCD 是平行四边形,其中边AD 是⊙O 的直径,BC 与⊙O 相切于点B ,若⊙O 的周长是12π,则四边形ABCD 的面积为 .17.在如图所示的正方形方格纸中,每个小的四边形都是相等的正方形,A 、B 、C 、D 都是格点,AB 与CD 相交于M ,则AM :BM = .18.在平面直角坐标系中,已知A 、B 、C 、D 四点的坐标依次为(0,0)、(6,2)、(8,8)、(2,6),若一次函数62(0)y mx m m =-+≠的图像将四边形ABCD 的面积分成1:3两部分,则m 的值为 .三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)(1)计算:2018(1)2sin 45-+-︒;(2)化简:2(2)(2)(2)x x x --+-.20.(本题满分8分)(1)解不等式组:1253(1)x x x +>⎧⎨+≥-⎩;(2)解方程:2210x x --=.21.(本题满分8分)已知:如图,AB ∥ED ,点F 、C 在AD 上,AB =DE ,AF =DC ,求证:BC =EF .22.(本题满分8分)省锡中实验学校为了解九年级学生的身体素质测试情况,随机抽取了该市九年级部分学生的身体素质测试成绩作为样本,按A(优秀),B(良好),C(合格),D(不合格)四个等级进行统计,并将统计结果绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)此次共调查了多少名学生; (2)将条形统计图补充完整,并计算扇形统计图中“A ”部分所对应的圆心角的度数; (3)该市九年级共有1000名学生参加了身体素质测试,估计测试成绩在良好以上(含良好)的人数.23.(本题满分8分)车辆经过江阴大桥收费站时,4个收费通道A 、B 、C 、D 中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A 通道通过的概率是 ;(2)求两辆车经过此收费站时,选择不同通道通过的概率(请用树状图或列表法等方式给出分析过程).。

江苏省无锡市中考数学试题(解析)

江苏省无锡市中考数学试题(解析)

江苏省无锡市中考数学试卷一.选择题(共10小题)1.(无锡)﹣2的相反数是()A. 2 B.﹣2 C.D.考点:相反数。

专题:探究型。

分析:根据相反数的定义进行解答即可.解答:解:由相反数的定义可知,﹣2的相反数是﹣(﹣2)=2.故选A.点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.(无锡)sin45°的值等于()A.B.C.D. 1考点:特殊角的三角函数值。

分析:根据特殊角度的三角函数值解答即可.解答:解:sin45°=.故选B.点评:此题比较简单,只要熟记特殊角度的三角函数值即可.3.(无锡)分解因式(x﹣1)2﹣2(x﹣1)+1的结果是()A.(x﹣1)(x﹣2)B. x2C.(x+1)2D.(x﹣2)2考点:因式分解-运用公式法。

分析:首先把x﹣1看做一个整体,观察发现符合完全平方公式,直接利用完全平方公式进行分解即可.解答:解:(x﹣1)2﹣2(x﹣1)+1=(x﹣1﹣1)2=(x﹣2)2.故选:D.点评:此题主要考查了因式分解﹣运用公式法,关键是熟练掌握完全平方公式:a2±2ab+b2=(a±b)2.4.(无锡)若双曲线y=与直线y=2x+1的一个交点的横坐标为﹣1,则k的值为()A.﹣1 B. 1 C.﹣2 D. 2考点:反比例函数与一次函数的交点问题。

专题:计算题。

分析:将x=1代入直线y=2x+1,求出该点纵坐标,从而得到此交点的坐标,将该交点坐标代入y=即可求出k的值.解答:解:将x=﹣1代入直线y=2x+1得,y=﹣2+1=﹣1,则交点坐标为(﹣1,﹣1),将(﹣1,﹣1)代入y=得,k=﹣1×(﹣1)=1,故选B.点评:本题考查了反比例函数与一次函数的交点问题,知道交点坐标符合两函数解析式是解题的关键.5.(无锡)下列调查中,须用普查的是()A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况考点:全面调查与抽样调查。

2017年江苏省各市中考数学试题汇总(13套)

2017年江苏省各市中考数学试题汇总(13套)

文件清单:2017年中考真题精品解析数学(江苏无锡卷)(含答案)2017年中考真题精品解析数学(江苏连云港卷)(含答案)2017年江苏省徐州市中考数学试卷(含答案)2017年江苏省淮安市中考数学试卷(含答案)2017年江苏省盐城市中考数学试卷(含答案)2017年苏州市初中毕业暨升学考试试卷(含答案)2017年南京市初中毕业生学业考试(含答案)2017年江苏省南通市中考数学试题(含答案)2017年江苏省常州市中考数学试题及答案(含答案)2017年江苏省扬州市中考数学试题(含答案)2017年江苏省泰州市中考数学试题(含答案)2017年江苏省镇江市中考数学试题(含答案)2017年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣5的倒数是( )A .15B .±5C .5D .﹣152.函数=2-xy x 中自变量x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x >23.下列运算正确的是( )A .(a 2)3=a 5B .(ab )2=ab 2C .a 6÷a 3=a 2D .a 2•a 3=a 54.下列图形中,是中心对称图形的是( )A .B .C .D .5.若a ﹣b=2,b ﹣c=﹣3,则a ﹣c 等于( )A .1B .﹣1C .5D .﹣56.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是( )成绩(分) 70 80 90男生(人) 5 10 7女生(人) 4 13 4A .男生的平均成绩大于女生的平均成绩B .男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=39.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.25D.3210.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD 翻折得到△AED,连CE,则线段CE的长等于()A.2 B.54C.53D.75二、填空题(本大题共8小题,每小题2分,共16分)11.计算123的值是.12.分解因式:3a2﹣6a+3=.13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.15.若反比例函数y=kx的图象经过点(﹣1,﹣2),则k的值为.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为cm2.17.如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由»AE,EF,»FB,AB所围成图形(图中阴影部分)的面积等于.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.三、解答题(本大题共10小题,共84分)19.计算:(1)|﹣6|+(﹣2)3+(7)0;(2)(a+b)(a﹣b)﹣a(a﹣b)20.(1)解不等式组:11x-2(+2)22x3①x②+>≤⎧⎪⎨⎪⎩(2)解方程:532x-12x =+21.已知,如图,平行四边形ABCD 中,E 是BC 边的中点,连DE 并延长交AB 的延长线于点F ,求证:AB=BF .22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人)153 550 653 b 725累计总人数(人)3353 3903 a 5156 5881(1)表格中a=,b=;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T 变换后得到点N(63,则点M的坐标为.x图象上异于原点O的任意一点,经过T变换后得到点B.(2)A是函数y=32①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号A型B型处理污水能力(吨/月)240 180已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.一、选择题(本大题共10小题,每小题3分,共30分)1.﹣5的倒数是( )A .15B .±5C .5D .﹣15【答案】D .【解析】试题解析:∵﹣5×(﹣15)=1,∴﹣5的倒数是﹣15.故选D .考点:倒数2.函数=2-xy x 中自变量x 的取值范围是()A .x ≠2B .x ≥2C .x ≤2D .x >2【答案】A .考点:函数自变量的取值范围.3.下列运算正确的是( )A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a5【答案】D.【解析】试题解析:A、(a2)3=a6,故错误,不符合题意;B、(ab)2=a2b2,故错误,不符合题意;C、a6÷a3=a3,故错误,不符合题意;D、a2•a3=a5,正确,符合题意,故选D.考点:1.同底数幂的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方.4.下列图形中,是中心对称图形的是()A.B.C.D.【答案】C.考点:中心对称图形.5.若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣5【答案】B【解析】试题解析:∵a﹣b=2,b﹣c=﹣3,∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,故选B考点:整式的加减.6.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()成绩(分)70 80 90男生(人) 5 10 7女生(人) 4 13 4A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数【答案】A.考点:1.中位数;2.算术平均数.7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%【答案】C.【解析】试题解析:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,=0.5=50%,x2=﹣2.5(不合题意舍去),解得:x1答即该店销售额平均每月的增长率为50%;故选C.考点:一元二次方程的应用.8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=3【答案】B.故选B.考点:命题与定理.9.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.25D.32【答案】C.【解析】试题解析:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,AH=22AD DH-=12,∴HB=AB﹣AH=8,在Rt△BDH中,BD=2285DH BH+=,设⊙O与AB相切于F,连接AF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,考点:1.切线的性质;2.菱形的性质.10.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD 翻折得到△AED,连CE,则线段CE的长等于()A .2B .54C .53D .75【答案】D .【解析】试题解析:如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC=4,AB=3,∴BC=2234+=5,∵CD=DB ,∴AD=DC=DB=52,∵12•BC•AH=12•AB•A C ,∴AH=125,在Rt △BCE 中,22222475()55BC BE -=-= .故选D.考点:1.翻折变换(折叠问题);2.直角三角形斜边上的中线;3.勾股定理.二、填空题(本大题共8小题,每小题2分,共16分)11.计算123⨯的值是.【答案】6.【解析】试题解析:123⨯==6.⨯=12336考点:二次根式的乘除法.12.分解因式:3a2﹣6a+3=.【答案】3(a﹣1)2.考点:提公因式法与公式法的综合运用.13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.【答案】2.5×105.【解析】试题解析:将250000用科学记数法表示为:2.5×105.考点:科学记数法—表示较大的数.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.【答案】11.【解析】试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.考点:1.有理数大小比较;2.有理数的减法.的图象经过点(﹣1,﹣2),则k的值为.15.若反比例函数y=kx【答案】2.【解析】试题解析:把点(﹣1,﹣2)代入解析式可得k=2.考点:待定系数法求反比例函数解析式.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为c m2.【答案】15π.考点:圆锥的计算.17.如图,已知矩形ABCD 中,AB=3,AD=2,分别以边AD ,BC 为直径在矩形ABCD 的内部作半圆O 1和半圆O 2,一平行于AB 的直线EF 与这两个半圆分别交于点E 、点F ,且EF=2(EF 与AB 在圆心O 1和O 2的同侧),则由»AE,EF ,»FB ,AB 所围成图形(图中阴影部分)的面积等于 .【答案】534﹣6.【解析】试题解析:连接O 1O 2,O 1E ,O 2F ,则四边形O 1O 2FE 是等腰梯形,过E 作EG ⊥O 1O 2,过F ⊥O 1O 2,∴四边形EGHF 是矩形, ∴GH=EF=2, ∴O 1G=12, ∵O 1E=1,∴GE=32,∴1112O G O E =; ∴∠O 1EG=30°, ∴∠AO 1E=30°, 同理∠BO 2F=30°,∴阴影部分的面积=S 矩形ABO2O1﹣2S 扇形AO1E ﹣S 梯形EFO2O1=3×1﹣2×2301360π⨯⨯=12(2+3)×32=3﹣534﹣6π. 考点:1.扇形面积的计算;2.矩形的性质.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于 .【答案】3. 【解析】试题解析:平移CD 到C ′D ′交AB 于O ′,如图所示,则∠BO ′D ′=∠BOD , ∴tan ∠BOD=tan ∠BO ′D ′, 设每个小正方形的边长为a ,则O ′B=22(2)5a a a +=,O ′D ′=22(2a)(2)22a a +=,BD ′=3a , 作BE ⊥O ′D ′于点E , 则BE=3a 232222BD O F a aO D a''==''g , ∴O ′E=2222322(5)()22a a O B BE a '-=-=, ∴tanBO ′E=32a2322BE O E a==',∴tan ∠BOD=3.考点:解直角三角形.三、解答题(本大题共10小题,共84分) 19.计算:(1)|﹣6|+(﹣2)3+(7)0;(2)(a+b )(a ﹣b )﹣a (a ﹣b ) 【答案】(1)-1;(2)ab ﹣b 2考点:1.平方差公式;2.实数的运算;3.单项式乘多项式;4.零指数幂.20.(1)解不等式组:11x-2(+2)22x3①x②+>≤⎧⎪⎨⎪⎩(2)解方程:532x-12x=+【答案】(1)﹣1<x≤6;(2)x=13.(2)由题意可得:5(x+2)=3(2x﹣1),解得:x=13,检验:当x=13时,(x+2)≠0,2x﹣1≠0,故x=13是原方程的解.考点:1.解分式方程;3.解一元一次不等式组.21.已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB 的延长线于点F,求证:AB=BF.【答案】证明见解析.【解析】试题分析:根据线段中点的定义可得CE=BE ,根据平行四边形的对边平行且相等可得AB ∥CD ,AB=CD ,再根据两直线平行,内错角相等可得∠DCB=∠FBE ,然后利用“角边角”证明△CED 和△BEF 全等,根据全等三角形对应边相等可得CD=BF ,从而得证.学科网 试题解析:∵E 是BC 的中点, ∴CE=BE ,∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB=CD , ∴∠DCB=∠FBE , 在△CED 和△BEF 中,DCA=FBE CE=BECED=BEF ⎧∠∠⎪⎨⎪∠∠⎩, ∴△CED ≌△BEF (ASA ), ∴CD=BF , ∴AB=BF .考点:1.平行四边形的性质;2.全等三角形的判定与性质.22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)【答案】1.3考点:列表法与树状图法.23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人)153 550 653 b 725累计总人数(人)3353 3903 a 5156 5881(1)表格中a=,b=;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.【答案】(1)4556;600;(2)补图见解析;(3)①(2)统计图如图所示,(3)①正确.3353﹣153=3200.故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数=153+550+653+600+725=2681,故错误.考点:条形统计图.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.【答案】(1)作图见解析;(2)作图见解析.试题解析:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.考点:1.作图—复杂作图;2.等边三角形的性质;3.三角形的外接圆与外心.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T 变换后得到点N(6,﹣3),则点M的坐标为.(2)A是函数y=32x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.【答案】(1)Q(a+32b,12b);M(9,﹣23);(2)①y=37x;②34试题解析:(1)如图1,连接CQ,过Q作QD⊥PC于点D,由旋转的性质可得PC=PQ,且∠CPQ=60°,∴△PCQ为等边三角形,∵P(a,b),∴OC=a,PC=b,∴CD=12PC=12b,DQ=32PQ=32b,∴Q(a+32b,12b);(2)①∵A是函数y=32x图象上异于原点O的任意一点,∴可取A(2,3),∴2+32×3=72,12×3=32,∴B (72,2),设直线OB 的函数表达式为y=kx ,则72k=2,解得k=7,∴直线OB 的函数表达式为y=7x ;②设直线AB 解析式为y=k ′x+b ,把A 、B坐标代入可得2+722k b k b ⎧'⎪⎨'+=⎪⎩,解得3k b ⎧'=-⎪⎪⎨⎪=⎪⎩,∴直线AB 解析式为y=﹣3x+3,∴D (0,3),且A (2,B (72,2),∴,,∴OAB OAD S AB 3===S AD 4V V . 考点:一次函数综合题.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号 A 型 B 型 处理污水能力(吨/月)240180已知商家售出的2台A 型、3台B 型污水处理器的总价为44万元,售出的1台A 型、4台B 型污水处理器的总价为42万元. (1)求每台A 型、B 型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?【答案】(1) 设每台A 型污水处理器的价格是10万元,每台B 型污水处理器的价格是8万元;(2)(2)由于求至少要支付的钱数,可知购买6台A 型污水处理器、3台B 型污水处理器,费用最少,进而求解即可.试题解析:(1)可设每台A 型污水处理器的价格是x 万元,每台B 型污水处理器的价格是y 万元,依题意有2+3=44+4=42x y x y ⎧⎨⎩,解得=10=8x y ⎧⎨⎩.答:设每台A 型污水处理器的价格是10万元,每台B 型污水处理器的价格是8万元;考点:1.一元一次不等式的应用;2.二元一次方程组的应用.27.如图,以原点O 为圆心,3为半径的圆与x 轴分别交于A ,B 两点(点B 在点A 的右边),P 是半径OB 上一点,过P 且垂直于AB 的直线与⊙O 分别交于C ,D 两点(点C 在点D 的上方),直线AC ,DB 交于点E .若AC :CE=1:2. (1)求点P 的坐标;(2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数表达式.【答案】(1) P (1,0).(2) y=28x 2﹣24x ﹣1528.【解析】试题分析:(1)如图,作EF ⊥y 轴于F ,DC 的延长线交EF 于H .设H (m ,n ),则P (m ,0),PA=m+3,PB=3﹣m .首先证明△ACP ∽△ECH ,推出12AC PC AP CE CH HE ===,推出CH=2n ,EH=2m=6,再证明△DPB ∽△DHE ,推出144PB DP n EH DH n ===,可得3-1264m m =+,求出m 即可解决问题;(2)由题意设抛物线的解析式为y=a (x+3)(x ﹣5),求出E 点坐标代入即可解决问题.∴12AC PC AP CE CH HE ===, ∴CH=2n ,EH=2m=6, ∵CD ⊥AB , ∴PC=PD=n , ∵PB ∥HE ,∴△DPB ∽△DHE , ∴144PB DP n EH DH n ===, ∴3-1264m m =+,∴m=1, ∴P (1,0).(2)由(1)可知,PA=4,HE=8,EF=9, 连接OP ,在Rt △OCP 中,PC=2222OC OP -=∴2,2∴E(9,62),∵抛物线的对称轴为CD,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,62)代入得到a=28,∴抛物线的解析式为y=28(x+3)(x﹣5),即y=28x2﹣24x﹣1528.考点:圆的综合题.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.【答案】(1) 83;(2) 477≤m<47.【解析】试题分析:(1)只要证明△ABD∽△DPC,可得AD ABCD PD,由此求出PD即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3试题解析:(1)如图1中,∵四边形ABCD是矩形,∴∠ADC=∠A=90°,∴∠DCP+∠CPD=90°,∵∠CPD+∠ADB=90°,∴∠ADB=∠PCD,(2)如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.作EQ ⊥BC 于Q ,EM ⊥DC 于M .则EQ=3,CE=DC=4易证四边形EMCQ 是矩形, ∴CM=EQ=3,∠M=90°, ∴EM=2222437EC CM -=-=,∵∠DAC=∠EDM ,∠ADC=∠M , ∴△ADC ∽△DME ,AD DGDM EM=, ∴77AD =,∴AD=47,由△DME ∽△CDA , ∴DM EM =CD AD, ∴71=4AD,∴AD=47,综上所述,在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻t ,使点E 到直线BC 的距离等于3,这样的m 的取值范围477≤m <47.考点:四边形综合题.2017年江苏省连云港市中考数学试题数学试题一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.2的绝对值是( ) A.2-B.2C.12-D.122.计算2a a ×的结果是( ) A.aB.2aC.22aD.3a3.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A.方差B.平均数C.众数D.中位数4.如图,已知ABC DEF △∽△,:1:2AB DE =,则下列等式一定成立的是( )A.12BC DF=B.12A D =∠的度数∠的度数C.12ABC DEF =△的面积△的面积D.12ABC DEF =△的周长△的周长5.由6个大小相同的正方体塔成的几何体如图所示,比较它的正视图,左视图和俯视图的面积,则( )A.三个视图的面积一样大 C.主视图的面积最小 C.左视图的面积最小D.俯视图的面积最小6.8( )A.8826C.822=?D.837.已知抛物线()20y ax a =>过()12,A y -,()21,B y 两点,则下列关系式一定正确的是( ) A.120y y >>B.210y y >>C.120y y >>D.210y y >>8.如图所示,一动点从半径为2的O ⊙上的0A 点出发,沿着射线0A O 方向运动到O ⊙上的点1A 处,再向左沿着与射线1A O 夹角为60°的方向运动到O ⊙上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O ⊙上的点3A 处,再向左沿着与射线3A O 夹角为60°的方向运动到O ⊙上的点4A 处;…按此规律运动到点2017A 处,则点2017A 与点0A 间的距离是( )A.4B.23C.2D.0二、填空题(每题3分,满分24分,将答案填在答题纸上) 9.使分式11x -有意义的x 的取值范围是 . 10.计算()()22a a -+= .11.截至今年4月底,连云港市中哈物流合作基地累计完成货物进,出场量6800000吨,数据6 800 000用科学计数法可表示为 .12.已知关于x 的方程220x x m -+=有两个相等的实数根,则m 的值是 . 13.如图,在平行四边形ABCD 中,AE BC ^于点E ,AF CD ^于点F ,若60EAF =∠°,则B =∠ .14.如图,线段AB 与O ⊙相切于点B ,线段AO 与O ⊙相交于点C ,12AB =,8AC =,则O ⊙的半径长为 .15.设函数3y x=与26y x =--的图象的交点坐标为(),a b ,则12a b+的值是 .16.如图,已知等边三角形OAB 与反比例函数()0,0k y k x x=>>的图象交于A ,B 两点,将OAB △沿直线OB 翻折,得到OCB △,点A 的对应点为点C ,线段CB 交x 轴于点D ,则BDDC的值为 .(已知62sin154-=°)三、解答题 (本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.) 17.计算:()()0318 3.14p ---+-.18.化简:211a a a a-×-.19.解不等式组:()3143216x x x ì-+<ïí--?ïî.20.某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x 分(60100x#).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.根据以上信息解答下列问题: (1)统计表中c 的值为;样本成绩的中位数落在分数段中;(2)补全频数分布直方图;(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?21.为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.22.如图,已知等腰三角形ABC中,AB AC=,点D,E分别在边AB、AC上,且AD AE=,连接BE、CD,交于点F.(1)判断ABE∠的数量关系,并说明理由;∠与ACD(2)求证:过点A、F的直线垂直平分线段BC.23.如图,在平面直角坐标系xOy中,过点()A-的直线交y轴正半轴于点B,2,0将直线AB绕着点O顺时针旋转90°后,分别与x轴y轴交于点D、C.(1)若4OB=,求直线AB的函数关系式;(2)连接BD,若ABD△的面积是5,求点B的运动路径长.24.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤,设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.25.如图,湿地景区岸边有三个观景台A、B、C.已知1400AC=米,AB=米,1000B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求ABC△的面积;(2)景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD.试求A、D间的距离.(结果精确到0.1米)(参考数据:sin53.20.80°≈,cos60.70.49°≈,°≈,sin66.10.91°≈,sin60.70.87°≈,cos53.20.60≈)cos66.10.41°≈,2 1.41426.如图,已知二次函数()230y axbx a =++?的图象经过点()3,0A ,()4,1B ,且与y 轴交于点C ,连接AB 、AC 、BC . (1)求此二次函数的关系式;(2)判断ABC △的形状;若ABC △的外接圆记为M ⊙,请直接写出圆心M 的坐标; (3)若将抛物线沿射线BA 方向平移,平移后点A 、B 、C 的对应点分别记为点1A 、1B 、1C ,111A B C △的外接圆记为1M ⊙,是否存在某个位置,使1M ⊙经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.27.如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE DG =. 求证:2ABCD EFGH S S =矩形四边形.(S 表示面积)实验探究:某数学实验小组发现:若图1中AH BF ¹,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点1A 、1B 、1C 、1D ,得到矩形1111A B C D .如图2,当AH BF >时,若将点G 向点C 靠近(DG AE >),经过探索,发现:11112ABCD A B C D EFGH S S S =+矩形矩形四边形.如图3,当AH BF >时,若将点G 向点D 靠近(DG AE <,请探索EFGH S 四边形、ABCD S 矩形与1111A B C D S 矩形之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题.(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH BF >,AE DG >,11EFGH S =四边形,29HF ,求EG 的长.(2)如图5,在矩形ABCD中,3AD=,点E、H分别在边AB、AD上,1AB=,5BE=,FG=,连接EF、HG,请DH=,点F、G分别是边BC、CD上的动点,且102直接写出四边形EFGH面积的最大值.一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 2的绝对值是( ) A.2-B.2C.12-D.12【答案】B 【解析】试题分析:根据绝对值的性质,一个正数的绝对值为本身,可知2的绝对值为2. 故选:B 考点:绝对值2. 计算2a a ×的结果是( ) A.aB.2aC.22aD.3a【答案】D考点:同底数幂相乘3. 小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A.方差B.平均数C.众数D.中位数。

江苏省无锡市宜兴市丁蜀学区中考数学一模试卷(含解析)-人教版初中九年级全册数学试题

江苏省无锡市宜兴市丁蜀学区中考数学一模试卷(含解析)-人教版初中九年级全册数学试题

2017年某某省某某市宜兴市丁蜀学区中考数学一模试卷一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.4的倒数是()A.4 B.﹣4 C.D.﹣2.下列各式运算中,正确的是()A.(a+b)2=a2+b2B.C.a3•a4=a12D.3.式子在实数X围内有意义,则x的取值X围是()A.x≥1 B.x≤1 C.x>0 D.x>14.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.5.如图,已知圆锥侧面展开图的扇形面积为65πcm2,扇形的弧长为10πcm,则圆锥母线长是()A.5cm B.10cm C.12cm D.13cm6.顺次连接对角线相等的四边形的各边中点,所得图形一定是()A.平行四边形B.矩形 C.菱形 D.正方形7.下列说法中,你认为正确的是()A.四边形具有稳定性B.等边三角形是中心对称图形C.等腰梯形的对角线一定互相垂直D.任意多边形的外角和是360°8.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.众数 B.中位数C.平均数D.极差9.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.10.如图,A、B、C是反比例函数y=(x<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条B.3条C.2条D.1条二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程.)11.3月某某市商品房平均每平方价格为7500元,7500元用科学记数法表示为元.12.命题“对顶角相等”的逆命题是命题(填“真”或“假”).13.分解因式:a3﹣4a=.14.一元二次方程x2+x﹣2=0的两根之积是.15.如图,点O是⊙O的圆心,点A、B、C在⊙O上,AO∥BC,∠AOB=38°,则∠OAC的度数是度.16.如图,在△ABC和△BAD中,BC=AD,请你再补充一个条件,使△ABC≌△BAD.你补充的条件是(只填一个).17.如图,在平面直角坐标系中,点A(a,b)为第一象限内一点,且a<b.连结OA,并以点A为旋转中心把OA逆时针转90°后得线段BA.若点A、B恰好都在同一反比例函数的图象上,则的值等于.18.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.三、解答题:(本大题共10小题,共84分.)19.计算:(1)|﹣2|﹣(1+)0+;(2)(a﹣)÷.20.(1)解方程:+=4.(2)解不等式组:.21.如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD分别相交于点E、F,求证:AE=CF.22.小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)23.学校为了解学生参加体育活动的情况,对学生“平均每天参加体育活动的时间”进行了随机抽样调查,下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题:~1小时”部分的扇形统计图的圆心角为度;(2)本次一共调查了名学生;(3)将条形统计图补充完整;(4)若该校有2000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.24.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.25.随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?26.如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.27.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值X围.28.问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD.简单应用:(1)在图①中,若AC=,BC=2,则CD=.(2)如图③,AB是⊙O的直径,点C、D在⊙上,=,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n 的代数式表示)(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q 为AE的中点,则线段PQ与AC的数量关系是.2017年某某省某某市宜兴市丁蜀学区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.4的倒数是()A.4 B.﹣4 C.D.﹣【考点】倒数.【分析】乘积是1的两数互为倒数,据此进行计算即可.【解答】解:由题可得,4的倒数是.故选:C.2.下列各式运算中,正确的是()A.(a+b)2=a2+b2B.C.a3•a4=a12D.【考点】二次根式的性质与化简.【分析】根据完全平方公式,二次根式的化简、同底数幂的乘法法则,平方等概念分别判断.【解答】解:A、(a+b)2=a2+2ab+b2,错误;B、==3,正确;C、a3•a4=a12,错误;D、=,错误.故选B.3.式子在实数X围内有意义,则x的取值X围是()A.x≥1 B.x≤1 C.x>0 D.x>1【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,解不等式即可.【解答】解:根据题意得:x﹣1≥0,即x≥1时,二次根式有意义.故选:A.4.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.进行分析即可.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.5.如图,已知圆锥侧面展开图的扇形面积为65πcm2,扇形的弧长为10πcm,则圆锥母线长是()A.5cm B.10cm C.12cm D.13cm【考点】圆锥的计算.【分析】圆锥的侧面积=,把相应数值代入即可求解.【解答】解:设母线长为R,由题意得:65π=,解得R=13cm.故选D.6.顺次连接对角线相等的四边形的各边中点,所得图形一定是()A.平行四边形B.矩形 C.菱形 D.正方形【考点】中点四边形.【分析】因为四边形的两条对角线相等,根据三角形的中位线定理,可得所得的四边形的四边相等,则所得的四边形是菱形.【解答】解:如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,则EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,根据三角形的中位线的性质知,EH=FG=BD,EF=HG=AC,∵AC=BD,∴EH=FG=FG=EF,∴四边形EFGH是菱形.故选:C.7.下列说法中,你认为正确的是()A.四边形具有稳定性B.等边三角形是中心对称图形C.等腰梯形的对角线一定互相垂直D.任意多边形的外角和是360°【考点】多边形内角与外角;等边三角形的性质;多边形;等腰梯形的性质.【分析】根据四边形、等边三角形,等腰梯形的性质,结合各选项进行判断即可.【解答】解:A、四边形不具有稳定性,原说法错误,故本选项错误;B、等边三角形不是中心对称图形,说法错误,故本选项错误;C、等腰梯形的对角线不一定互相垂直,说法错误,故本选项错误;D、任意多边形的外角和是360°,说法正确,故本选项正确;故选D.8.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.众数 B.中位数C.平均数D.极差【考点】统计量的选择.【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选B.9.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.【考点】作图—基本作图.【分析】A、根据作法无法判定PQ⊥l;B、以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.【解答】解:根据分析可知,选项B、C、D都能够得到PQ⊥l于点Q;选项A不能够得到PQ⊥l于点Q.故选:A.10.如图,A、B、C是反比例函数y=(x<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条B.3条C.2条D.1条【考点】反比例函数的性质.【分析】如解答图所示,满足条件的直线有两种可能:一种是与直线BC平行,符合条件的有两条,如图中的直线a、b;还有一种是过线段BC的中点,符合条件的有两条,如图中的直线c、d.【解答】解:如解答图所示,满足条件的直线有4条,故选A.二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程.)11.3月某某市商品房平均每平方价格为7500元,7500元用科学记数法表示为×103元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7500有4位,所以可以确定n=4﹣1=3.【解答】×103.×103.12.命题“对顶角相等”的逆命题是假命题(填“真”或“假”).【考点】命题与定理.【分析】先交换原命题的题设与结论得到逆命题,然后根据对顶角的定义进行判断.【解答】解:命题“对顶角相等”的逆命题是相等的角为对顶角,此逆命题为假命题.故答案为假.13.分解因式:a3﹣4a= a(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)14.一元二次方程x2+x﹣2=0的两根之积是﹣2 .【考点】根与系数的关系.【分析】根据根与系数的关系,即可求得答案.【解答】解:设一元二次方程x2+x﹣2=0的两根分别为α,β,∴αβ=﹣2.∴一元二次方程x2+x﹣2=0的两根之积是﹣2.故答案为:﹣2.15.如图,点O是⊙O的圆心,点A、B、C在⊙O上,AO∥BC,∠AOB=38°,则∠OAC的度数是19 度.【考点】圆周角定理.【分析】先根据圆周角定理,求出∠C的度数,再根据两条直线平行,内错角相等,得∠OAC=∠C.【解答】解:∵∠AOB=38°∴∠C=38°÷2=19°∵AO∥BC∴∠OAC=∠C=19°.16.如图,在△ABC和△BAD中,BC=AD,请你再补充一个条件,使△ABC≌△BAD.你补充的条件是AC=BD(或∠CBA=∠DAB)(只填一个).【考点】全等三角形的判定.【分析】根据已知条件在三角形中位置结合三角形全等的判定方法寻找条件.已知给出了一边对应相等,由一条公共边,还缺少角或边,于是答案可得.【解答】解:欲证两三角形全等,已有条件:BC=AD,AB=AB,所以补充两边夹角∠CBA=∠DAB便可以根据SAS证明;补充AC=BD便可以根据SSS证明.故补充的条件是AC=BD(或∠CBA=∠DAB).故答案是:AC=BD(或∠CBA=∠DAB).17.如图,在平面直角坐标系中,点A(a,b)为第一象限内一点,且a<b.连结OA,并以点A为旋转中心把OA逆时针转90°后得线段BA.若点A、B恰好都在同一反比例函数的图象上,则的值等于.【考点】反比例函数图象上点的坐标特征;坐标与图形变化﹣旋转.【分析】过A作AE⊥x轴,过B作BD⊥AE,利用同角的余角相等得到一对角相等,再由一对直角相等,且AO=AB,利用AAS得出三角形AOE与三角形ABD全等,由确定三角形的对应边相等得到BD=AE=b,AD=OE=a,进而表示出ED及OE+BD的长,即可表示出B坐标;由A与B都在反比例图象上,得到A与B横纵坐标乘积相等,列出关系式,变形后即可求出的值.【解答】解:过A作AE⊥x轴,过B作BD⊥AE,∵∠OAB=90°,∴∠OAE+∠BAD=90°,∵∠AOE+∠OAE=90°,∴∠BAD=∠AOE,在△AOE和△BAD中,,∴△AOE≌△BAD(AAS),∴AE=BD=b,OE=AD=a,∴DE=AE﹣AD=b﹣a,OE+BD=a+b,则B(a+b,b﹣a);∵A与B都在反比例图象上,得到ab=(a+b)(b﹣a),整理得:b2﹣a2=ab,即()2﹣﹣1=0,∵△=1+4=5,∴=,∵点A(a,b)为第一象限内一点,∴a>0,b>0,则=.故答案为.18.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是1.2 .【考点】翻折变换(折叠问题).【分析】如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到=求出FM即可解决问题.【解答】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴=,∵CF=2,AC=6,BC=8,∴AF=4,AB==10,∴=,∴FM=3.2,∵PF=CF=2,∴∴点P到边AB距离的最小值是1.2.故答案为1.2.三、解答题:(本大题共10小题,共84分.)19.计算:(1)|﹣2|﹣(1+)0+;(2)(a﹣)÷.【考点】分式的混合运算;绝对值;算术平方根;零指数幂.【分析】按照实数的运算法则依次计算,注意负指数为正指数的倒数;任何非0数的0次幂等于1.【解答】解:(1)原式=2﹣1+2=3.(2)原式=.20.(1)解方程:+=4.(2)解不等式组:.【考点】解分式方程;解一元一次不等式组.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)首先解每个不等式,两个不等式组的解集的公共部分就是不等式组的解集.【解答】解:(1)去分母得:x﹣5x=4(2x﹣3),解得:x=1,经检验x=1是分式方程无解;(2),∵由①得,x<2,由②得,x≥﹣1,∴不等式组的解集是:﹣1≤x<2.21.如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD分别相交于点E、F,求证:AE=CF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】由四边形ABCD是平行四边形,可得AB∥CD,OA=OC,继而证得△AOE≌△COF,则可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,OA=OC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴AE=CF.22.小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)【考点】列表法与树状图法.【分析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)首先分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,然后画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;即可求得答案.【解答】解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.23.学校为了解学生参加体育活动的情况,对学生“平均每天参加体育活动的时间”进行了随机抽样调查,下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题:~1小时”部分的扇形统计图的圆心角为54 度;(2)本次一共调查了200 名学生;(3)将条形统计图补充完整;(4)若该校有2000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.【考点】扇形统计图;用样本估计总体;条形统计图.【分析】(1)圆心角的度数=360°×该部分所占总体的百分比;(2)0.5小时以下的有10人,所占百分比为5%,则可求得其调查总人数;(3)0.5﹣1小时人数为总人数乘以其所占百分比,1﹣1.5小时人数为总人数乘以其所占百分比;(4)用全校学生数×每天参加体育活动的时间在0.5小时以下所占百分比即可.【解答】解:(1)360°×(1﹣50%﹣30%﹣5%)=54°;(2)10÷5%=200人;(3)200×15%=30人,200×30%=60人;×5%=100(人).24.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.【考点】解直角三角形的应用.【分析】根据题意作出合适的辅助线,画出相应的图形,可以分别求得CM、DN的长,由于AB=﹣CM,从而可以求得AB的长.【解答】解:作AM⊥EF于点M,作BN⊥EF于点N,如右图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,∴CM=米,DN=米,∴AB=CD+DN﹣CM=100+20﹣60=(40+20)米,即A、B两点的距离是(40+20)米.25.随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?【考点】一元二次方程的应用;分式方程的应用.【分析】(1)设每台B种空气净化器为x元,A种净化器为(x+300)元,根据用6000元购进B种空气净化器的数量与用7500元购进A种空气净化器的数量相同,列方程求解;(2)根据总利润=单件利润×销量列出一元二次方程求解即可.【解答】解:(1)设每台B型空气净化器为x元,A型净化器为(x+300)元,由题意得,=,解得:x=1200,经检验x=1200是原方程的根,则x+300=1500,答:每B型空气净化器、每台A型空气净化器的进价分别为1200元,1500元;(2)设B型空气净化器的售价为x元,根据题意得;(x﹣1200)(4+)=3200,解得:x=1600,答:如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为1600元.26.如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.【考点】二次函数综合题.【分析】方法一:(1)把点B的坐标代入抛物线的表达式即可求得.(2)通过△AOC∽△CFB求得OC的值,通过△OCD≌△FCB得出DC=CB,∠OCD=∠FCB,然后得出结论.(3)设直线AB的表达式为y=kx+b,求得与抛物线的交点E的坐标,然后通过解三角函数求得结果.方法二:(1)略.(2)利用垂直公式及中点公式求出点B关于直线AC的对称点B’坐标,并得出B’与点D 重合.(3)分别求出点A,C,E,D坐标,并证明直线ED与AC斜率相等.【解答】方法一:解:(1)把点B的坐标代入抛物线的表达式,得=a×22﹣2a﹣a,解得a=,∴抛物线的表达式为y=x2﹣x﹣.(2)连接CD,过点B作BF⊥x轴于点F,则∠BCF+∠CBF=90°∵∠ACB=90°,∴∠ACO+∠BCF=90°,∴∠ACO=∠CBF,∵∠AOC=∠CFB=90°,∴△AOC∽△CFB,∴=,设OC=m,则CF=2﹣m,则有=,解得m1=m2=1,∴OC=CF=1,当x=0时,y=﹣,∴OD=,∴BF=OD,∵∠DOC=∠BFC=90°,∴△OCD≌△FCB,∴DC=CB,∠OCD=∠FCB,∴点B、C、D在同一直线上,∴点B与点D关于直线AC对称,∴点B关于直线AC的对称点在抛物线上.(3)过点E作EG⊥y轴于点G,设直线AB的表达式为y=kx+b,则,解得k=﹣,∴y=﹣x+,代入抛物线的表达式﹣x+=x2﹣x﹣.解得x=2或x=﹣2,当x=﹣2时y=﹣x+=﹣×(﹣2)+=,∴点E的坐标为(﹣2,),∵tan∠EDG===,∴∠EDG=30°∵tan∠OAC===,∴∠OAC=30°,∴∠OAC=∠EDG,∴ED∥AC.方法二:(1)略.(2)设C点坐标为(t,0),B点关于直线AC的对称点为B′,∵∠ACB=90°,∴AC⊥BC,∴K AC×K BC=﹣1,∵OA=,∴A(0,),B(2,),C(t,0),∴=﹣1,∴t(t﹣2)=﹣1,∴t=1,C(1,0),∴,,∴B′x=0,B′Y=﹣,∴B关于直线AC的对称点即为点D.(3)∵A(0,),B(2,),∴,解得:x1=2(舍),x2=﹣2,∴E(﹣2,),D(0,﹣),A(0,),C(1,0),∴K ED=,K AC=,∴K ED=K AC,∴ED∥AC.27.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值X围.【考点】圆的综合题.【分析】(1)①由相关矩形的定义可知:要求A与B的相关矩形面积,则AB必为对角线,利用A、B两点的坐标即可求出该矩形的底与高的长度,进而可求出该矩形的面积;②由定义可知,AC必为正方形的对角线,所以AC与x轴的夹角必为45,设直线AC的解析式为;y=kx+b,由此可知k=±1,再(1,0)代入y=kx+b,即可求出b的值;(2)由定义可知,MN必为相关矩形的对角线,若该相关矩形的为正方形,即直线MN与x 轴的夹角为45°,由因为点N在圆O上,所以该直线MN与圆O一定要有交点,由此可以求出m的X围.【解答】解:(1)①∵A(1,0),B(3,1)由定义可知:点A,B的“相关矩形”的底与高分别为2和1,∴点A,B的“相关矩形”的面积为2×1=2;②由定义可知:AC是点A,C的“相关矩形”的对角线,又∵点A,C的“相关矩形”为正方形∴直线AC与x轴的夹角为45°,设直线AC的解析为:y=x+m或y=﹣x+n把(1,0)分别y=x+m,∴m=﹣1,∴直线AC的解析为:y=x﹣1,把(1,0)代入y=﹣x+n,∴n=1,∴y=﹣x+1,综上所述,若点A,C的“相关矩形”为正方形,直线AC的表达式为y=x﹣1或y=﹣x+1;(2)设直线MN的解析式为y=kx+b,∵点M,N的“相关矩形”为正方形,∴由定义可知:直线MN与x轴的夹角为45°,∴k=±1,∵点N在⊙O上,∴当直线MN与⊙O有交点时,点M,N的“相关矩形”为正方形,当k=1时,作⊙O的切线AD和BC,且与直线MN平行,其中A、C为⊙O的切点,直线AD与y轴交于点D,直线BC与y轴交于点B,连接OA,OC,把M(m,3)代入y=x+b,∴b=3﹣m,∴直线MN的解析式为:y=x+3﹣m∵∠ADO=45°,∠OAD=90°,∴OD=OA=2,∴D(0,2)同理可得:B(0,﹣2),∴令x=0代入y=x+3﹣m,∴y=3﹣m,∴﹣2≤3﹣m≤2,∴1≤m≤5,当k=﹣1时,把M(m,3)代入y=﹣x+b,∴b=3+m,∴直线MN的解析式为:y=﹣x+3+m,同理可得:﹣2≤3+m≤2,∴﹣5≤m≤﹣1;综上所述,当点M,N的“相关矩形”为正方形时,m的取值X围是:1≤m≤5或﹣5≤m≤﹣128.问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD.简单应用:(1)在图①中,若AC=,BC=2,则CD= 3 .(2)如图③,AB是⊙O的直径,点C、D在⊙上,=,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n 的代数式表示)(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q。

2019年江苏省无锡市中考数学模拟试卷(一)解析版

2019年江苏省无锡市中考数学模拟试卷(一)解析版

2019年江苏省无锡市中考数学模拟试卷(一)一、选择题(本大题共10小题,共30.0分) 1. 下列运算正确的是( )A. (x 3)4=x 7B. (−x)2⋅x 3=x 5C. (−x)4÷x =−x 3D. x +x 2=x 32. 若式子√a −3在实数范围内有意义,则a 的取值范围是( )A. a >3B. a ≥3C. a <3D. a ≤3 3. 下列不等式变形正确的是( )A. 由 a >b ,得 a −2<b −2B. 由 a >b ,得|a|>|b|C. 由 a >b ,得−2a <−2bD. 由 a >b ,得 a 2>b 2 4. 已知点A (m 2-2,5m +4)在第一象限角平分线上,则m 的值为 ( )A. 6B. −1C. 2或3D. −1或65. 如图,在平面直角坐标系中,△ABC 与△A 1B 1C 1是以点P 为位似中心的位似图形,且顶点都在格点上,则点P 的坐标为( )A. (−4,−3)B. (−3,−4)C. (−3,−3)D. (−4,−4)6. 使得关于x 的不等式组{−2x +1≥4m −1x>m−2有解,且使分式方程1x−2−m−x 2−x=2有非负整数解的所有的m的和是( )A. −1B. 2C. −7D. 07. 若α,β是一元二次方程3x 2+2x -9=0的两根,则βα+αβ的值是( )A. 427B. −427C. −5827D. 58278. 如图,正方形ABCD 的顶点B 、C 在x 轴的正半轴上,反比例函数y =kx(k ≠0)在第一象限的图象经过点A (m ,2)和CD 边上的点E (n ,23),过点E 作直线l ∥BD 交y 轴于点F ,则点F 的坐标是( )A. (0,−73) B. (0,−83) C. (0,−3)D. (0,−103)9. 如图,半径为R 的⊙O 的弦AC =BD ,AC 、BD 交于E ,F 为BC⏜上一点,连AF 、BF 、AB 、AD ,下列结论:①AE =BE ;②若AC ⊥BD ,则AD =√2R ;③在②的条件下,若CF⏜=CD ⏜,AB =√2,则BF +CE =1.其中正确的是( ) A. ①② B. ①③ C. ②③ D. ①②③10. 已知△ABC 中,∠ABC =45°,AB =7√2,BC =17,以AC 为斜边在△ABC外作等腰Rt △ACD ,连接BD ,则BD 的长为( ) A. 25 √2B. 17√74C. 25√22D. 17√72二、填空题(本大题共8小题,共16.0分)11. 用四舍五入法对437540取近似数,精确到千位为______(用科学记数法表示)12. 已知线段a =4cm ,线段b =7cm ,线段c 是线段a ,b 的比例中项,则线段c =______. 13. 如图,点P 在△ABC 的边AC 上,要使△ABP ∽△ACB ,添加一个条件______.14. 将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为______.15. 有这样一道题:如图,在正方形ABCD 中,有一个小正方形EFGH ,其中E ,F ,G 分别在AB ,BC ,FD 上,连接DH ,如果BC =12,BF =3.则tan ∠HDG 的值为______. 16. 已知二次函数y =ax 2+2ax +3a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而减小,且-4≤x ≤1时,y的最大值为7,则a 的值为______.17. 如图,等腰直角三角形ABC 中,∠C =90°,D 为BC 的中点.将△ABC 折叠,使A 点与点D 重合.若EF 为折痕,则sin ∠BED 的值为______,DEDF 的值为______.18. 图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).将三角尺移向直径为4cm 的⊙O ,它的内Rt △ABC 的斜边AB 恰好等于⊙O 的直径,它的外Rt △A ′B ′C ′的直角边A ′C ′恰好与⊙O 相切(如图2).则边B ′C ′的长______.三、计算题(本大题共2小题,共16.0分) 19. 计算:(1)tan30°-(-2)2-|2-√3|. (2)(2x -1)2+(x -2)(x +2). 20. (1)解方程:1x−3=2+x3−x(2)解不等式组:{x −3(x −2)≤41+2x 3>x −1.四、解答题(本大题共8小题,共68.0分)21. 已知:如图,在平行四边形ABCD 和矩形ABEF 中,AC 与DF 相交于点G .(1)试说明DF =CE ;(2)若AC =BF =DF ,求∠ACE 的度数.22. 母亲节到了,小明准备为妈妈煮四个大汤圆作早点:一个芝麻馅,一个牛肉馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同.(1)分别用A ,B ,C 表示芝麻馅、牛肉馅、花生馅的大汤圆,求妈妈吃前两个汤圆刚好都是花生馅的概率(请用“画树状图”或“列表”等方法,写出分析过程,并给出结果);(2)若花生馅的大汤圆的个数为n 个(n ≥2),则妈妈吃前两个汤圆都是花生馅的概率是______(请用含n 的式子直接写出结果)23. 如图,在由边长为1的小正方形组成的网格图中,有一个格点三角形ABC .(注:顶点均在网格线交点处的三角形称为格点三角形.) (1)△ABC 是______三角形(填“锐角”、“直角”或“钝角”); (2)若P 、Q 分别为线段AB 、BC 上的动点,当PC +PQ 取得最小值时, ①在网格中用无刻度的直尺,画出线段PC 、PQ .(请保留作图痕迹.) ②直接写出PC +PQ 的最小值:______.24. 如图1,△ABC 内接于⊙O ,AC 是直径,点D 是AC 延长线上一点,且∠DBC =∠BAC ,tan ∠BAC =12.(1)求证:BD 是⊙O 的切线; (2)求DCAC 的值;(3)如图2,过点B作BG⊥AC交AC于点F,交⊙O于点G,BC、AG的延长线交于点E,⊙O的半径为6,求BE的长.25.某调查公司对本区域的共享单车数量及使用次数进行了调查发现,今年3月份第1周共有各类单车1000辆,第2周比第1周增加了10%,第3周比第2周增加了100辆,调查还发现某款单车深受群众喜爱,第1周该单车的每辆平均使用次数是这一周所有单车平均使用次数的2.5倍,第2、第3周该单车的每辆平均使用次数都比前一周增长一个相同的百分数m,第3周所有单车的每辆平均使用次数比第1周增加的百分数也是m,而且第3周该款单车(共100辆)的总使用次数占到所有单车总使用次数的四分之一.(注:总使用次数=每辆平均使用次数×车辆数)(1)求第3周该区域内各类共享单车的数量;(2)求m的值.26.已知:如图,一次函数y=-2x与二次函数y=ax2+2ax+c的图象交于A、B两点(点A在点B的右侧),与其对称轴交于点C.(1)求点C的坐标;(2)设二次函数图象的顶点为D,点C与点D关于x轴对称,且△ACD的面积等于2.①求二次函数的解析式;②在该二次函数图象的对称轴上求一点P(写出其坐标),使△PBC与△ACD相似.27.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作AC⏜、CB⏜、BA⏜,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点I为对称轴的交点.(1)如图2,将这个图形的顶点A与线段MN作无滑动的滚动,当它滚动一周后点A与端点N重合,则线段MN的长为______;(2)如图3,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF 的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;(3)如图4,将这个图形的顶点B与⊙O的圆心O重合,⊙O的半径为3,将它沿⊙O的圆周作无滑动的滚动,当它第n次回到起始位置时,点I所经过的路径长为______(请用含n的式子表示)28.如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).(1)当点A′落在边BC上时,求x的值;(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.答案和解析1.【答案】B【解析】解:A、(x3)4=x12,故本选项错误;B、(-x)2•x3=x2•x3=x5,故本选项正确;C、(-x)4÷x=x4÷x=x3,故本选项正确;D、x+x2不能合并,故本选项错误.故选:B.利用幂的乘方、同底数幂的除法以及合并同类项的知识求解即可求得答案.此题考查了幂的乘方、同底数幂的除法以及合并同类项.注意掌握符号与指数的变化是解此题的关键.2.【答案】B【解析】解:由题意得,a-3≥0,解得a≥3.故选:B.根据被开方数大于等于0列式计算即可得解.本题考查的知识点为:二次根式的被开方数是非负数.3.【答案】C【解析】解:A、在不等式a>b的两边同时减去2,不等式仍成立,即a-2>b-2,故本选项错误;B、当a>b>0时,不等式|a|>|b|成立,故本选项错误;C、在不等式a>b的两边同时乘以-2,不等式的符号方向改变,即-2a<-2b成立,故本选项正确;D、当a>b>0时,不等式a2>b2成立,故本选项错误;故选:C.根据不等式的性质进行分析判断.考查了不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.4.【答案】A【解析】解:∵点A(m2-2,5m+4)在第一象限角平分线上,∴m2-2=5m+4,∴m2-5m-6=0,解得m1=-1,m2=6,当m=-1时,m2-2=-1,点A(-1,-1)在第三象限,不符合题意,所以,m的值为6.故选:A.根据第一象限角平分线上点的横坐标与纵坐标相等列方程求解,再根据第一象限点的横坐标与纵坐标都是正数作出判断.本题考查了点的坐标,熟记第一象限平分线上的点的横坐标与纵坐标相等是解题的关键,易错点在于要注意对求出的解进行判断.5.【答案】A【解析】解:如图,点P的坐标为(-4,-3).故选:A.延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标.本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.6.【答案】C【解析】解:∵关于x的不等式组有解,∴1-2m>m-2,解得m<1,由得x=,∵分式方程有非负整数解,∴x=是非负整数,∵m<1,∴m=-5,-2,∴-5-2=-7,故选:C.根据不等式组的解集的情况得出关于m的不等式,求得m的解集,再解分式方程得出x,根据x是非负整数得出m所有的m的和.本题考查了分式方程的解以及不等式的解集,求得m的取值范围以及解分式方程是解题的关键.7.【答案】C【解析】解:∵α、β是一元二次方程3x2+2x-9=0的两根,∴α+β=-,αβ=-3,∴+====-.故选:C.根据根与系数的关系可得出α+β=-、αβ=-3,将其代入+=中即可求出结论.本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.8.【答案】A【解析】解:∵正方形的顶点A(m,2),∴正方形的边长为2,∴BC=2,而点E(n ,),∴n=2+m,即E点坐标为(2+m ,),∴k=2•m=(2+m),解得m=1,∴A(1,2),E(3,),∴B(1,0),D(3,2),设直线BD的解析式为y=ax+b,把B(1,0),D(3,2)代入得,解得,∵过点E作直线l∥BD交y轴于点F,∴设直线l的解析式为y=x+q,把E(3,)代入得3+q=,解得q=-,∴直线l的解析式为y=x-当x=0时,y=-,∴点F的坐标为(0,-),故选:A.由A(m,2)得到正方形的边长为2,则BC=2,所以n=2+m,根据反比例函数图象上点的坐标特征得到k=2•m=(2+m),解得m=1,则A(1,2),B(1,0),D(3,2),E(3,),然后利用待定系数法确定直线BD的解析式,再根据平行线的性质和E的坐标求得直线l的解析式,求x=0时对应函数的值,从而得到点F的坐标.本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.9.【答案】D【解析】解:①∵弦AC=BD,∴=,∴=,∴∠ABD=∠BAC,∴AE=BE;②连接OA,OD,∵AC⊥BD,AE=BE,∴∠ABE=∠BAE=45°,∴∠AOD=2∠ABE=90°,∵OA=OD,∴AD=R;③设AF与BD相交于点G,连接CG,∵=,∴∠FAC=∠DAC,∵AC⊥BD,∵在△AGE和△ADE中,,∴△AGE≌△ADE(ASA),∴AG=AD,EG=DE,∴∠AGD=∠ADG,∵∠BGF=∠AGD,∠F=∠ADG,∴∠BGF=∠F,∴BG=BF,∵AC=BD,AE=BE,∴DE=CE,∴EG=CE,∴BE=BG+EG=BF+CE,∵AB=,∴BE=AB•cos45°=1,∴BF+CE=1.故其中正确的是:①②③.故选:D.①由弦AC=BD ,可得=,继而可得=,然后由圆周角定理,证得∠ABD=∠BAC,即可判定AE=BE;②连接OA,OD,由AE=BE,AC⊥BD,可求得∠ABD=45°,继而可得△AOD是等腰直角三角形,则可求得AD=R;③设AF与BD相交于点G,连接CG,易证得△BGF是等腰三角形,CE=DE=EG,继而求得答案.此题考查了圆周角定理、弧与弦的关系、等腰直角三角形的性质与判定以及全等三角形的判定与性质等知识.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.10.【答案】C【解析】解:以AB为腰作等腰Rt△ABE,连接CE.∵△ADC是等腰Rt△,∴,∠EAB=∠DAC=45°,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠DAB.∴△EAC∽△BAD.∴.作EF⊥BC,交BC延长线于F点,∴△EFB为等腰Rt△,EF=BF==7.∴EC==25.∴BD=EC=.故选:C.以AB为腰作等腰Rt△ABE,连接CE,证明△EAC∽△BAD,得到BD与EC数量关系,作EF⊥BC,交BC延长线于F点,在Rt△EFC中利用勾股定理求出EC长,则可求BC长.本题主要考查了等腰直角三角形的性质、勾股定理、相似三角形的判断和性质,正确作出辅助线是解题的关键.11.【答案】4.38×105【解析】解:用四舍五入法对437540取近似数,精确到千位为4.38×105.故答案为:4.38×105.一个近似数精确到十位或十位以前的数位时,要先用科学记数法表示出这个数,再进行四舍五入.本题主要考查了科学记数法与精确度,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数;一个近似数,四舍五入到哪一位,就叫精确到哪一位.12.【答案】2√7【解析】解:∵线段c是线段a,b的比例中项,∴c2=ab,∵a=4cm,b=7cm,c>0,∴c=2(cm),故答案为2.根据比例中项的定义,构建方程即可解决问题.∵本题考查比例中项的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.13.【答案】∠ABP=∠C或∠APB=∠ABC或AB2=AP•AC【解析】解:在△ABP和△ACB中,∵∠A=∠A,∴当∠ABP=∠C或∠APB=∠ABC或=即AB2=AP•AC时,△ABP∽△ACB,故答案为∠ABP=∠C或∠APB=∠ABC或AB2=AP•AC.根据相似三角形的判定方法,即可解决问题.本题考查相似三角形的判定,解题的关键是记住相似三角形的判定方法,属于基础题中考常考题型.14.【答案】2√2cm【解析】解:作OC⊥AB于C,如图,∵将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,∴OC等于半径的一半,即OA=2OC,∴∠OAC=30°,∴∠AOC=60°,∴∠AOB=120°,弧AB的长==2π,设圆锥的底面圆的半径为r,∴2πr=2π,解得r=1,∴这个圆锥的高==2(cm).故答案为:2cm.作OC⊥AB于C,如图,根据折叠的性质得OC等于半径的一半,即OA=2OC,再根据含30度的直角三角形三边的关系得∠OAC=30°,则∠AOC=60°,所以∠AOB=120°,则利用弧长公式可计算出弧AB的长=2π,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到圆锥的底面圆的半径为1,然后根据勾股定理计算这个圆锥的高.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.【答案】13【解析】解:∵在正方形ABCD,正方形EFGH中,∠B=∠C=90°,∠EFG=90°,∴BC=CD,GH=EF=FG.又∵点F在BC上,点G在FD上,∴∠DFC+∠EFB=90°,∠DFC+∠FDC=90°,∴∠EFB=∠FDC,又∵∠B=∠C=90°,∴△EBF∽△FCD;∵BF=3,BC=CD=12,∴CF=9,DF===15,∵△EBF∽△FCD,∴=,∴BE===,∴GH=FG=EF==,∴DG=DF-FG=15-=,∴tan∠HDG===.故答案为:.根据正方形的性质可得∠B=∠C=90°,∠EFG=90°,BC=CD,GH=EF=FG,然后求出∠EFB=∠FDC,再根据有两组角对应相等的两个三角形相似证明,求出CF,再利用勾股定理列式求出DF,然后根据相似三角形对应边成比例求出BE,再根据锐角的正切等于对边比邻边列式计算即可得解.本题考查了相似三角形的判定与性质,正方形的性质,勾股定理,熟记各性质以及相似三角形的判定方法是解题的关键.16.【答案】-1【解析】解:∵二次函数y=ax2+2ax+3a2+3=a(x+1)2+3a2-a+3,∴该函数的对称轴为直线x=-1,∵当x≥2时,y随x的增大而减小,且-4≤x≤1时,y的最大值为7,∴a<0,当x=-1时,y=7,∴7=a(x+1)2+3a2-a+3,解得,a1=-1,a2=(舍去),故答案为:-1.根据题目中的函数解析式可以求得该函数的对称轴,然后根据当x≥2时,y随x的增大而减小,且-4≤x≤1时,y的最大值为7,可以判断a的正负,得到关于a的方程,从而可以求得a的值.本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.17.【答案】352√23【解析】解:设Rt△ABC的直角边AC=a,∵△ABC是等腰直角三角形,∴∠A=∠B=45°,∵△DEF是△AEF沿EF 折叠而成,∴∠A=∠FDE=∠B=45°,∵∠2+∠B=∠1+∠FDE,∠FDE=∠B=45°∴∠1=∠2,∵D是BC的中点,∴CD=,设CF=x,则AF=DF=a-x,在Rt △CDF 中,由勾股定理得,DF2=CF2+CD2,即(a-x)2=x2+()2,解得x=,∴DF=a-x=a-=,∴sin ∠1===,∴sin∠2=,即sin∠BED的值为;过D作DG⊥AB,∵BD=,∠B=45°,∴DG=BD•sin∠B=×=,∵∠2=∠1,∠C=∠DGE,∴△EDG∽△DFC,∴===.故答案为:,.先设Rt△ABC的直角边AC=a,根据△ABC是等腰直角三角形可知∠A=∠B=45°,再根据图形折叠的性质可知∠A=∠EDF=45°,由三角形外角的性质可知∠1+∠EDF=∠B+∠2,可求出∠1=∠2,在直角三角形CDF中设CF=x,利用勾股定理即可求解;过D作DG⊥AB,在Rt△BDG中利用勾股定理可求出DG的长,再用相似三角形的判定定理可求出△EDG∽△DFC,由相似三角形的对应边成比例即可求解.本题考查的是图形翻折变换的性质、锐角三角函数的定义、全等三角形的判定与性质及勾股定理,涉及面较广,难度适中.18.【答案】(3+√3)cm【解析】解:过O作OD⊥A′C′于D,交AC于E,∵AC∥A′C′,∴AC⊥OD,∵A′C′与⊙O相切,AB为圆O的直径,且AB=4cm,∴OD=OA=OB=AB=×4cm=2cm,在Rt△AOE中,∠A=30°,∴OE=OA=×2cm=1cm,∴DE=OD-OE=2cm-1cm=1cm,则三角尺的宽为1cm,∵在Rt△ACB中,AB=4cm,∠BAC=30°,∴BC=AB=2cm,AC=BC=2cm,设直线AC交A′B′于M,交B′C′于N,过A点作AH⊥A′B′于H,则有∠AMH=30°,AH=1cm,得到AM=2AH=2cm,∴MN=AM+AC+CN=(3+2)cm,在Rt△MB′N中,∵∠B′MN=30°,∴B′N=MN×tan30°=(3+2)×=(+2)cm,则B′C′=B′N+NC′=(3+)cm,故答案为:(3+)cm.过O作OD⊥A′C′于D,交AC于E,由AC与A′C′,根据与平行线中的一条直线垂直,与另一条也垂直,得到OD与AC垂直,可得DE为三角尺的宽,由A′C′与圆O相切,根据切线的性质得到OD为圆的半径,根据直径AB的长,求出半径OA,OB及OD的长,在直角三角形AOE中,根据∠A=30°,利用直角三角形中,30°角所对的直角边等于斜边的一半可得出OE等于OA的一半,由OA的长求出OE的长,再由OD-OE求出DE的长,即三角尺的宽为1,设直线AC交A′B′于M,交B′C′于N,过A点作AH⊥A′B′于H,则有∠AMH=30°,AH=1,得到AM=2AH=2,可计算出MN,在Rt△MB′N中利用含30°的直角三角形三边的关系得到B′N长,即可得出答案.本题考查了切线的性质,含30°直角三角形的性质,以及平行线的性质,当直线与圆相切时,圆心到切线的距离等于圆的半径,熟练掌握切线的性质是解本题的关键.19.【答案】解:(1)原式=√33-4-2+√3=4√33-6;(2)原式=4x2-4x+1+(x2-4)=4x2-4x+1+x2-4=5x2-4x-3.【解析】(1)原式利用特殊角的三角函数值,乘方的意义,以及绝对值的代数意义计算即可得到结果;(2)原式利用完全平方公式,以及平方差公式计算即可得到结果.此题考查了平方差公式,以及实数的运算,熟练掌握公式及法则是解本题的关键.20.【答案】解:(1)去分母得:1=2x-6-x,解得:x=7,经检验x=7是分式方程的解;(2){x−3(x−2)≤4①1+2x3>x−1②,由①得:x≥1,由②得:x<4,则不等式组的解集为1≤x<4.【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可确定出不等式组的解集.此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,又∵四边形ABEF是矩形,∴AB=EF,AB∥EF,∴DC=EF,DC∥EF,∴四边形DCEF是平行四边形,∴DF=CE;(2)解:如图,连接AE,∵四边形ABEF是矩形,∴BF=AE,又∵AC=BF=DF,∴AC=AE=CE,∴△AEC是等边三角形,∴∠ACE=60°.【解析】(1)根据平行四边形对边平行且相等可得AB=DC,AB∥DC,矩形的对边平行且相等可得AB=EF,AB∥EF,从而得到DC=EF,DC∥EF,再根据一组对边平行且相等的四边形是平行四边形可得四边形DCEF是平行四边形,然后根据平行四边形对边相等证明即可;(2)连接AE,根据矩形的对角线相等可得BF=AE,然后求出AC=AE=CE,从而得到△AEC是等边三角形,再根据等边三角形的每一个角都是60°解答.本题考查了矩形的性质,平行四边形判定与性质,等边三角形的判定与性质,熟记平行四边形的判定方法并准确识图是解题的关键.22.【答案】n(n−1)(n+2)(n+1)【解析】解:(1)画树状图为:,共有12种等可能的结果数,其中妈妈吃前两个汤圆刚好都是花生馅的结果数为2,所以妈妈吃前两个汤圆刚好都是花生馅的概率==;(2)若花生馅的大汤圆的个数为n 个(n≥2),则妈妈吃前两个汤圆都是花生馅的概率=.故答案为.(1)画树状图展示所有12种等可能的结果数,再找出妈妈吃前两个汤圆刚好都是花生馅的结果数,然后根据概率公式求解;(2)若花生馅的大汤圆的个数为n个(n≥2),则共有(n+2)(n+1)种可能的结果数,其中妈妈吃前两个汤圆都是花生馅的结果数为n(n-1),然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B 的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.【答案】直角85√5【解析】解:(1)结论:直角三角形;理由:∵AC=,BC=2,AB=5,∴AB2=AC2+BC2,∴∠ACB=90°,故答案为直角.(2)①线段PC、PQ如图所示;②设AB交CC′于O.由△AOC∽△CQC′,可得=,∴C′Q=.∴PC+PQ的最小值=C′Q=.故答案为.(1)利用勾股定理的逆定理判断即可;(2)①作点C关于AB的对称点C′,作C′Q⊥BC于Q,交AB于P,此时PC+PQ的值最小;②利用相似三角形的性质,构建方程即可解决问题;本题考查作图与应用与设计,轴对称的性质,相似三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.24.【答案】(1)证明:如图1中,连接OB.∵AB是直径,∴∠ABC=90°,∵OB=OA=OC,∴∠A=∠OBA,∠OBC=∠OCB,∵∠A=∠DBC,∠A+∠BCA=90°,∴∠DBC+∠OBC=90°,∴∠OBD=90°,即OB⊥BD,∴DB是⊙O的切线.(2)解:∵∠D=∠D,∠DBC=∠A,∴△DBC∽△DAB,∴DB AD =DCBD=BCAB,在Rt△ABC中,∵tan∠BAC=BCAB =1 2,∴BD AD =DCBD=12,设CD=a,则BD=2a,AD=4a,AC=3a,∴CD AC =1 3.(3)解:如图2中,连接CG.在Rt△ABC中,∵AC=12,BC:AB=1:2,∴BC=125√5,AB=245√5,∵AC⊥BG,∴BF=FG,∴AB=AG=245√5,BC=CG,∵∠E=∠E,∠ECG=∠EAB,∴△ECG∽△EAB,∴EC AE =EGEB=CGAB=12,设EC=y,则AE=2y,EG=2y-245√5,EB=y+125√5,∵BE=2EG,∴y+125√5=2(2y-245√5),∴y=4√5,∴EB=4√5+125√5=325√5.【解析】(1)连接OB.欲证明BD是切线,只要证明DB⊥OB即可;(2)由△DBC∽△DAB,推出==,在Rt△ABC中,由tan∠BAC==,推出= =,设CD=a,则BD=2a,AD=4a,AC=3a,由此即可解决问题;(3)如图2中,连接CG.由△ECG∽△EAB,推出===,设EC=y,则AE=2y,EG=2y-,EB=y+,由此想办法列出方程即可解决问题;本题考查相似三角形综合题、切线的判定和性质、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.25.【答案】解:(1)依题意得:1000(1+10%)+100=1200(辆);答:第3周该区域内各类共享单车的数量是1200辆;(2)设第一周所有单车平均使用次数是a,由题意得:2.5a×(1+m)2×100=a×(1+m)×1200×14,解得m=0.2,即m的值为20%.【解析】(1)第2周共享单车的数量:1000(1+10%),第3周=第2周+100;(2)设第一周所有单车平均使用次数是a,根据“第3周该款单车(共100辆)的总使用次数占到所有单车总使用次数的四分之一”列出方程并解答.本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.26.【答案】解:(1)∵y=ax2+2ax+c=a(x+1)2+c-a,∴它的对称轴为x=-1.又∵一次函数y=-2x与对称轴交于点C,∴y=2.∴C点的坐标为(-1,2).(2)①∵点C与点D关于x轴对称,∴点D的坐标为(-1,-2).∴CD=4,∵△ACD的面积等于2.∴点A到CD的距离为1,C点与原点重合,点A的坐标为(0,0).设二次函数为y=a(x+1)2-2过点A,则a=2,∴y=2x2+4x.②设P(-1,t).交点B的坐标为(-3,6),D(-1,-2),C(-1,2),A(0,0),则BC=2√5,PC=t-2,CD=4,AD=√5,①当△PBC∽△CAD时,BCAD =PCCD,即2√5√5=t−24,解得t=10,故点P的坐标为(-1,10),②当△PBC∽△ACD时,BCCD =PCAD,即2√54=t−2√5,解得t=92,故点P的坐标为(-1,92),综上所述,点P的坐标为(-1,10),(-1,92).【解析】(1)把抛物线对称轴方程x=-1代入直线方程,求得相应的纵坐标,易得点C的坐标;(2)①根据点的坐标的对称性易得抛物线顶点坐标D(-1,-2),故CD=4,结合三角形的面积公式可以求得点A的坐标,将点A的坐标分别代入抛物线解析式为y=a(x+1)2-2,利用待定系数法求得抛物线的解析式即可;②需要分类讨论:△PBD∽△CAD、△PBD∽△ACD.本题考查了二次函数综合题,涉及到的知识点有待定系数法求二次函数解析式,一次函数图象上点的坐标特征,相似三角形的性质,有关于动点问题,需要分类讨论,以防漏解.27.【答案】3π 2√3nπ【解析】解:(1)∵等边△ABC的边长为3,∴∠ABC=∠ACB=∠BAC=60°,,∴===π,∴线段MN的长为=3π,故答案为:3π;(2)如图1,∵等边△DEF的边长为2π,等边△ABC的边长为3,∴S矩形AGHF=2π×3=6π,由题意知,AB⊥DE,AG⊥AF,∴∠BAG=120°,∴S扇形BAG==3π,∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;(3)如图2,连接BI并延长交AC于D,∵I是△ABC的重心也是内心,∴∠DAI=30°,AD=AC=,∴OI=AI==,∴当它第1次回到起始位置时,点I所经过的路径相当于以A为圆心,AI为半径的圆周,∴当它第n次回到起始位置时,点I所经过的路径长为n•2π•=2nπ,故答案为2nπ.(1)先求出的弧长,继而得出莱洛三角形的周长为3π,即可得出结论;(2)先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;(3)先判断出莱洛三角形的一个顶点和O重合旋转一周点I的路径,再用圆的周长公式即可得出.此题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF扫过的图形,解(3)的关键是得出点I第一次回到起点时,I的路径,是一道中等难度的题目.28.【答案】解:(1)如图1,∵在△ABC中,∠C=90°,AB=5cm,BC=3cm,∴AC =√AB 2−BC 2=4cm,当点A′落在边BC上时,由题意得,四边形APA′D为平行四边形,∵PD⊥AB,∴∠ADP=∠C=90°,∵∠A=∠A,∴△APD∽△ABC,∵AP=5x,∴A′P=AD=4x,PC=4-5x,∵∠A′PD=∠ADP,∴A′P∥AB,∴△A′PC∽△ABC,∴PC AC =A′PAB,即4−5x4=4x5,解得:x=2041,∴当点A′落在边BC上时,x=2041;(2)当A′B=BC时,(5-8x)2+(3x)2=32,解得:x=40±12√373.∵x≤45,∴x=40−12√373;当A′B=A′C时,x=58.(3)Ⅰ、当A′B′⊥AB时,如图6,∴DH=PA'=AD,HE=B′Q=EB,∵AB=2AD+2EB=2×4x+2×3x=5,∴x=514,∴A′B′=QE-PD=x=514;Ⅱ、当A′B′⊥BC时,如图7,∴B′E=5x,DE=5-7x,∴cos B=5x5−7x =35,∴x=1546,∴A′B′=B′D-A′D=2546;Ⅲ、当A′B′⊥AC时,如图8,由(1)有,x=2041,∴A′B′=PA′sin A=1241;当A′B′⊥AB时,x=514,A′B′=514;当A′B′⊥BC时,x=1546,A′B′=2546;当A′B′⊥AC时,x=2053,A′B′=2553.【解析】(1)根据勾股定理求出AC,证明△APD∽△ABC,△A′PC∽△ABC,根据相似三角形的性质计算;(2)分A′B=BC、A′B=A′C两种情况,根据等腰三角形的性质解答;(3)根据题意画出图形,根据锐角三角函数的概念计算.此题是几何变换综合题,主要考查了锐角三角函数的意义,分类讨论,解本题的关键是要分类要分准,难点是分类.。

数学中考仿真模拟试题(word版含答案)

数学中考仿真模拟试题(word版含答案)
A. B. C. D.
3.下列计算正确的是( )
A.2A3+3A3=5A6B.(x5)3=x8
C.﹣2m(m﹣3)=﹣2m2﹣6mD.(﹣3A﹣2)(﹣3A+2)=9A2﹣4
4.下列调查中,适宜采用全面调查方式的是()
A.了解一批圆珠笔的使用寿命B.了解全国九年级学生身高的现状
C.考查人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件
【答案】
【分析】
用科学记数法表示较大的数时,一般形式为A×10n,其中1≤|A|<10,n为整数,据此判断即可.
【详解】
580亿=58000000000=5.8×1010.
故答案为:5.8×1010.
【点睛】
此题主要考查了用科学记数法表示较大的数,一般形式为A×10n,其中1≤|A|<10,确定A与n的值是解题的关键.
5.如图,在⊙O中,若∠C D B=60°,⊙O的直径A B等于4,则B C的长为()
A. B.2C.2 D.4
6.我国古代数学名著《算法统宗》中,有一道“群羊逐草”的问题,大意是:牧童甲在草原上放羊,乙牵着一只羊来,并问甲:“你的羊群有100只吗?”甲答:“如果在这群羊里加上同样的一群,再加上半群,四分之一群,再加上你的一只,就是100只.”问牧童甲赶着多少只羊?若设这群羊有x只,则下列方程中,正确的是( )
11.如图:A B∥C D,直线MN分别交A B、C D于点E、F,EG平分∠AEF,EG⊥FG于点G,若∠BEM=50°,则∠CFG= __________.
故选B.
【点睛】
本题考查了由实际问题抽象出一元一次方程的知识,解题的关键是找到等量关系.
7.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长为()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年江苏省无锡市中考数学一模试卷一、选择题(本大题共10小题,每题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B铅笔把答题卷上相应的答案涂黑.)1.﹣3的绝对值是()A.3 B.﹣3 C.D.2.计算(﹣xy3)2的结果是()A.x2y6 B.﹣x2y6C.x2y9 D.﹣x2y93.如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()A.70°B.60°C.50°D.40°4.有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.5.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件6.若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A.﹣5 B.﹣1 C.2 D.77.直线y=2x+2沿y轴向下平移6个单位后与y轴的交点坐标是()A.(0,2)B.(0,8)C.(0,4)D.(0,﹣4)8.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.B.C.D.9.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G 三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.210.如图,在Rt△ABC中,∠ACB=90°,点D是AB边的中点,过D作DE⊥BC于点E,点P是边BC上的一个动点,AP与CD相交于点Q.当AP+PD的值最小时,AQ与PQ之间的数量关系是()A.AQ=PQ B.AQ=3PQ C.AQ=PQ D.AQ=4PQ二、填空题(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位置上.)11.函数y=中,自变量x的取值范围是.12.分解因式:ab3﹣4ab= .13.2016年我国大学毕业生将达到7650000人,该数据用科学记数法可表示为.14.一个扇形的圆心角为60°半径为6cm,则这个扇形的弧长为cm.(结果保留π)15.已知反比例函数的图象经过点(m,4)和点(8,﹣2),则m的值为.16.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为.17.如图,C、D是线段AB上两点,且AC=BD=AB=1,点P是线段CD上一个动点,在AB同侧分别作等边△PAE和等边△PBF,M为线段EF的中点.在点P从点C移动到点D时,点M运动的路径长度为.18.如图坐标系中,O(0,0),A(6,6),B(12,0),将△OAB沿直线线CD折叠,使点A恰好落在线段OB上的点E处,若OE=,则CE:DE的值是.三、解答题(本大题共10小题,共计84分.解答需写出必要的文字说明或演算步骤.)19.(1)计算:﹣|﹣2|+2×(﹣3);(2)化简:(1+)÷.20.(1)解方程:1+=;(2)解不等式组:.21.如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.22.一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到红球的概率是(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.23.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).24.某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表第一次第二次第三次A产品单价(元/件) 6 5.2 6.5B产品单价(元/件) 3.5 4 3并求得了A产品三次单价的平均数和方差:2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]==5.9,sA(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了%(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.25.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.请问至少需要补充多少名新工人?26.已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连接AE交射处.线DC于点F,若△ABE沿直线AE翻折,点B落在点B1(1)如图1,若点E在线段BC上,求CF的长;(2)求sin∠DAB的值;1(3)如果题设中“BE=2CE”改为“=x”,其它条件都不变,试写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式及自变量x的取值范围(只要写出结论,不需写出解题过程).27.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D(2,3).(1)求抛物线的解析式和直线AD的解析式;(2)过x轴上的点(a,0)作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.28.如图,Rt△ABC中,M为斜边AB上一点,且MB=MC=AC=8cm,平行于BC的直线l从BC的位置出发以每秒1cm的速度向上平移,运动到经过点M时停止.直线l分别交线段MB、MC、AC于点D、E、P,以DE为边向下作等边△DEF,设△DEF与△MBC 重叠部分的面积为S(cm2),直线l的运动时间为t(秒).(1)求边BC的长度;(2)求S与t的函数关系式;(3)在整个运动过程中,是否存在这样的时刻t,使得以P、C、F为顶点的三角形为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.(4)在整个运动过程中,是否存在这样的时刻t,使得以点D为圆心、BD为半径的圆与直线EF相切?若存在,请求出t的值;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B铅笔把答题卷上相应的答案涂黑.)1.﹣3的绝对值是()A.3 B.﹣3 C.D.【考点】绝对值.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.2.计算(﹣xy3)2的结果是()A.x2y6 B.﹣x2y6C.x2y9 D.﹣x2y9【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算方法:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数);求出计算(﹣xy3)2的结果是多少即可.【解答】解:(﹣xy3)2=(﹣x)2•(y3)2=x2y6,即计算(﹣xy3)2的结果是x2y6.故选:A.3.如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()A.70°B.60°C.50°D.40°【考点】平行线的性质;垂线.【分析】由BC与AE垂直,得到三角形ABC为直角三角形,利用直角三角形两锐角互余,求出∠A的度数,再利用两直线平行同位角相等即可求出∠ECD的度数.【解答】解:∵BC⊥AE,∴∠ACB=90°,在Rt△ABC中,∠B=40°,∴∠A=90°﹣∠B=50°,∵CD∥AB,∴∠ECD=∠A=50°,故选C.4.有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据主视图是从正面看得到的图形,可得答案.【解答】解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选:C.5.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件【考点】全面调查与抽样调查.【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选:D.6.若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A.﹣5 B.﹣1 C.2 D.7【考点】二元一次方程的解.【分析】根据题意得,只要把代入ax﹣3y=1中,即可求出a的值.【解答】解:把代入ax﹣3y=1中,∴a﹣3×2=1,a=1+6=7,故选:D,7.直线y=2x+2沿y轴向下平移6个单位后与y轴的交点坐标是()A.(0,2)B.(0,8)C.(0,4)D.(0,﹣4)【考点】一次函数图象与几何变换.【分析】根据平移可得直线y=2x+2沿y轴向下平移6个单位后解析式为y=2x+2﹣6=2x ﹣4,再求出与y轴的交点即可.【解答】解:直线y=2x+2沿y轴向下平移6个单位后解析式为y=2x+2﹣6=2x﹣4,当x=0时,y=﹣4,因此与y轴的交点坐标是(0,﹣4),故选:D8.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.B.C.D.【考点】菱形的性质;勾股定理.【分析】根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,==×6×8=24cm2,∴S菱形ABCD=BC×AE,∵S菱形ABCD∴BC×AE=24,∴AE=cm,故选D.9.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G 三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.2【考点】切线的性质;矩形的性质.【分析】连接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=90°,CD=AB=4,由于AD,AB,BC分别与⊙O相切于E,F,G三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE,FBGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果.【解答】解:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,△DMC中,DM2=CD2+CM2,在Rt∴(3+NM)2=(3﹣NM)2+42,∴NM=,∴DM=3=,故选A.10.如图,在Rt△ABC中,∠ACB=90°,点D是AB边的中点,过D作DE⊥BC于点E,点P是边BC上的一个动点,AP与CD相交于点Q.当AP+PD的值最小时,AQ与PQ之间的数量关系是()A.AQ=PQ B.AQ=3PQ C.AQ=PQ D.AQ=4PQ【考点】轴对称-最短路线问题.【分析】如图,作点A关于BC的对称点A′,连接A′D交BC于点P,此时PA+PD最小.作DM∥BC交AC于M,交PA于N,利用平行线的性质,证明AN=PN,利用全等三角形证明NQ=PQ,即可解决问题.【解答】解:如图,作点A关于BC的对称点A′,连接A′D交BC于点P,此时PA+PD 最小.作DM∥BC交AC于M,交PA于N.∵∠ACB=∠DEB=90°,∴DE∥AC,∵AD=DB,∴CE=EB,∴DE=AC=CA′,∵DE∥CA′,∴==,∵DM∥BC,AD=DB,∴AM=MC,AN=NP,∴DM=BC=CE=EB,MN=PC,∴MN=PE,ND=PC,在△DNQ和△CPQ中,,∴△DNQ≌△CPQ,∴NQ=PQ,∵AN=NP,∴AQ=3PQ.故选B.二、填空题(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位置上.)11.函数y=中,自变量x的取值范围是x≥﹣2 .【考点】函数自变量的取值范围.【分析】函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数即可求解.【解答】解:根据题意得:x+2≥0,解得x≥﹣2.故答案为:x≥﹣2.12.分解因式:ab3﹣4ab= ab(b+2)(b﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式ab,再对余下的多项式利用平方差公式继续分解.【解答】解:ab3﹣4ab,=ab(b2﹣4),=ab(b+2)(b﹣2).故答案为:ab(b+2)(b﹣2).13.2016年我国大学毕业生将达到7650000人,该数据用科学记数法可表示为7.65×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7650000用科学记数法表示为:7.65×106.故答案为:7.65×106.14.一个扇形的圆心角为60°半径为6cm,则这个扇形的弧长为2πcm.(结果保留π)【考点】圆锥的计算.【分析】利用弧长公式是l=,代入就可以求出弧长.【解答】解:弧长是:=2πcm.故答案为:2π.15.已知反比例函数的图象经过点(m,4)和点(8,﹣2),则m的值为﹣4 .【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征得到4×m=8×(﹣2),然后解一次方程即可.【解答】解:根据题意得4×m=8×(﹣2),解得m=﹣4.故答案为﹣4.16.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为 5 .【考点】相似三角形的判定与性质.【分析】易证△BAD∽△BCA,然后运用相似三角形的性质可求出BC,从而可得到CD 的值.【解答】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∴=.∵AB=6,BD=4,∴=,∴BC=9,∴CD=BC﹣BD=9﹣4=5.故答案为5.17.如图,C、D是线段AB上两点,且AC=BD=AB=1,点P是线段CD上一个动点,在AB同侧分别作等边△PAE和等边△PBF,M为线段EF的中点.在点P从点C移动到点D时,点M运动的路径长度为 2 .【考点】轨迹.【分析】分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出M为PH中点,则M的运行轨迹为三角形HCD的中位线GN.再求出CD的长,运用中位线的性质求出GN的长度即可.【解答】解:如图,分别延长AE、BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵M为EF的中点,∴M正好为PH中点,即在P的运动过程中,M始终为PH的中点,所以M的运行轨迹为三角形HCD的中位线GN.∵CD=6﹣1﹣1=4,∴GN=CD=2,即M的移动路径长为2.故答案为:2.18.如图坐标系中,O(0,0),A(6,6),B(12,0),将△OAB沿直线线CD折叠,使点A恰好落在线段OB上的点E处,若OE=,则CE:DE的值是.【考点】翻折变换(折叠问题);坐标与图形性质.【分析】过A作AF⊥OB于F,根据已知条件得到△AOB是等边三角形,推出△CEO∽△DBE,根据相似三角形的性质得到,设CE=a,则CA=a,CO=12﹣a,ED=b,则AD=b,OB=12﹣b,于是得到24b=60a﹣5ab,36a=60b﹣5ab,两式相减得到36a ﹣24b=60b﹣60a,即可得到结论.【解答】解:过A作AF⊥OB于F,∵A(6,6),B(12,0),∴AF=6,OF=6,OB=12,∴BF=6,∴OF=BF,∴AO=AB,∵tan∠AOB=,∴∠AOB=60°,∴△AOB是等边三角形,∴∠AOB=∠ABO=60°,∵将△OAB沿直线线CD折叠,使点A恰好落在线段OB上的点E处,∴∠CED=∠OAB=60°,∴∠OCE=∠DEB,∴△CEO∽△DBE,∴,设CE=a,则CA=a,CO=12﹣a,ED=b,则AD=b,OB=12﹣b,,∴24b=60a﹣5ab ①,,∴36a=60b﹣5ab ②,②﹣①得:36a﹣24b=60b﹣60a,∴=,即CE:DE=.故答案为:.三、解答题(本大题共10小题,共计84分.解答需写出必要的文字说明或演算步骤.)19.(1)计算:﹣|﹣2|+2×(﹣3);(2)化简:(1+)÷.【考点】分式的混合运算;实数的运算.【分析】(1)根据算术平方根的概念、绝对值的性质以及有理数的乘法法则计算即可;(2)根据分式的通分和约分法则计算.【解答】解:(1)原式=4﹣2﹣6=﹣4;(2)原式=•=.20.(1)解方程:1+=;(2)解不等式组:.【考点】解分式方程;解一元一次不等式组.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)去分母,x﹣2+3x=6,解得:x=2,经检验:x=2是原方程的增根,∴原方程无解;(2),由①得,x<﹣1,由②得,x≤﹣8,∴原不等式组的解集是x≤﹣8.21.如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.【考点】全等三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质,证明AB=CD,AB∥CD,进而证明∠BAC=∠CDF,根据ASA即可证明△ABE≌△CDF,根据全等三角形的对应边相等即可证明.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAC=∠CDF,∴△ABE和△CDF中,,∴△ABE≌△CDF,∴BE=DF.22.一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到红球的概率是(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)根据4个小球中红球的个数,即可确定出从中任意摸出1个球,恰好摸到红球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.【解答】解:(1)4个小球中有2个红球,则任意摸出1个球,恰好摸到红球的概率是;故答案为:;(2)列表如下:红红白黑红﹣﹣﹣(红,红)(白,红)(黑,红)红(红,红)﹣﹣﹣(白,红)(黑,红)白(红,白)(红,白)﹣﹣﹣(黑,白)黑(红,黑)(红,黑)(白,黑)﹣﹣﹣所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)==.23.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【考点】作图—应用与设计作图.【分析】(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.【解答】解:(1)如图1所示;(2)如图2、3所示;24.某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表第一次第二次第三次A产品单价(元/件) 6 5.2 6.5B产品单价(元/件) 3.5 4 3并求得了A产品三次单价的平均数和方差:2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]==5.9,sA(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了25 %(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.【考点】方差;统计表;折线统计图;算术平均数;中位数.【分析】(1)根据题目提供数据补充折线统计图即可;(2)分别计算平均数及方差即可;(3)首先确定这四次单价的中位数,然后确定第四次调价的范围,根据“A产品这四次单价的中位数是B产品四次单价中位数的2倍少1”列式求m即可.【解答】解:(1)如图2所示:B产品第三次的单价比上一次的单价降低了=25%,(2)=(3.5+4+3)=3.5,==,∵B产品的方差小,∴B产品的单价波动小;(3)第四次调价后,对于A产品,这四次单价的中位数为=;对于B产品,∵m>0,∴第四次单价大于3,∵﹣1>,∴第四次单价小于4,∴×2﹣1=,∴m=25.25.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.请问至少需要补充多少名新工人?【考点】一元一次不等式的应用;一元一次方程的应用.【分析】(1)设有x名工人加工G型装置,则有(80﹣x)名工人加工H型装置,利用每台GH型产品由4个G型装置和3个H型装置配套组成得出等式求出答案;(2)设招聘a名新工人加工G型装置,设x名工人加工G型装置,(80﹣x)名工人加工H型装置,进而利用每天加工的G、H型装置数量正好全部配套组成GH型产品得出等式表示出x的值,进而利用不等式解法得出答案.【解答】解:(1)设有x名工人加工G型装置,则有(80﹣x)名工人加工H型装置,根据题意,=,解得x=32,则80﹣32=48(套),答:每天能组装48套GH型电子产品;(2)设招聘a名新工人加工G型装置仍设x名工人加工G型装置,(80﹣x)名工人加工H型装置,根据题意,=,整理可得,x=,另外,注意到80﹣x≥,即x≤20,于是≤20,解得:a≥30,答:至少应招聘30名新工人,26.已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连接AE交射线DC于点F,若△ABE沿直线AE翻折,点B落在点B处.1(1)如图1,若点E在线段BC上,求CF的长;的值;(2)求sin∠DAB1(3)如果题设中“BE=2CE”改为“=x”,其它条件都不变,试写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式及自变量x的取值范围(只要写出结论,不需写出解题过程).【考点】翻折变换(折叠问题);勾股定理;正方形的性质;锐角三角函数的定义.【分析】(1)利用平行线性质以及线段比求出CF的值;(2)本题要分两种方法讨论:①若点E在线段BC上;②若点E在边BC的延长线上.需运用勾股定理求出与之相联的线段;(3)本题分两种情况讨论:若点E在线段BC上,y=,定义域为x>0;若点E在边BC的延长线上,y=,定义域为x>1.【解答】解:(1)∵AB∥DF,∴=,∵BE=2CE,AB=3,∴=,∴CF=;与DC相交于点M.(2)①若点E在线段BC上,如图1,设直线AB1由题意翻折得:∠1=∠2.∵AB∥DF,∴∠1=∠F,∴∠2=∠F,∴AM=MF.设DM=x,则CM=3﹣x.又∵CF=1.5,∴AM=MF=﹣x,在Rt△ADM中,AD2+DM2=AM2,∴32+x2=(﹣x)2,∴x=,∴DM=,AM=,∴sin∠DAB==;1②若点E在边BC的延长线上,如图2,设直线AB1与CD延长线相交于点N.同理可得:AN=NF.∵BE=2CE,∴BC=CE=AD.∵AD∥BE,∴=,∴DF=FC=,设DN=x,则AN=NF=x+.在Rt△ADN中,AD2+DN2=AN2,∴32+x2=(x+)2,∴x=.==;∴DN=,AN=sin∠DAB1(3)若点E在线段BC上,y=,定义域为x>0;若点E在边BC的延长线上,y=,定义域为x>1.27.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D(2,3).(1)求抛物线的解析式和直线AD的解析式;(2)过x轴上的点(a,0)作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.【考点】抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式;平行四边形的判定.【分析】(1)把点B和D的坐标代入抛物线y=﹣x2+bx+c得出方程组,解方程组即可;由抛物线解析式求出点A的坐标,设直线AD的解析式为y=kx+a,把A和D的坐标代入得出方程组,解方程组即可;(2)分两种情况:①当a<﹣1时,DF∥AE且DF=AE,得出F(0,3),由AE=﹣1﹣a=2,求出a的值;②当a>﹣1时,显然F应在x轴下方,EF∥AD且EF=AD,设F (a﹣3,﹣3),代入抛物线解析式,即可得出结果.【解答】解:(1)把点B和D的坐标代入抛物线y=﹣x2+bx+c得:,解得:b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3;当y=0时,﹣x2+2x+3=0,解得:x=3,或x=﹣1,∵B(3,0),∴A(﹣1,0);设直线AD的解析式为y=kx+a,把A和D的坐标代入得:,解得:k=1,a=1,∴直线AD的解析式为y=x+1;(2)分两种情况:如图所示:①当a<﹣1时,DF∥AE且DF=AE,则F点即为(0,3),∵AE=﹣1﹣a=2,∴a=﹣3;②当a>﹣1时,显然F应在x轴下方,EF∥AD且EF=AD,设F (a﹣3,﹣3),由﹣(a﹣3)2+2(a﹣3)+3=﹣3,解得:a=4±;综上所述,满足条件的a的值为﹣3或4±.28.如图,Rt△ABC中,M为斜边AB上一点,且MB=MC=AC=8cm,平行于BC的直线l从BC的位置出发以每秒1cm的速度向上平移,运动到经过点M时停止.直线l分别交线段MB、MC、AC于点D、E、P,以DE为边向下作等边△DEF,设△DEF与△MBC 重叠部分的面积为S(cm2),直线l的运动时间为t(秒).(1)求边BC的长度;(2)求S与t的函数关系式;(3)在整个运动过程中,是否存在这样的时刻t,使得以P、C、F为顶点的三角形为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.(4)在整个运动过程中,是否存在这样的时刻t,使得以点D为圆心、BD为半径的圆与直线EF相切?若存在,请求出t的值;若不存在,请说明理由.【考点】几何变换综合题.【分析】(1)利用直角三角形的性质和锐角三角函数即可,(2)分两段求出函数关系式:当0<t≤3时,S=﹣t2+8t,当3<t≤4时,S=3t2﹣24t+48(3)当0<t≤3时,∠FCP≥90°,故△PCF不可能为等腰三角形当3<t≤4时,若△PCF为等腰三角形,也只能FC=FP,=3(4﹣t),得t=.(4)若相切,利用点到圆心的距离等于半径列出方程即可.【解答】解:(1)∵M为斜边中点,∴∠B=MCB=α,∴∠AMC=2α,∵MC=MA,∴∠A=∠AMC=2α,∴∠B+∠A=90°,∴α+2α=90°,∴α=30°,∴∠B=30°,∵cotB=,∴BC=AC×cotB=8;(2)由题意,若点F恰好落在BC上,∴MF=4(4﹣t)=4,∴t=3.当0<t≤3时,如图,∴BD=2t,DM=8﹣2t,∵l∥BC,∴,∴,∴DE=(8﹣2t).∴点D到EF的距离为FJ=DE=3(4﹣t),∵l∥BC,∴,∵FN=FJ﹣JN=3(4﹣t)﹣t=12﹣4t,∴HG=(3﹣t)S=S=(HG+DE)×FN=﹣t2+8t当3<t≤4时,重叠部分就是△DEF,=DE2=3t2﹣24t+48.S=S(3)当0<t≤3时,∠FCP≥90°,∴FC>CP,∴△PCF不可能为等腰三角形当3<t≤4时,若△PCF为等腰三角形,∴只能FC=FP,∴=3(4﹣t),∴t=(4)若相切,∵∠B=30°,∴BD=2t,DM=8﹣2t,∵l∥BC,∴,∴,∴DE=(8﹣2t).∴点D到EF的距离为DE=3(4﹣t)∴2t=3(4﹣t),解得t=.2016年6月9日。

相关文档
最新文档