垃圾渗滤液处理难点进行了分析,阐述了onclick="g('垃圾');">垃圾渗滤液国内外处理现状、处理工艺对比、以及存在弊端,概述OFR新型专利技术处理onclick="g('垃圾');">垃圾渗滤液的原理、应用范围、技术优势及其推广方向,提出OFR技术在高浓度有机废水处理有特殊" />

吹脱法处理高浓度氨氮废水

吹脱法处理高浓度氨氮废水
吹脱法处理高浓度氨氮废水

吹脱法处理高浓度氨氮废水

2007-07-19 01:17来源:source 作者:周明罗陈建中刘志勇点击:53次简介:对onclick="g('垃圾');">垃圾渗滤液处理难点进行了分析,阐述了onclick="g('垃圾');">垃圾渗滤液国内外处理现状、处理工艺对比、以及存在弊端,概述OFR新型专利技术处理onclick="g('垃圾');">垃圾渗滤液的原理、应用范围、技术优势及其推广方向,提出OFR技术在高浓度有机废水处理有特殊的效果,已成功应用于国内外多家企业,尤其在onclick="g('垃圾');">垃圾渗滤液前预处理和经膜技术处理后的浓液处理方面有广阔的应用前景。

关键字:onclick="g('垃圾');">垃圾渗滤液浓缩液氨氮

高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、onclick="g('垃圾');">垃圾填埋场等均产生大量高浓度氨氮废水。大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,而且将增加给水处理的难度和成本,甚至对人群及生物产生毒害作用[1]。氨氮废水对环境的影响已引起环保领域和全球范围的重视,近20 年来,国内外对氨氮废水处理方面开展了较多的研究。其研究范围涉及生物法、物化法的各种处理工艺,如生物方法有硝化及藻类养殖;物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电化学处理、催化裂解等。新的技术不断出现,在处理氨氮废水的应用方面展现出诱人的前景。本文侧重介绍吹脱法处理高浓度氨氮废水的技术特点及研究应用。

1 吹脱技术

吹脱法用于脱除水中氨氮,即将气体通入水中,使气液相互充分接触,使水中溶解的游离氨穿过气液界面,向气相转移,从而达到脱除氨氮的目的。常用空气作载体(若用水蒸气作载体则称汽提)。

水中的氨氮,大多以氨离子(NH4+)和游离氨(NH3)保持平衡的状态而存在。其平衡关系式如下:

NH4++OH-NH3+H2O (1)

氨与氨离子之间的百分分配率可用下式进行计算:

Ka=Kw /Kb=(CNH3·CH+)/CNH4+ (2)

式中:Ka———氨离子的电离常数;

Kw———水的电离常数;

Kb———氨水的电离常数;

C———物质浓度。

式(1)受pH 值的影响,当pH值高时,平衡向右移动,游离氨的比例较大,当pH 值为11 左右时,游离氨大致占90%。

由式(2)可以看出,pH 值是影响游离氨在水中百分率的主要因素之一。另外,温度也会影响反应式(1)的平衡,温度升高,平衡向右移动。表1 列出了不同条件下氨氮的离解率的计算值。表中数据表明,当pH值大于10 时,离解率在80%以上,当pH 值达11时,离解率高达98%且受温度的影响甚微。

表1 不同pH、温度下氨氮的离解率%

pH 20℃30℃35℃

9.0 25 50 58

9.5 60 80 83

10.0 80 90 93

11.0 98 98 98

氨吹脱一般采用吹脱池和吹脱塔2 类设备,但吹脱池占地面积大,而且易造成二次污染,所以氨气的吹脱常采用塔式设备。

吹脱塔常采用逆流操作,塔内装有一定高度的填料,以增加气—液传质面积从而有利于氨气从废水中解吸。常用填料有拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。废水被提升到填料塔的塔顶,并分布到填料的整个表面,通过填料往下流,与气体逆向流动,空气中氨的分压随氨的去除程度增加而增加,随气液比增加而减少。

2 影响因素及液气比的确定

影响游离氨在水中分布的pH 值、温度等因素都会影响吹脱效率。另外气液比、喷淋密度等操作条件也是影响吹脱效率的主要因素。下面以逆流塔为例分析液气比的确定及其影响。

氨吹脱是一个相转移过程,推动力来自空气中氨的分压与废水中氨浓度相当的平衡分压之间的差,由物料守衡(见图1)可得吹脱塔操作线方程为:

Y=L/V(X~X1)+Y1 (3)

图1 逆流吹脱塔物料衡算

即以(L/V)为斜率的直线,如图2 的直线MN。在此,L 值已经确定,若减少吹脱气体的用量,操作线斜率将会增大,点N 便沿垂直线X=X2向上移动,传质推动力(X2 ~X2*)或(Y2 ~Y2*)随之减小,当点N 落在线Y*上时,Y2=Y2*,塔顶吹脱气体浓度达到平衡,即最高浓度。此时气体用量最小,这是理论上液气比能达到的最大值,但推动力变为0。

(L/V)max=(Y2*~Y1)/(X2~X1)(4)

通常要求达到的氨去除程度(X1)、进口浓度(X2)为已知,空气进口浓度(Y1)为零,Y2*为与X2对应的气体平衡浓度,可由亨利定律求得[2、3],如下式:

Y=mX (5)

因此最大液气比可表示为:

(L/V)max=mX2 /(X2~X1)(6)

式中m为平衡常数,是温度的函数。所以温度对气体平衡浓度进而对(L/V)max有较大的影响。有文献报道[4],当温度从10℃变为40℃时,(L / V )max从0.58增大到2.4。

在逆流吹脱塔中,对确定的废水量而言,增大气体量,传质推动力相应增大,有利于氨氮吹脱去除。但气量太大,气速过高,将影响废水沿填料正常下流甚至不能流下,即引起液泛现象。因此,对一定废水量,最小液气比受液泛气速控制。液泛气速与塔式结构、填料种类和液体物性等因素都有关。显然,实际的液气比应满足下式要求:

(L/V)泛<(L/V)<(L/V)amx (7)

图2 逆流吹脱塔操作线

3 吹脱工艺的应用

吹脱法已广泛用于化肥厂废水、onclick="g('垃圾');">垃圾渗滤液、石化、炼油厂等[5~8]含氨氮废水。低浓度废水通常在常温下用空气吹脱,而高浓度废水则常用蒸汽进行吹脱。有些高浓度废水经吹脱处理后,仍含有较高的氨。因而常与其它工艺相结合。

3.1 吹脱法+ 生物法

卢平等[9]采用吹脱一缺氧一两级好氧工艺处理onclick="g('垃圾');">垃圾渗滤液,其中氨氮含量达1 400 mg/L,COD浓度为4 000~5 000 mg/L。选定pH 值为9.5,吹脱时间12 h,经吹脱后氨氮去除率为60%,经生化处理后氨氮去除率达95%,同时取得90%以上的COD 去除效果。倪佩兰等[10]采用吹脱法与生物法相结合处理onclick="g('垃圾');">垃圾渗滤液取得了成功的效果,其工艺流程如图3图3 onclick="g('垃圾');">垃圾渗滤液处理工艺流程

某油墨厂采用吹脱法与生物法相结合的工艺处理酞菁蓝生产废水[11],其工艺流程如图4 所示。吹脱pH值为11,经空气吹脱后,废水中氨氮浓度从1 034 mg/L降到140 mg/L。再经两级生化处理后,出水中污染物浓度可以达到排放标准。某制药厂产生的部分高浓度氨氮废水,不适宜于直接用生物硝化处理,对氨氮废水先进行吹脱,大大降低NH3-N 浓度,

后与其它废水混合进人生化处理系统进一步处理。吹脱效率与pH值和温度有直接关系,需做试验确定吹脱条件,达到最佳处理效果。

3.2 吹脱法+折点氯化法

注:预处理包括两级调节、铜置换、沉淀

图4 酞菁蓝生产废水处理工艺

折点氯化法是投加过量的氯或次氯酸钠,使废水中氨完全氧化为N2或硝酸盐的方法[12],可用以下反应式表示:

NH4++HOCl→NH2Cl+H2O+H+ (8)

NH2Cl+HOCl→NHCl2+H2O (9)

NHCl2+HOCl→NCl3+H2O (10)

一氯胺进一步氧化为氮:

2NH2Cl+HOCl→N2+H2O+3H++3Cl- (11)

二氯胺经下列反应生成硝酸盐:

NHCl2+H2O→NH(OH)Cl+H++Cl- (12)

NH(OH)Cl+2HOCl→NO3-+4H++3Cl-(13)

氯化法处理率达90%~100%,效果稳定,不受水温影响、操作方便、投资省,但对于高浓度氨氮废水的处理运行成本很高。若在此之前用吹脱法降低废水中氨氮含量,可以减少加氯量,极大地降低处理成本。

某新材料厂排出的含NH4Cl 4 200 mg/L工业废水经技术经济比较,采用氨闭路吹脱盐酸液吸收回收NH4Cl 与折点加氯法联合处理[13],结果出水水质为:pH值8~9,NH4Cl≤15 mg/L。目前该方法已应用于工业生产。

4 讨论

吹脱法用于处理高浓度氨氮废水具有流程简单、处理效果稳定、基建费和运行费较低等优点,实用性较强。采用与生物法、氯化法等方法相结合的工艺能很好解决吹脱处理后废水中氨氮的含量仍然无法满足排放要求这一问题。然而,吹脱出来的氨气随空气进入大气,仍然容易引起二次污染。国外已有关于用镍、镉等金属作催化剂,在高温下将氨气转化为氮气的报道[14、15]。李晟[16]采用复合金属氧化物为催化剂氧化吹脱处理出来的氨气,在500℃左右氨气转化率在90%以上。目前,本课题组正致力于采用吹脱法与催化氧化法串联处理

氨氮废水的研究,后续氧化阶段采用过渡金属氧化物为催化剂。笔者认为,如何将吹脱出来的氨气无害化,避免二次污染,达到环境效益、经济效益相统一,将是今后吹脱法处理高浓度废水的一个研究方向。

5 参考文献

[1] 钱易,唐考炎. 环境保护与可持续发展. 北京:高等教育出版社,2000. 50~51

[2] 姚玉英.化工原理.天津:天津科学技术出版社,1995. 74~82,88~93

[3] 冯德华.化学工程手册.北京:化学工业出版社,1989. 7~12

[4] 夏素兰,周勇,曹丽淑,等. 城市onclick="g('垃圾');">垃圾渗滤液氨氮吹脱技术研究. 环境科学与技术,2000,(3 ):26~29

[5] 蔡秀珍,李吉生,温俨. 吹脱法处理高浓度氨氮废水试验.环境科学动态,1998,(4 ):21~23

[6] 林奇. 吹脱法处理中低浓度氢氮废水. 福建环境,2000,17(6):35~37

[7] 余宗学,安立超. 高氨氮、高盐度有机颜料废水处理工艺研究. 环境科学与技术,2004,27(1):80~81

[8] 蒋林时,张洪林,唐玉斌,等. 炼油厂含锌高浓度氨氮废水汽提性能研究.环境工程,2000,18(1):7~10

[9] 卢平,曾丽璇,张秋平,等. 高浓度氨氮onclick="g('垃圾');">垃圾渗滤液处理方法研究. 中国给水排水,2003,19(5):44~45

[10] 倪佩兰,郑学娟,徐月恩,等.onclick="g('垃圾');">垃圾填埋渗滤液氨氮的吹脱处理工艺技术研究.环境卫生工程,2001,9(3):133~135

[11] 顾秀煜. 酞菁蓝生产废水处理浅议. 给水排水,2000,26(12):42~43

[12] 汪大□,徐新华,宋真,等. 工业废水中专项污染物处理手册. 北京:化学工业出版社,2000. 210~220

[13] 宁平,曾凡勇,刘新. 中高浓度氨氮废水综合处理. 有色金属,2003,55(增刊):130~132

[14] MAmblard,R Burch,BWL Southward .A Study of the Mechanism of Selective Conversion of Ammonia to Nitrogen on Ni/y-Al2O3 under Strongly Oxidizing Conditions. Catalysis Today,2000,59:365~371

[15] A C Mvan den Broek,J van Grondelle,R A van Santen. Determination of Surface Coverage of Catalysts:Temperature Programmed Experiments on Platinum and Iridium Sponge Catalysts after Low Temperature Ammonia Oxidation. Journal of Catalysts,1999,185:297~306

[16] 李晟.常压下吹脱法与气相氨催化氧化法串联处理高浓度氨氮废水的研究:[学位论文],昆明:昆明理工大学,2004

本文来自: 环境技术网(https://www.360docs.net/doc/0b4318608.html,) 详细出处参考:https://www.360docs.net/doc/0b4318608.html,/h2o/1/2007071910333.html

氨氮废水常用处理方法

氨氮废水常用处理方法 来源:作者:发布时间:2007-11-14 过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。 王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。吹脱法在低温时氨氮去除效率不高。

王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。最佳工艺条件为pH=11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L以内。 为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。 Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。 1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。

高氨氮废水处理方法

高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,ph在酸性的条件下废水中的氨氮主要由于无机氨所导致。废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。 高氨氮废水如何处理,我们着重介绍一下其处理方法: 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与湿度、PH、气液比有关。1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。 1.3 膜分离技术 利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮 氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比

例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。 1.4MAP沉淀法 主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4 理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。 1.5 化学氧化法 利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。

氨氮吹脱塔

氨氮吹脱吸收系统 技术方案

一、方案设计依据: 1、废水水量:3600m3/d,设计水量为150m3/h。 2、出水氨氮要求:去除率60%-70% 二、氨氮吹脱原理介绍 氨氮在废水中主要以铵离子(NH4+)和游离氨(NH3)状态存在,其平衡关系如下所示: NH3+H2O—NH4+ +OH- 这个关系受pH值的影响,当pH值高时,平衡向左移动,游离氨的比例增大。常温时,当pH 值为7左右时氨氮大多数以铵离子状态存在,而pH为11左右时,游离氨大致占98%。不同pH、温度下氨氮的离解率详见表。 不同pH、温度下氨氮的离解率(%) 当水的pH值升高,呈游离状态的氨易于逸出。若加以搅拌、曝气等物理作用更可促使氨从水中溢出。在实际工程中大多采用吹脱塔。吹脱塔的构造一般采用气液接触装置,在塔的内部填充材料,用以提高接触面积。调节pH值后的水从塔的上部淋洒到填料上而形成水滴,顺着填料的间隙次第落下,与由风机从塔底向上或水平方向吹送的空气逆流接触,完成传质过程,使氨由液相转为气相,随空气排放,完成吹脱过程。

三、运行条件 进水pH值≥11 外界条件:气温24℃,水温:35℃ PH: 四、工艺流程说明 氨氮废水首先进入调节池将pH值调到11左右,然后泵入吹脱塔的液体分布器,同时空气在风机的作用下进入氨氮吹脱塔塔体下方进气口,并且充满进气段空间,然后匀压上升到填料段。在填料的表面上,蒸汽将游离状态的氨吹出,出水流出。 具体工艺流程见下图: 原水 pH调节池氨氮吹脱塔氨氮吸收 风机 废水经吹脱塔吹脱后,氨氮去除率达到60%-70%,氨氮含量由700mg/L处理至200-230mg/L。 六、设备清单(第一方案)三台并联

废水除氨氮工艺比较知识讲解

国内高浓度氨氮废水处理常见工艺 物化法 国内外处理高浓度氨氮废水的物理化学方法很多,主要有空气吹脱法、蒸 汽汽提法、折点加氯法、离子交换法、化学沉淀法、催化湿式氧化法和烟 道气治理法等,这些方法各有优缺点,可用于不同条件的废水处理。 1.2.1.1空气吹脱法 空气吹脱法是使废水作为不连续相与空气接触,利用废水中组分的实际浓 度与平衡浓度之间的差异,使氨氮由液相转移至气相而去除。废水中的氨 氮通常以离子铵(NH4+)和游离氨(NH3)的状态保持平衡而存在,将废水pH值调节至碱性时,NH4+转化为NH3,然后通入空气将NH3吹脱出来。 NH4++ OH-→ NH3+ H2O 在吹脱过程中,废水pH值、水温、水力负荷及气水比对吹脱效果有较大影响。一般来说,pH值要提高至10.8~11.5,水温一般不能低于20℃,水力 负荷为2.5~5 m3/(m2·h),气水比为2500~5000 m3/m3,此时氨氮去除率 在80%~95%。 空气吹脱法工艺流程简单,但NH3-N仅从溶解状态转化为游离态,并没有 彻底除去,需要相应的回收装置,否则易造成二次污染;当温度低时, NH3-N吹脱效率大大低,不适合在寒冷的冬季使用。 另外,在当前越来越严格的排放要求条件下,作为一种较为简单粗糙的氨 氮废水处理工艺,空气吹脱法由于无法达到排放要求(如15 mg?L-1以下),加上氨的回收利用上受到限制,因此采用它的改良方法。

1.2.1.2蒸汽汽提法 蒸汽汽提法是利用蒸汽将废水中的游离氨转变为氨气逸出,处理机理与吹脱法一样,即在高pH值时使废水与气体密切接触,从而降低废水中氨浓度的过程。其传质过程的推动力是气体中氨的分压与废水中氨的浓度相当的平衡分压之间的差值。延长汽水间的接触时间及接触紧密程度可提高NH3-N 的处理效率,用填料塔可以满足此要求。由于采用蒸汽作为工作介质,氨自废水进入蒸汽中,然后在塔顶蒸馏成浓氨水、浓氨气或者液氨回收,或是采用酸吸收成为相应的铵盐。 蒸汽汽提法适用于处理连续排放的高浓度氨氮废水(浓度在1000 mg?L-1以上),操作条件易于控制。对于浓度在1000~30000 mg?L-1,甚至更高浓度的氨氮废水,采用该法可以经一次处理后,氨氮浓度达到15 mg?L-1(国家一级排放标准)以下。 蒸汽汽提脱氨技术因为是以蒸汽为脱氨介质,由于蒸汽价格较高(约200元/吨),因此蒸汽消耗就成为了该技术关键指标。传统蒸汽汽提脱氨技术蒸汽消耗达到300kg/吨废水以上,因此传统蒸汽汽提脱氨技术成本很高。随着近些年来技术的进步,一些在传统蒸汽汽提脱氨技术上研究开发的新型蒸汽汽提脱氨技术已经大大降低了蒸汽单耗,达到了30kg/吨废水,因此新型蒸汽汽提脱氨技术正在高浓度工业氨氮废水处理领域得到广泛地推广应用,为我国氨氮污染物减排起到了强有力的技术支撑作用。 1.2.1.3折点加氯法 折点加氯法是将氯气通入水中,当投入量达到某一值(点)时,水中游离氯含量最低而氨的浓度降为零,当投入量超过该点时,水中的游离氯就会增多。因此,该点称为折点,该状态下的氯化称为折点氯化。折点氯化去除氨的的机理为氯气与氨反应生成无害的氮气,氮气逸入大气。

氨吹脱塔计算

氨吹脱塔计算 高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、垃圾填埋场等均产生大量高浓度氨氮废水。大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,而且将增加给水处理的难度和成本,甚至对人群及生物产生毒害作用[1]。氨氮废水对环境的影响已引起环保领域和全球范围的重视,近20 年来,国内外对氨氮废水处理方面开展了较多的研究。其研究范围涉及生物法、物化法的各种处理工艺,如生物方法有硝化及藻类养殖;物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电化学处理、催化裂解等。新的技术不断出现,在处理氨氮废水的应用方面展现出诱人的前景。本文侧重介绍吹脱法处理高浓度氨氮废水的技术特点及研究应用。 1 吹脱技术 吹脱法用于脱除水中氨氮,即将气体通入水中,使气液相互充分接触,使水中溶解的游离氨穿过气液界面,向气相转移,从而达到脱除氨氮的目的。常用空气作载体(若用水蒸气作载体则称汽提)。 水中的氨氮,大多以氨离子(NH4+)和游离氨(NH3)保持平衡的状态而存在。其平衡关系式如下: NH4++OH- NH3+H2O (1) NH3+H2O→NH4++OH- 氨与氨离子之间的百分分配率可用下式进行计算: Ka=Kw /Kb=(CNH3?CH+)/CNH4+ (2) 式中:Ka———氨离子的电离常数; Kw———水的电离常数; Kb———氨水的电离常数; C———物质浓度。 式(1)受pH 值的影响,当pH值高时,平衡向右移动,游离氨的比例较大,当pH 值为11 左右时,游离氨大致占(氨态氮,杨)90%。 由式(2)可以看出,pH 值是影响游离氨在水中百分率的主要因素之一。另外,温度也会影响反应式(1)的平衡,温度升高,平衡向右移动。表1 列出了不同条件下氨氮的离解率的计算值。表中数据表明,当pH值大于10 时,离解率在80%以上,当pH 值达11时,离解率高达98%且受温度的影响甚微。 表1 不同pH、温度下氨氮的离解率% pH 20℃30℃35℃ 9.0 25 50 58 9.5 60 80 83 10.0 80 90 93 11.0 98 98 98 氨吹脱一般采用吹脱池和吹脱塔2 类设备,但吹脱池占地面积大,而且易造成二次污染,所以氨气的吹脱常采用塔式设备。 吹脱塔常采用逆流操作,塔内装有一定高度的填料,以增加气—液传质面积从而有利于氨气从废水中解吸。常用填料有拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。废水被提升到填料塔的塔顶,并分布到填料的整个表面,通过填料往下流,与气体逆向流动,空气中氨的分压随氨的去除程度增加而增加,随气液比增加而减少。 2 影响因素及液气比的确定 影响游离氨在水中分布的pH 值、温度等因素都会影响吹脱效率。另外气液比、喷淋密度等操作条件也是影响吹脱效率的主要因素。下面以逆流塔为例分析液气比的确定及其影

氨氮废水处理方法

高氨氮废水处理技术 介绍各类氨氮废水处理技术及其原理,包括各种方法的优缺点、适用范围、高浓度氨氮废水处理技术的研究进展。通过对比分析,明确不同类型高氨氮废水处理的选择方法,为治理高氨氮废水提供一条便捷的选择方法。 近年来,随着环境保护工作的日益加强,水体中有机物的代表指标-COD基本上得到有效控制,但是,含高氨氮废水达标排放没有得到有效控制,未经处理的含氮废水排放给环境造成了极大的危害,如易导致湖泊富营养化,海洋赤潮等。本文总结了国内外高氨氮废水处理技术及其优缺点、适用范围等。 1、废水中氨氮处理的主要技术应用与新进展 1.1吹脱法 吹脱法是将废水中的离子态铵(NH4+),通过调节pH值转化为分子态氨,随后被通入的空气或蒸汽吹出。影响吹脱效率的主要因素有:pH值、水温、布水负荷、气液比、足够的气液分离空间。 NH4++OH-→NH3+H2O 炼钢、石油化工、化肥、有机化工等行业的废水,常含有很高浓度的氨,因此常用蒸汽吹脱法处理,回收利用的氨部分抵消了产生蒸汽的高费用。石灰一般用来提高pH值。用蒸汽比用空气更易控制结垢现象,若用烧碱则可大大减轻结垢的程度。吹脱法一般采用填料吹脱塔,主要特征是在塔内装置一定高度的填料层,利用大表面积的填充塔来达到气水充分接触,以利于气水间的传质过程。常用的填料有拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。胡允良等人研究了某制药厂生产乙胺碘呋酮时产生的一部分高浓度氨氮废水的静态吹脱效果。结果表明:当pH=10~13,温度为30~50℃时,氨氮吹脱率为70.3%~99.3%。 氨吹脱法通常用于高浓度氨氮废水的预处理,该处理技术优点在于除氨效果稳定,操作简单,容易控制。但如何提高吹脱效率、避免二次污染及如何控制生产过程水垢的生成都是氨吹脱法需要考虑的问题。 1.2化学沉淀法(MAP法)

高浓度氨氮废水处理工艺

高浓度氨氮废水处理工艺 目前,工业废水、垃圾渗滤液、城市污水等高浓度氨氮废水对水体造成的危害已成为全世界关注的环境问题。绝大部分含氨氮的废水在未经任何处理或处理不达标的情况下直接排入水体,导致水体污染及富营养化,进而影响土壤、空气等。常见的含氮化合物主要包括有机氮、氨氮、亚硝酸盐氮以及硝酸盐氮。其中氨氮是导致水体富营养化的主要污染物,其排放控制已成为目前水处理领域的重点和难点。 氨氮废水的处理方法有很多种,国内外学者针对该问题开展了大量研究。其中吹脱法是传统的高浓度氨氮废水处理方法,其设备占地面积小,操作灵活便捷,但也存在耗能大、处理成本高等缺点。成泽伟等采用超声波强化吹脱去除氨氮,去除率明显高于一般吹脱技术,且升幅超过50%。彭人勇等的研究也显示,超声波对吹脱的强化作用可以让氨氮去除率提升30%~40%。 沸石是含水多孔铝硅酸盐的总称,其晶体构造主要由(SiO)四面体组成,其中的部分Si4+为Al3+取代,导致负电荷过剩,故其结构中有碱金属(碱土金属)等平衡电荷的离子,同时沸石构架中存在较多的空腔和孔道。上述结构决定了沸石具有吸附、离子交换等性质,因此其对氨氮具有很强的选择性吸附能力。 本研究在超声吹脱工艺的基础上,利用改性沸石对超声吹脱后的高浓度氨氮废水进行超声强化吸附处理,考察了沸石粒度、吸附时间、沸石投加量、吸附温度、吸附超声功率等因素对处理效果的影响,以期为高浓度氨氮废水的处理提供参考。 一、实验部分 1.1材料和仪器 实验所处理废水为模拟高浓度氨氮废水,为NH4Cl和超纯水配制的NH4Cl溶液,氨氮质量浓度约为1200mg/L的,实验中以实测浓度为准。 吸附剂选用浙江省缙云县产天然沸石经复合改性后得到的改性沸石,密度2.16g/cm3,硬度3~4,硅铝比4.25~5.25,孔隙率30%~40%。 D-51型pH计:日本HORIBA有限公司;UV765型紫外-可见分光光度计:上海精密化学仪器有限公司;JJ50型精密电子天平:美国双杰兄弟(集团)有限公司;EVOMA15/LS15型扫描电子显微镜:北京欧波同有限公司。 1.2实验方法 1.2.1超声吹脱 实验装置如图1所示。超声波发生器通过将工频电转变为20kHz以上(一般为

吹脱法处理高浓度氨氮废水

吹脱法处理高浓度氨氮废水 作者:周明罗陈建中刘志勇 简介:对垃圾渗滤液处理难点进行了分析,阐述了垃圾渗滤液国内外处理现状、处理工艺对比、以及存在弊端,概述OFR新型专利技术处理垃圾渗滤液的原理、使用范围、技术优势及其推广方向,提出OFR 技术在高浓度有机废水处理有特殊的效果,已成功使用于国内外多家企业,尤其在垃圾渗滤液前预处理和经膜技术处理后的浓液处理方面有广阔的使用前景。 关键字:垃圾渗滤液浓缩液氨氮 高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、垃圾填埋场等均产生大量高浓度氨氮废水。大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,而且将增加给水处理的难度和成本,甚至对人群及生物产生毒害作用[1]。氨氮废水对环境的影响已引起环保领域和全球范围的重视,近20 年来,国内外对氨氮废水处理方面开展了较多的研究。其研究范围涉及生物法、物化法的各种处理工艺,如生物方法有硝化及藻类养殖;物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电化学处理、催化裂解等。新的技术不断出现,在处理氨氮废水的使用方面展现出诱人的前景。本文侧重介绍吹脱法处理高浓度氨氮废水的技术特点及研究使用。 1 吹脱技术 吹脱法用于脱除水中氨氮,即将气体通入水中,使气液相互充分接触,使水中溶解的游离氨穿过气液界面,向气相转移,从而达到脱除氨氮的目的。常用空气作载体(若用水蒸气作载体则称汽提)。 水中的氨氮,大多以氨离子(NH4+)和游离氨(NH3)保持平衡的状态而存在。其平衡关系式如下: NH4++OH-NH3+H2O (1) 氨和氨离子之间的百分分配率可用下式进行计算: Ka=Kw /K b=(C NH3·C H+)/C NH4+(2) 式中:Ka———氨离子的电离常数;

吹脱法处理高浓度氨氮废水

吹脱法处理高浓度氨氮废水 摘要:文章阐述了高浓度氨氮废水的来源及危害,论述了吹脱法处理高浓度氨氮废水的技术原理、影响因素,重点分析了液气比的影响和确定,提出了采用催化氧化法解决吹脱氨气的二次污染问题。 关键字:高浓度氨氮废水吹脱法液气比催化氧化 高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、垃圾填埋场等均产生大量高浓度氨氮废水。大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,而且将增加给水处理的难度和成本,甚至对人群及生物产生毒害作用[1]。氨氮废水对环境的影响已引起环保领域和全球范围的重视,近20 年来,国内外对氨氮废水处理方面开展了较多的研究。其研究范围涉及生物法、物化法的各种处理工艺,如生物方法有硝化及藻类养殖;物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电化学处理、催化裂解等。新的技术不断出现,在处理氨氮废水的应用方面展现出诱人的前景。本文侧重介绍吹脱法处理高浓度氨氮废水的技术特点及研究应用。 1 吹脱技术 吹脱法用于脱除水中氨氮,即将气体通入水中,使气液相互充分接触,使水中溶解的游离氨穿过气液界面,向气相转移,从而达到脱除氨氮的目的。常用空气作载体(若用水蒸气作载体则称汽提)。 水中的氨氮,大多以氨离子(NH4+)和游离氨(NH3)保持平衡的状态而存在。其平衡关系式如下: NH 4++OH-NH3+H2O (1) 氨与氨离子之间的百分分配率可用下式进行计算: Ka=Kw /K b=(C NH3·C H+)/C NH4+(2) 式中:Ka———氨离子的电离常数; Kw———水的电离常数; Kb———氨水的电离常数; C———物质浓度。

吹脱法处理高浓度氨氮废水试验

吹脱法处理高浓度氨氮废水试验 (蔡秀珍 李吉生 温俨) 摘要 本文就吹脱法处理高浓度氨氮废水试验过程,简述了试验技术路线与工艺流程,通过试验结果说明在碱性条件下,采用加温通空气吹脱处理高浓度氨氮废水,具有较好的处理效果,氨氮去除率可达95%以上,且无二次污染,工艺简单,操作简便,并对此法在生产中应用的可能性进行了探讨。 关键词 废水 氨氮 吹脱 处理 1.前言 太原市氨氮废水污染源主要来自太原化肥厂,该厂又主要来自纯碱车间生产废水,其废水中氨氮浓度平均在3000~4000mg/L,且流量大(100m3/h)。 氨氮废水处理有生物降解法,离子交换法,电渗析法、反渗透法、等效点氯化法等多种方法,但至今国内均未很好地推广应用于对高浓度氨氮废水的处理生产工艺。本文针对太原化肥厂纯碱车间高浓度氨氮废水采用吹脱法进行处理试验研究以及应用于生产的可能性作一论述。 2.吹脱法去除废水中氨氮的原理 在碱性条件下,大量空气与废水接触,使废水中氨氮转换成游离氨被吹出,以达去除废水中氨氮的目的。此法也叫氨解析法,解析速率与温度、气液比有关。气体组份在液面的分压和液体内的浓度成正比。解析时气膜总通量通常由下式表示: G=K?F(Co-C)?t 式中:G:t时间内逸出液体的气体总量 Co:液体内气体的实际浓度 C:扩散达到平衡时浓度 F:传质面积 K:解析系数 3.实验技术路线与处理流程 3.1絮凝沉淀,比较几种絮凝剂的絮凝沉淀效果,去除废水中悬浮物(SS)杂质。 3.2加碱调节pH值,确定吹脱法处理最佳pH值范围。 3.3试验最佳吹脱温度和最佳气液比。 3.4对吹脱出氨气进行吸收试验,避免二次污染。 3.5处理工艺流程(见图1) 4.实验结果 4.1加入三种不同絮凝剂,废水中悬浮物(SS)去除率为82.7~92.8%,氨氮(NH3-N)去除率为 5.6~9.9%(表1)。 4.2在pH>10条件下,通空气吹脱试验, NH3-N总去除率为66%。(p.v.c吹脱柱 50mm、H2000mm内装卵石填料)(表2) 表1 絮凝沉淀试验结果 絮凝剂沉降速率SS(mg/L)N H3-N(mg/L) 种类(cm/min)原水浓度处理后浓度去除率%原水浓度处理后浓度去除率% 1# 1.0347.625.292.83380.283192.18 5.6 2#0.4347.633.390.43380.28-- 3#0.5347.660.482.73380.283044.689.9

氨氮吹脱塔方案

氨氮吹脱系统技术方案 2013年4月18日

一、方案设计依据: 1、废水水量:每小时额定处理量50立方 2、进水氨氮含量2800mg/L 3、出水氨氮要求:15mg/L 二、氨氮吹脱原理介绍 氨氮在废水中主要以铵离子(NH4+)和游离氨(NH3)状态存在,其平衡关系如下所示: NH3+H2O—NH4+ +OH- 这个关系受pH值的影响,当pH值高时,平衡向左移动,游离氨的比例增大。常温时,当pH值为7左右时氨氮大多数以铵离子状态存在,而pH为11左右时,游离氨大致占98%。不同pH、温度下氨氮的离解率详见表。 不同pH、温度下氨氮的离解率(%) 当水的pH值升高,呈游离状态的氨易于逸出。若加以搅拌、曝气等物理作用更可促使氨从水中溢出。在实际工程中大多采用吹脱塔。吹脱塔的构造一般采用气液接触装置,在塔的内部填充材料,用以提高接触面积。调节pH值后的水从塔的上部淋洒到填料上而形成水滴,顺着填料的间隙次第落下,与由风机从塔底向上或水平方向吹送的蒸

汽逆流接触,完成传质过程,使氨由液相转为气相,随蒸汽排放,完成吹脱过程。 三、运行条件 进水pH值≥11 进水温度≥30℃ SS含量≤50mg/L 四、工艺流程说明 氨氮废水首先进入调节池将pH值调到11左右,然后泵入吹脱塔的液体分布器,同时蒸汽在风机的作用下进入氨氮吹脱塔塔体下方进气口,并且充满进气段空间,然后匀压上升到填料段。在填料的表面上,蒸汽将游离状态的氨吹出,由排气口排至吸收塔;出水流入中间池。 五、预期处理效果 废水经吹脱塔吹脱后,氨氮去除率达到90%,氨氮含量≤280mg/L.经二级吹脱后,氨氮去除率达到95%,氨氮含量≤14mg,达到排放标准。 六、占地面积 氨氮吹脱项目主要为设备,设备主体面积4*4(两台)平米,考虑附属设备占地及设备间距,总占地面积约50平米。

去除氨氮的有效方法

根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。 故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术。目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。 1.折点氯化法去除氨氮 折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。处理氨氮污水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg 氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。 折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。折点氯化法除氨机理如下: Cl2+H2O→HOCl+H++Cl- NH4++HOCl→NH2Cl+H++H2O NHCl2+H2O→NOH+2H++2Cl- NHCl2+NaOH→N2+HOCl+H++Cl- 折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。 2.选择性离子交换化去除氨氮 离子交换是指在固体颗粒和液体的界面上发生的离子交换过程。离子交换法选用对NH4+离子有很强选择性的沸石作为交换树脂,从而达到去除氨氮的目的。沸石具有对非离子氨的吸附作用和与离子氨的离子交换作用,它是一类硅质的阳离子交换剂,成本低,对NH4+有很强的选择性。 O.Lahav等用沸石作为离子交换材料,将沸石作为一种把氨氮从废水中分离出来的分离器以及硝化细菌的载体。该工艺在一个简单的反应器中分吸附阶段和生物再生阶段两个阶段进行。在吸附阶段,沸石柱作为典型的离子交换柱;而在生物再生阶段,附在沸石上的细菌把脱附的氨氮氧化成硝态氮。研究结果表明,该工艺具有较高的氨氮去除率和稳定性,能成功地去除原水和二级出水中的氨氮。 沸石离子交换与pH的选择有很大关系,pH在4~8的范围是沸石离子交换的最佳区域。当pH<4时,H+与NH4+发生竞争;当pH>8时,NH4+变为NH3而失去离子交换性能。用离子交换法处理含氨氮10~20mg/L的城市污水,出水浓度可达1mg/L以下。离子交换法具有工艺简单、投资省去除率高的特点,适用于中低浓度的氨氮废水(<500mg/L),对于高浓度的氨氮废水会因树脂再生频繁而造成操作困难。但再生液为高浓度氨氮废水,仍需进一

高低浓度氨氮废水处理工艺的对比

高低浓度氨氮废水处理工艺的对比 导读:污水中因氨氮浓度不同分为高低浓度氨氮废水,在实际应用中氨氮浓度大于500PPM的废水需要预处理(称为高氨氮废水 ),然后配合低氨氮废水的处理工艺进行最后的脱氮,因高氨氮废水与低氨氮废水采用的工艺不同,本文大体介绍一下。 污水中因氨氮浓度不同分为高低浓度氨氮废水,在实际应用中氨氮浓度大于500PPM的废水需要预处理(称为高氨氮废水),然后配合低氨氮废水的处理工艺进行最后的脱氮,因高氨氮废水与低氨氮废水采用的工艺不同,本文大体介绍一下! 1、高浓度氨氮废水处理技术 (1)吹脱法 将空气通入废水中,使废水中溶解性气体和易挥发性溶质由液相转入气相,使废水得到处理的过程称为吹脱,常见的工艺流程见图1。 吹脱法的基本原理是气液相平衡和传质速度理论。将氨氮废水pH 调节至碱性,此时,铵离子转化为氨分子,再向水中通入气体,使其与液体充分接触,废水中溶解的气体和挥发性氨分子穿过气液界面,转至气相,从而达到去除氨氮的目的。常用空气或水蒸气作载气,前者称为空气吹脱,后者称为蒸汽吹脱。 蒸汽吹脱法效率较高,氨氮去除率能达到90%以上,但能耗较大,一般应用在炼钢、化肥、石油化工等行业,其优点是可回收利用氨,经过吹脱处理后可回收到氨质量分数达30%以上的氨水。空气吹脱法的效率虽比蒸汽法的低,但能耗低、设备简单、操作方便。在氨氮总量不高的情况下,采用空气吹脱法比较经济,同时可用硫酸作吸收剂吸收吹脱出的氨氮,生成的硫酸铵可制成化肥。 但是在大规模的氨吹脱-汽提塔生产过程中,产生水垢是较棘手的问题。通过安装喷淋水系统可有效解决软质水垢问题,可是对于硬质水垢,喷淋装置也无法消除。此外,低温时氨氮去除率低,吹脱的气体形成二次污染。因此,吹脱法一般与其他氨氮废水处理方法联合运用,用吹脱法对高浓度氨氮废水进行预处理。

高氨氮废水吹脱处理操作规程

第一章、工程概况一、设计水量 ?设计小时处理量:设计水量为8 T/h 二、原水水质 根据业主提供提供资料,废水性质如表1: 表1 设计废水水质 三、处理出水指标 ?出水指标:氨氮≤150mg/l ?烟囱排放高度:H=15m 四、氨氮处理系统其它进水条件 ?pH调节:NaOH调碱至11~12,硫酸回调至7~8 ?进水温度:T ≥30℃

五、 废水处理工艺流程设计 1、 流程如图1所示: 图 1 工艺流程图 2、工艺流程说明 事故池的废水由泵提升至管道混合器调pH 后进入预处理塔,同时碱泵将碱打管道混合器。经预处理塔处理后出水进入超声水池,污水经过调节pH 至11~12及加入脱氮剂后超声处理,污水中的氨在超声空化的作用下,加速了污水中氨及铵盐的分解,再经过泵提升至氨吹脱吸收塔(我公司专利)处理后,污水的氨氮指标可以降到150mg/L 以下。脱胺后的废水进入pH 回调池,后进入后续生化处理系统。 吹脱出的含氨废气进入回收塔,由泵将循环水箱的吸收液打至吸收段将废气中的氨吸收,净化气外排,当吸收液达到饱和状态,及时将饱和溶液打到指定储罐并向回收塔添加 净外气外排 回收液至贮罐

新的吸收液。预处理塔及超声水池的含氨废气进入2#回收塔净化,过程与1#回收塔同,净化气外排入大气环境。 六、设备一览表

第二章、操作程序 一、系统检查 (1)设备检查:系统运行前,对系统每台设备状况及系统管道要全面仔细检查。(2)系统检查:系统运行前检查级超声池水位,碱槽液位,吹脱吸收塔下的水位。仔细查看各个管道阀门的起闭情况。 二、开机程序 (1)开启原水提升泵将废水泵入预处理塔,同时启动加药泵、超声风机及引风机,根据流量计控制好水泵加药量进行PH调节,PH值应控制在11.5以上;待pH调节及超声水池有一定水位,开启吹脱风机、循环水泵2--5分钟后启动超声水池废水提升泵。

氨氮吹脱塔方案

氨氮吹脱系统 技术方案 2013年4月18日、方案设计依据: 1、废水水量:每小时额定处理量50立方

2、进水氨氮含量2800mg/L 3、出水氨氮要求:15mg/L 二、氨氮吹脱原理介绍 氨氮在废水中主要以铵离子(NHf)和游离氨(NH)状态存在,其平衡关系如下所示:NH3+H2O — NH*+0H这个关系受pH值的影响,当pH值高时,平衡向左移动,游离氨的比例增大。常温时,当pH值为7 左右时氨氮大多数以铵离子状态存在,而pH为11左右时,游离氨大致占98%不同pH温度下氨氮的离解率详见表。 不同pH、温度下氨氮的离解率(%) 当水的pH值升高,呈游离状态的氨易于逸出。若加以搅拌、曝气 等物理作用更可促使氨从水中溢出。在实际工程中大多采用吹脱塔。吹脱塔的构造一般采用气液接触装置,在塔的内部填充材料,用以提高接触面积。调节pH值后的水从塔的上部淋洒到填料上而形成水滴, 顺着填料的间隙次第落下,与由风机从塔底向上或水平方向吹送的蒸

汽逆流接触,完成传质过程,使氨由液相转为气相,随蒸汽排放,完成吹脱过程。 三、运行条件 进水pH值》11 进水温度》30 C SS含量w 50mg/L 四、工艺流程说明 氨氮废水首先进入调节池将pH值调到11左右,然后泵入吹脱塔的液体分布 器, 同时蒸汽在风机的作用下进入氨氮吹脱塔塔体下方进气口, 并且充满进气段空 间,然后匀压上升到填料段。在填料的表面上,蒸汽将游离状态的氨吹出, 由排 气口排至吸收塔;出水流入中间池。 五、预期处理效果 废水经吹脱塔吹脱后,氨氮去除率达到90%氨氮含量w 280mg/L. 经二级吹脱后,氨氮去除率达到95%,氨氮含量w 14mg达到排放标准。 六、占地面积 氨氮吹脱项目主要为设备,设备主体面积4*4(两台)平米,考虑附属设备占地及设备间距,总占地面积约50 平米。

高氨氮废水处理——Bardenpho工艺

三种高氨氮废水处理工艺 【格林大讲堂】 一、Bardenpho工艺 该工艺是在A/O工艺基础上,增设了一个缺氧段和好氧段,各段反应池均独立运行,混合液自第一好氧池回流至第一缺氧池而第二好氧池无混合液回流(因而须注意,第二缺氧池和第二好氧池并非组成一级A/O工艺)所增设的缺氧段和好氧段起强化脱氨和提高处理出水水质的作用。 武汉格林环保有完善的服务体系和配套的专业环境工程团队,秉着崇高的环保责任和义务长期维护提供免费的污水处理解决方案,是湖北省工业废水运营管理行业中的品牌。18年来公司设计并施工了上百个交钥匙式的污水处理工程。 运行过程中,第一好氧池的内部回流混合液、原水中的有机基质及回流污泥进入第一厌氧池,进行反硝化脱氮。由于第一厌氧池进水中含有较多内碳源可利用因而具有较高的反硝化速率,但与其进水中的食料比有关。好氧一池的容积一般可按F./M为0.25考虑;在厌氧二池中,由于好氧二池出水中有机物浓度较低,同时也没有外加碳源因而反硝化菌主要通过内源呼吸作用,以细胞内碳源进行反硝化,因此反硝化效率较低,并与系统的污泥龄有关。但这种反硝化作用可有效地提高整个处理系统的反硝化程度,从而利于提高脱氮效率。 必要时,可将少部分进水引入厌氧二池以适当补充碳源,提高其反硝化速率。该工艺中好氧二池的主要作用是进一步降低废水中的有机物浓度,同时改善出水的表观性状

由于增设了厌氧二池和好氧二池强化处理作用,该工艺的脱氮效率可以高达90%~95%(城市污水)。 二、BABE工艺 在通常的废水生物处理工艺中,其污泥经浓缩的上层液或氧化处理后脱水滤液均需返回至主体工艺进行处理。由于污泥浓缩上层液或脱水滤液中富含氮,因而其向主体工艺的返回将增加主体工艺的处理负荷,从而影响处理出水中氮的指标。 BABE在运行过程中将以A/O方式运行的处理工艺主流程中回流污泥的一部分分流入BABE间歇曝气池,BABE所处理的对象为含有高浓度的TN的污泥浓缩上层液或污泥脱水滤液。通过BABE池的间歇曝气运行,不仅有效地延长了处理工艺的污泥龄,并可对其进液中的氮实现充分的硝化作用,同时由于BABE池的良好消化条件,即较低的有机负荷及良好的温度控制(一般将温度控制在30℃),有效地提高了污泥中硝化菌的数量。 BABE池经间歇曝气后富含硝化菌的混合液、内回流与进水一起进入A/O工艺主流程,可实现充分的反硝化脱氮,强化了系统对氮的去处作用。 三、超声吹脱处理氨氮 超声吹脱法去除氨氮是一种新型、高效的高浓度氨氮废水处理技术,它是在传统的

高浓度氨氮废水处理

高浓度氨氮废水处理 过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。 王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。吹脱法在低温时氨氮去除效率不高。 王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。最佳工艺条件为pH=11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L以内。 为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。 Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。 1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。 Milan等[5]用沸石离子交换法处理经厌氧消化过的猪肥废水时发现Na-Zeo、Mg-Zeo、Ca-Zeo、k-Zeo 中Na-Zeo沸石效果最好,其次是Ca-Zeo。增加离子交换床的高度可以提高氨氮去除率,综合考虑经济原因和水力条件,床高18 cm(H/D=4),相对流量小于7.8BV/h是比较适合的尺寸。离子交换法受悬浮物浓度的影响较大。 应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。 1.3 膜分离技术 利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。蒋展鹏等[6]采用电渗析法和聚丙烯(PP)中空纤维膜法处理高浓度氨氮无机废水可取得良好的效果。电渗析法处理氨氮废水2000~3000 mg/L,去除率可在85%以上,同时可获得8.9%的浓氨水。此法工艺流程简单、不消耗药剂、运行过程中消耗的电量与废水中氨氮浓度成正比。PP中空纤维膜法脱氨效率>90%,回收的硫酸铵浓度在25%左右。运行中需加碱,加碱量与废水中氨氮浓度成正比。 乳化液膜是种以乳液形式存在的液膜具有选择透过性,可用于液-液分离。分离过程通常是以乳化液膜

高浓度氨氮废水处理方法与工艺

高浓度氨氮废水处理 废水处理, 高浓度废水处理, 高浓度 过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。 王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。吹脱法在低温时氨氮去除效率不高。

王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。最佳工艺条件为pH=11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L 以内。 为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。 Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。 1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。

相关文档
最新文档