第七章_一元一次不等式单元测试卷提高卷 2

合集下载

一元一次不等式测试卷及答案

一元一次不等式测试卷及答案

=================================================一元一次不等式测试卷姓名:___________班级:___________一、选择题(本大题共12小题,共36分) 1.若x <y ,则下列式子不成立的是( ) A .x ﹣1<y ﹣1B .﹣2x <﹣2yC .x+3<y+3D .<2. 给出下列数学表达式:①﹣3<0;②4x+3y >0;③x =5;④x 2﹣xy+y 2;⑤x+2>y ﹣7.其中不等式的个数是( ) A .5个 B .4个C .3个D .2个3.若13)21||=+--y a xa (是关于x ,y 的二元一次方程,则a=( )A .-2B .2C .2或-2D .04.如果不等式(a ﹣3)x <b 的解集是x >,那么a 的取值范围是( ) A .a >0 B .a <0C .a >3D .a <35.已知是不等式kx+2y ≤﹣5的一个解,则整数k 的最小值为( )A .3B .4C .5D .﹣56. 如下图所示,在数轴上表示1x <-的解集,正确的是( )7. 某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x 道题,则他答错或不答的题数为20﹣x .根据题意得( ) A .10x ﹣5(20﹣x )≥120 B .10x ﹣5(20﹣x )≤120C .10x ﹣5(20﹣x )>120D .10x ﹣5(20﹣x )<1208. 某景点普通门票每人50元,20人以上(含20人)的团体票六折优惠.现有一批游客不足20人,但买20人的团体票所花的钱,比各自买普通门票平均每人会便宜至少10元,这批游客至少有( ) A .14B .15C .16D .179. 小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .B .C .D .A .19B .18C .16D .1510. 已知关于x 的不等式23x a ->-的解集如图所示,则a 的值是( )A .0B .1-C .1D .211. 某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打( ) A .六折B .七折C .八折D .九折12. 已知关于x 的不等式ax<b 的解为x>-2,则下列关于x 的不等式中,解为x<2的是( )A.ax+2<-b+2B.ax>bC.xa<-1bD.-ax-1<b-1二、填空题(本大题共6小题,共18.0分)13. 比较2,375,的大小(用“<”连接) . 14. 若x,y 满足062||=-++-y x y x ,则xy 的平方根为 . 15. 不等式>的非负整数解为 .16. 现定义一种新的运算:a*b =a 2﹣2b ,例如:3*4=32﹣2×4=1,则不等式(﹣2)*x ≥0的解集为 . 17. 已知关于x ,y 的方程组的解满足不等式2x+y >8,则m 的取值范围是 .18. 不等式﹣4x ﹣k ≤0的负整数解是﹣1,﹣2,那么k 的取值范围是 . 三、解答题(本大题共6小题,共46.0分)19.(8分)(1)解不等式3(2)862(1)x x +---≥,并把解集在数轴上表示出(2)解不等式1312≤--x x ,并在数轴上表示它的解集.21.(8分)若不等式 的最小整数解是方程 的解,求m的值.22.(8分)某小店每天需水1m 3,而自来水厂每天只供一次水,故需要做一个水箱来存水。

数学沪科版七年级下册第7章一元一次不等式与一元一次不等式组单元测试(Word版 含答案)

数学沪科版七年级下册第7章一元一次不等式与一元一次不等式组单元测试(Word版 含答案)

初中数学沪科版(2012)七年级下册第7章一元一次不等式与一元一次不等式组单元测试一、选择题1.不等式组211,420x x ->⎧⎨-≤⎩的解集是( ) A .x≤2B .1<x≤2C .x >1D .x≥2 2.若不等式ax+x>1+a 的解集是x>1,则a 必须满足的条件是( )A .a 1<-B .a 1<C .a 1>-D .a 1>3.若不等式组-00x b x a <⎧⎨+>⎩的解集为2<x<3,则a,b 的值分别为( ) A .-2,3 B .2,-3 C .3,-2 D .-3,24.下面说法正确的是( )A .x=3是不等式2x>3的一个解B .x=3是不等式2x>3的解集C .x=3是不等式2x>3的唯一解D .x=3不是不等式2x>3的解5.若不等式组0,122x a x x -≥⎧⎨->-⎩有解,则a 的取值范围是( ) A .a >-1B .a≥-1C .a≤1D .a <1 6.不等式组3(2)423x x a x x --≤⎧⎪+⎨>⎪⎩无解,则a 的取值范围是( ) A .a<1B .a≤1C .a>1D .a≥17.下列各对不等式中,解集不相同的一对是( )A .34227x x -+<与7(3)2(42)x x --<+B .31244x x +>-与31x >-C .22123x x +-≥与()()32221x x +≥- D .1923x x -+<与()()3129+x x -<- 8.不等式组21241x x x x ><-⎧⎨+-⎩的解集为( ) A .x>13 B .x>1 C .13>x>1 D .空集9.如果关于x 的不等式x >2a ﹣1的最小整数解为x=3,则a 的取值范围是( )A .0<a <2B .a <2C .32≤a <2D .a ≤210.甲、乙两人从相距24km 的A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度( )A .小于8km/hB .大于8km/hC .小于4km/hD .大于4km/h11.在关于x 、y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )A .B .C .D .12.若x >y >则下列不等式不一定成立的是( )A .x >1>y >1B .2x >2yC .2x >y 2 D .x 2>y 213.若m> -1,则下列各式中错误的是( )A .6m> -6B .-5m< -5C .m+1>0D .1-m<2 14.不等式72x -+1<322x -的负整数解有( ) A .1个 B .2个 C .3个 D .4个15.不等式﹣3x>1的解集是( )A .x>>2B .x>>13C .x>>13D .x>4二、填空题 16.若a b <,则不等式组x a x b >⎧⎨>⎩的解集是________,不等式组x a x b>⎧⎨<⎩的解集是_________,不等式组x a x b <⎧⎨>⎩的解集是_________. 17.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为___________>18.如图,左边物体的质量为xg ,右边物体的质量为50g ,用不等式表示下列数量关系是______.19.若不等式组1{21x m x m <+>-无解,则m 的取值范围是______.20.如图所示的不等式的解集是________.三、解答题21.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.22.已知实数x、y满足2x+3y=1.(1)用含有x的代数式表示y;(2)若实数y满足y>1,求x的取值范围;(3)若实数x、y满足x>﹣1,y≥﹣12,且2x﹣3y=k,求k的取值范围.23.解不等式组12215(1)xx x⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.24.解不等式1211232x x--≤,并把它的解集在数轴上表示出来.参考答案1.D2.A3.A4.A5.D6.B7.D8.B9.C10.B11.C12.D13.B14.A15.C 16.x b > a x b << 无解17.x <218.50x >19.m≥220.x≤221.(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析22.(1)y=123x -;(2)x <﹣1;(3)﹣5<k ≤4. 23.2<x≤2,不等式组的整数解为>1>0>1>2>24.x≥-3,数轴见解析.。

《一元一次不等式》综合提优卷(含答案)

《一元一次不等式》综合提优卷(含答案)

《一元一次不等式》综合提优卷(含答案)一.选择题(共10小题)1.如果a>b,那么下列结论中,正确的是()A.a﹣1>b﹣1 B.1﹣a>1﹣b C.D.﹣2a>﹣2b 2.不等式2x+3<﹣1的解集是()A.x>2 B.x<﹣2 C.x<1 D.x>﹣23.不等式组的解集为()A.x<﹣3 B.x≤2 C.﹣3<x≤2 D.无解4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.不等式组的解集在数轴表示正确的是()A.B.C.D.6.已知关于x的不等式组的最小整数解是2,则实数m的取值范围是()A.﹣3≤m<﹣2 B.﹣3<m≤﹣2 C.﹣3<m<﹣2 D.﹣3≤m≤﹣2 7.关于x的不等式组有3个整数解,则a的取值范围是()A.﹣2<a≤﹣1 B.﹣2≤a<﹣1 C.﹣3<a≤﹣2 D.﹣3≤a<﹣2 8.码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.轮船到达目的地后开始卸货,由于遇到紧急情况,需要将船上的货物不超过五天卸载完毕,那么平均每天至少要卸载货物的重量为()A.60吨B.48吨C.40吨D.30吨9.如果关于x的方程的解是非负数,那么a与b的关系是()A.a b B.b a C.a b D.a b10.某商店计划用不超过2000元的资金,购进甲、乙两种单价分别为30元、60元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利5元、15元,两种商品均售完.若所获利润大于380元,则该店进货方案有()A.3种B.4种C.5种D.6种二.填空题(共10小题)11.3的解集是.12.不等式组的解集是.13.若不等式组无解,则m的取值范围是.14.当m的取值范围是时,关于x的方程1的解不大于11.15.规定[x]为不大于x的最大整数,如[0.7]=0,[﹣2.3]=﹣3,若[x+0.5]=2,且[1﹣x]=﹣2,则x的取值范围为.16.某商店的老板销售一种商品,他要以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价元商店老板才能出售.17.已知关于x的不等式组恰有三个整数解,则t的取值范围为.18.对于整数a,b,c,d,符号表示运算ad﹣bc,已知13,则bd的值是.19.一辆公交车每月的支出费用为3000元,乘车平均票价为1.5元/人,设每月有x人乘坐该公交车,每月收入与支出的差额为y元,当每月乘客量达到人以上时,该公交车才不会亏损.20.某班男女同学分别参加植树劳动,要求男女同学各种8行树,男同学种的树比女同学种的树多,如果每行都比预定的多种一棵树,那么男女同学种树的数目都超过100棵;如果每行都比预定的少种一棵树,那么男女同学植树的数目都达不到100棵.这样原来预定男同学种树棵;女同学种树棵.三.解答题(共8小题)21.解不等式组:.22.解不等式组:并把它的解集在数轴上表示出来.23.已知关于x的不等式组.(1)当k为何值时,该不等式组的解集为﹣2<x<3;(2)若该不等式组只有2个正整数解,求k的取值范围.24.如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x﹣1=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组的关联方程是;(填序号)(2)若不等式组的一个关联方程的解是整数,则这个关联方程可以是;(写出一个即可)(3)若方程1﹣x=﹣7+3x,6(x)=10﹣x都是关于x的不等式组的关联方程,直接写出m的取值范围.25.某市教育局对某镇实施“教育精准扶贫”,为某镇建了中、小两种图书馆.若建立3个中型图书馆和5个小型图书馆需要30万元,建立2个中型图书馆和3个小型图书馆需要19万元.(1)建立每个中型图书馆和每个小型图书馆各需要多少万元?(2)现要建立中型图书馆和小型图书馆共10个,小型图书馆数量不多于中型图书馆数量,且总费用不超过44万元,那么有哪几种方案?26.某校计划购进A,B两种树木共100棵进行校园绿化,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A,B两种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.27.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元,超出200元的部分按80%收费;在乙商场累计购物超过100元,超出100元的部分按85%收费.已知小红在同一商场累计购物x元,其中x>200.(1)当x=300时,小红在甲商场需花费元,在乙商场需花费元.(2)分别用含x的代数式表示小红在甲、乙商场的实际花费.(3)当小红在同一商场累计购物超过200元时,通过计算说明小红在哪家商场购物的实际花费少.28.先阅读短文,然后回答短文后面所给出的问题:对于三个数a、b、c的平均数,最小的数都可以给出符号来表示,我们规定M{a,b,c}表示a,b,c这三个数的平均数,min{a,b,c}表示a,b,c这三个数中最小的数,max{a,b,c}表示a,b,c这三个数中最大的数.例如:M{﹣1,2,3},min{﹣1,2,3}=﹣1,max{﹣1,2,3}=3;M{﹣1,2,a},min{﹣1,2,a}.(1)请填空:max{c﹣1,c,c+1}=;若m<0,n>0,min{3m,(n+3)m,﹣mn}=;(2)若min{2,2x+2,4﹣2x}=2,求x的取值范围;(3)若M{2,x+1,2x}=min{2,x+1,2x},求x的值.一.选择题(共10小题)1.如果a>b,那么下列结论中,正确的是()A.a﹣1>b﹣1 B.1﹣a>1﹣b C.D.﹣2a>﹣2b 【分析】根据不等式的性质对各选项分析判断后利用排除法求解.【解答】解:A、a>b两边都减去1得a﹣1>b﹣1,故本选项正确;B、a>b两边都乘以﹣1再加1得1﹣a<1﹣b,故本选项错误;C、a>b两边都乘以得,故本选项错误;D、a>b两边都乘以﹣2得,﹣2a<﹣2b,故本选项错误.故选:A.【点评】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.不等式2x+3<﹣1的解集是()A.x>2 B.x<﹣2 C.x<1 D.x>﹣2【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:2x<﹣1﹣3,合并同类项,得:2x<﹣4,系数化为1,得:x<﹣2,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3.不等式组的解集为()A.x<﹣3 B.x≤2 C.﹣3<x≤2 D.无解【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式x﹣1>2x+2,得:x<﹣3,解不等式2+5x≤3(6﹣x),得:x≤2,则不等式组的解集为x<﹣3.故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣3≥0,得:x≥1,解不等式x﹣1<5﹣x,得:x<3,则不等式组的解集为1≤x<3,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.不等式组的解集在数轴表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+1≤3,得:x≤2,解不等式﹣2x﹣6<﹣4,得:x>﹣1,则不等式组的解集为﹣1<x≤2,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.已知关于x的不等式组的最小整数解是2,则实数m的取值范围是()A.﹣3≤m<﹣2 B.﹣3<m≤﹣2 C.﹣3<m<﹣2 D.﹣3≤m≤﹣2 【分析】分别求出每一个不等式的解集,根据口诀:同大取大及不等式组的最小整数解求解即可.【解答】解:解不等式2,得:x≥4+m,解不等式x﹣4≤3(x﹣2),得:x≥1,∵不等式组的最小整数解是2,∴1<4+m≤2,解得﹣3<m≤﹣2,故选:B.【点评】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.关于x的不等式组有3个整数解,则a的取值范围是()A.﹣2<a≤﹣1 B.﹣2≤a<﹣1 C.﹣3<a≤﹣2 D.﹣3≤a<﹣2 【分析】分别求出每个不等式的解集,结合不等式组整数解的个数可得a的取值范围.【解答】解:解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,则不等式组的解集为a<x<2,∵不等式组有3个整数解,∴不等式组的整数解为1、0、﹣1,则﹣2≤a<﹣1,故选:B.【点评】本题主要考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式的基本步骤,并根据不等式组整数解的情况确定字母a的取值范围.8.码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.轮船到达目的地后开始卸货,由于遇到紧急情况,需要将船上的货物不超过五天卸载完毕,那么平均每天至少要卸载货物的重量为()A.60吨B.48吨C.40吨D.30吨【分析】首先根据题意可知总工作量为30×8=240吨不变,故卸货速度v与卸货时间t 之间为反比例关系,即vt=240,将t≤5代入,即可求出答案.【解答】解:设轮船上的货物总量为k吨,根据已知条件得k=30×8=240,所以v关于t的函数关系式为v,∵v,∴t,∵t≤5,∴5,解得:v≥48.即平均每天至少要卸载48吨.故选:B.【点评】本题考查了一元一次不等式的应用,解答该类问题的关键是确定两个变量之间的函数关系.9.如果关于x的方程的解是非负数,那么a与b的关系是()A.a b B.b a C.a b D.a b【分析】解方程求出x,根据方程的解是非负数得出0,求出不等式的解集即可.【解答】解:,5(2x+a)=3(4x+b),10x+5a=12x+3b,10x﹣12x=3b﹣5a,﹣2x=3b﹣5a,x,∵关于x的方程的解是非负数,∴0,解得:a b,b a,故选:C.【点评】本题考查了解一元一次方程,一元一次方程的解,解一元一次不等式等知识点,能求出方程的解是解此题的关键.10.某商店计划用不超过2000元的资金,购进甲、乙两种单价分别为30元、60元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利5元、15元,两种商品均售完.若所获利润大于380元,则该店进货方案有()A.3种B.4种C.5种D.6种【分析】设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据“购进甲乙商品不超过2000元的资金、两种商品均售完所获利润大于380元”列出关于x的不等式组,解之求得整数x的值即可得出答案.【解答】解:设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据题意,得:,解得:x<37,∵x为整数,∴x=34、35、36,∴该店进货方案有3种,故选:A.【点评】本题主要考查一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出不等式组.二.填空题(共10小题)11.3的解集是x≥7.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项可得.【解答】解:去分母,得:x﹣1≥6,移项、合并,得:x≥7,故答案为:x≥7.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.不等式组的解集是3≤x<4.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式1<1,得:x<4,解不等式2﹣3x≤﹣7,得:x≥3,则不等式组的解集为3≤x<4,故答案为:3≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.若不等式组无解,则m的取值范围是m≤2.【分析】求出第一个不等式的解集,根据口诀:大大小小找不到可得答案.【解答】解:解不等式x﹣2<3x﹣6,得:x>2,∵不等式组无解,∴m≤2,故答案为:m≤2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.当m的取值范围是m≤1时,关于x的方程1的解不大于11.【分析】解关于x的方程得出x,再根据解不大于11得出关于m的不等式,解之可得答案.【解答】解:解关于x的方程1得x,根据题意,得:11,解得m≤1,故答案为:m≤1.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.规定[x]为不大于x的最大整数,如[0.7]=0,[﹣2.3]=﹣3,若[x+0.5]=2,且[1﹣x]=﹣2,则x的取值范围为2<x<2.5.【分析】根据新定义得出2≤x+0.5<3且﹣2≤1﹣x<﹣1,再分别求出其解集,继而找到其解集的公共部分即可.【解答】解:∵[x+0.5]=2,且[1﹣x]=﹣2,∴2≤x+0.5<3且﹣2≤1﹣x<﹣1,解2≤x+0.5<3得1.5≤x<2.5,解﹣2≤1﹣x<﹣1得2<x≤3,∴2<x<2.5,故答案为:2<x<2.5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.某商店的老板销售一种商品,他要以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价120元商店老板才能出售.【分析】设这件商品的进价为x,根据题意可得高出进价80%的价格标价为360元,列出方程,求出x的值,然后再求出最低出售价,用标价﹣最低出售价即可得出答案.【解答】解:设这件商品的进价为x.根据题意得:(1+80%)•x=360,解得:x=200.盈利的最低价格为200×(1+20%)=240,则商店老板最多会降价360﹣240=120(元).故答案为:120.【点评】本题考查一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.17.已知关于x的不等式组恰有三个整数解,则t的取值范围为t.【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出:一定存在一个整数k,满足满足下列关系:,并分情况讨论得出k的取值,再得t的取值范围.【解答】解:解不等式①得:x,解不等式②得:x<3﹣2t,则不等式组的解集为:x<3﹣2t,∵不等式组有3个整数解,∴一定存在一个整数k,满足满足下列关系:,解不等式组①得,,解不等式组②得,,(1)当,即时,则,于是,,解得,,∴k,∵k为整数,∴k=3,∴,∴t;(2)当时,即时,不存在整数k,∴此时无解;(3)当,此时无解;(4)当,即k时,则,于是,,解得,,∴,不存在整数k,∴此时无解.综上,t.故答案为:t.【点评】本题考查一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.难点是由不等式组有3个整数解,得出t的不等式组,以及分情况解k及t.难度大.18.对于整数a,b,c,d,符号表示运算ad﹣bc,已知13,则bd的值是2.【分析】根据题中已知条件得出关于bd的不等式,直接进行解答即可.【解答】解:已知13,即1<4﹣bd<3所以解得1<bd<3因为b,d都是整数,则bd一定也是整数,因而bd=2.【点评】读懂题目,把题目中的式子转化为一般的式子是解决本题的关键.19.一辆公交车每月的支出费用为3000元,乘车平均票价为1.5元/人,设每月有x人乘坐该公交车,每月收入与支出的差额为y元,当每月乘客量达到2000人以上时,该公交车才不会亏损.【分析】设当每月乘客量达到x人以上时,该公交车才不会亏损,根据题意列出不等式,求出不等式的解集即可.【解答】解:设当每月乘客量达到x人以上时,该公交车才不会亏损,则1.5x﹣3000≥0,解得:x≥2000,故答案为:2000.【点评】此题主要考查了函数的表示方法,解题的关键首先正确理解题意,然后根据题目的数量关系列出关系式即可求解.20.某班男女同学分别参加植树劳动,要求男女同学各种8行树,男同学种的树比女同学种的树多,如果每行都比预定的多种一棵树,那么男女同学种树的数目都超过100棵;如果每行都比预定的少种一棵树,那么男女同学植树的数目都达不到100棵.这样原来预定男同学种树104棵;女同学种树96棵.【分析】关系式为:8×(原来每行树的棵数+1)>100;8×(原来每行树的棵数﹣1)<100,把相关数值代入求得整数解,根据男同学种的树比女同学种的树多可得男同学和女同学原来种的每行树的棵数,乘以8即为总的种树棵树.【解答】解:设原来每行树的棵数为x.,解得11.5<x<13.5,∵x为整数,∴x为12,13.∵男同学种的树比女同学种的树多,∴男同学每行种13棵树,女同学每行种12棵树.∴男同学种了13×8=104棵树,女同学种了12×8=96棵树.故答案为:104;96.【点评】考查一元一次不等式组的应用;得到种树总棵数和100的2个关系式是解决本题的关键.三.解答题(共8小题)21.解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式x+5>3,得:x>﹣2,解不等式,得:x≥2,则不等式组的解集为x≥2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.解不等式组:并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式5x+6>3(x+1),得:x,解不等式,得:x≤4,则不等式组的解集为,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.已知关于x的不等式组.(1)当k为何值时,该不等式组的解集为﹣2<x<3;(2)若该不等式组只有2个正整数解,求k的取值范围.【分析】(1)先解每个不等式得出其解集,结合已知的不等式组的解集得出关于k的方程,解之即可;(2)根据不等式组只有2个整数解知01,解之即可.【解答】解:(1)解不等式2x+4>0,得:x>﹣2,解不等式3x﹣k<6,得:x,则不等式组的解集为﹣2<x,∵该不等式组的解集为﹣2<x<3,∴3,解得k=3;(2)∵不等式组只有2个正整数解,∴23,解得0<k≤3.【点评】本题主要考查一元一次不等式组的整数解,解题的关键是掌握解一元一次不等式的能力,并根据不等式组的整数解个数得出关于k的不等式组.24.如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x﹣1=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组的关联方程是③;(填序号)(2)若不等式组的一个关联方程的解是整数,则这个关联方程可以是3x﹣3=﹣3(答案不唯一);(写出一个即可)(3)若方程1﹣x=﹣7+3x,6(x)=10﹣x都是关于x的不等式组的关联方程,直接写出m的取值范围0<m≤1.【分析】(1)求出三个方程的解,并解不等式组求出其解集,从而得出答案;(2)解不等式组求出其解集,得出其整数解,继而得出答案;(3)先求出方程的解和不等式组的解集,根据关联方程的概念得到关于m的不等式组,解之即可得出答案.【解答】解:(1)解方程3x﹣1=0得:x,解方程x+1=0得:x,解方程x﹣(3x+1)=﹣5得:x=2,解不等式组得:x,所以不等式组的关联方程是③,故答案为:③;(2)解不等式(x﹣2)<2x+1,得:x>﹣1,解不等式,得:x,∴不等式组的解集为﹣1<x,则不等式组的整数解为x=0,∴此不等式组的关联方程可以为3x﹣3=﹣3,故答案为:3x﹣3=﹣3(答案不唯一);(3)解方程1﹣x=﹣7+3x,得:x=2,解方程6(x)=10﹣x,得:x=3,解不等式3x﹣m≥x+3m,得:x≥2m,解不等式x﹣m x+3,得:x<m+3,则不等式组的解集为2m≤x<m+3,根据题意知2m≤2且m+3>3,解得0<m≤1,故答案为:0<m≤1.【点评】本题主要考查解一元一次方程和一元一次不等式组,熟练掌握解一元一次方程和一元一次不等式组的技能是解题的关键.25.某市教育局对某镇实施“教育精准扶贫”,为某镇建了中、小两种图书馆.若建立3个中型图书馆和5个小型图书馆需要30万元,建立2个中型图书馆和3个小型图书馆需要19万元.(1)建立每个中型图书馆和每个小型图书馆各需要多少万元?(2)现要建立中型图书馆和小型图书馆共10个,小型图书馆数量不多于中型图书馆数量,且总费用不超过44万元,那么有哪几种方案?【分析】(1)设建立每个中型图书馆x万元,建立每个小型图书馆y万元,根据建立3个中型图书馆和5个小型图书馆需要30万元,建立2个中型图书馆和3个小型图书馆需要19万元,列方程组求解.(2)设建立中型图书馆a个,根据要建立中型图书馆和小型图书馆共10个,小型图书馆数量不多于中型图书馆数量,且总费用不超过44万元,列出不等式组求解.【解答】解:(1)设建立每个中型图书馆x万元,建立每个小型图书馆y万元,根据题意列方程组:.解得:.答:建立每个中型图书馆需要5万元,建立每个小型图书馆需要3万元.(2)设建立中型图书馆a个,根据题意得:.解得:5≤a≤7.∵a取正整数,∴a=5,6,7.∴10﹣a=5,4,3答:一共有3种方案:方案一:中型图书馆5个,小型图书馆5个;方案二:中型图书馆6个,小型图书馆4个;方案三:中型图书馆7个,小型图书馆3个.【点评】本题主要考查了二元一次方程组的应用,以及一元一次不等式组的应用,找到关键描述语,进而找到所求的量的数量关系,列出方程组或不等式组求解.26.某校计划购进A,B两种树木共100棵进行校园绿化,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A,B两种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.【分析】(1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;(2)设购买A种树木为a棵,则购买B种树木为(100﹣a)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得a的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答.【解答】解:(1)设A种树每棵x元,B种树每棵y元,依题意得:,解得.答:A种树每棵100元,B种树每棵80元;(2)设购买A种树木为a棵,则购买B种树木为(100﹣a)棵,则a≥3(100﹣a),解得a≥75.设实际付款总金额是y元,则y=0.9[100a+80(100﹣a)],即y=18a+7200.∵18>0,y随a的增大而增大,∴当a=75时,y最小.即当a=75时,y最小值=18×75+7200=8550(元).答:当购买A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元.【点评】本题考查了一次函数的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.27.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元,超出200元的部分按80%收费;在乙商场累计购物超过100元,超出100元的部分按85%收费.已知小红在同一商场累计购物x元,其中x>200.(1)当x=300时,小红在甲商场需花费280元,在乙商场需花费270元.(2)分别用含x的代数式表示小红在甲、乙商场的实际花费.(3)当小红在同一商场累计购物超过200元时,通过计算说明小红在哪家商场购物的实际花费少.【分析】(1)在甲商场累计购物超过200元,超出200元的部分按80%收费,则多出的100元按80%收费,于是得到小红在甲商场所花费用为200+(300﹣200)×80%;在乙商场累计购物超过100元,超出100元的部分按85%收费,则多出的200元按85%收费,于是得到小红在乙商场所花费用为100+(300﹣100)×80%;(2)与(1)的思路一样,用x代替300即可;(3)讨论:当0.8x+40>0.85x+15时,小红在乙商场购物的实际花费少;当0.8x+40=0.85x+15时,小红在甲乙商场购物的实际花费一样;当0.8x+40<0.85x+15时,小红在甲商场购物的实际花费少,然后分别解不等式或方程确定x的范围或值即可.【解答】解:(1)当x=300时,小红在甲商场所花费用为200+(300﹣200)×80%=280(元);在乙商场所花费用为100+(300﹣100)×85%=270(元);故答案为280,270;(2)x>200,小红在甲商场所花费用为200+(x﹣200)×80%=(0.8x+40)元;在乙商场所花费用为100+(x﹣100)×85%=(0.85x+15)元;(3)当0.8x+40>0.85x+15时,解得x<500,所以当200<x<500时,小红在乙商场购物的实际花费少;当0.8x+40=0.85x+15时,解得x=500,所以当x=500时,小红在甲乙商场购物的实际花费一样;当0.8x+40<0.85x+15时,解得x>500,所以当x>500时,小红在甲商场购物的实际花费少.【点评】本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.28.先阅读短文,然后回答短文后面所给出的问题:对于三个数a、b、c的平均数,最小的数都可以给出符号来表示,我们规定M{a,b,c}表示a,b,c这三个数的平均数,min{a,b,c}表示a,b,c这三个数中最小的数,max{a,b,c}表示a,b,c这三个数中最大的数.例如:M{﹣1,2,3},min{﹣1,。

一元一次不等式(组)单元测试卷(题型全)

一元一次不等式(组)单元测试卷(题型全)

一、选择题(每题3分) 1、下列不等式一定成立的是A.52<xB.0>x -C.01>+xD.02>x 2、不等式组1010,x x -⎧⎨+⎩≤>的解集在数轴上表示正确的是3、若x >y ,且(a +3)x <(a +3)y ,则a 的取值范围是 A .a >-3 B .a <-3 C .a <3D .a ≥-34、如果关于x 的不等式 的解集为 ,那么a 的取值范围是( )A. B . C. a>-2 D .5、实数a 、b 在数轴上的位置如图所示,下列各式成立的是( )A 、B 、a ﹣b >0C 、ab >0D 、a+b >06、关于x 的方程2a-3x=6的解是非负数,那么a 满足的条件是( )A 、a >3B 、a ≤3C 、a <3D 、a ≥37、如图,天平右边托盘里的每个砝码的质量都是1千克,那么图中显示物体的质量范围是( )A 、大于2千克B 、小于3千克C 、大于2千克小于3千克D 、大于2千克或小于3千克8、若不等式组⎩⎨⎧-+-142322x x a x >>,的解集为32<<x -,则a 的取值范围是( ) A.21=a B.2-=a C.2-≥a D.1-≤a 9、若不等式 的解集为,则a 的取值范围是 A. B. C. D.10、若方程组的解满足 ,则a 的取值范围是A. B. C. D. 11、不等式的解集是,则应满足( ) A. B.C. D.12、把一些书分给几名同学,若________;若每人分11本,则不够.依题意,设有x 名同学可列不等式x 11)9x (7<+,则横线的信息可以是A .每人分7本,则可多分9个人B .每人分7本,则剩余9本C .每人分9本,则剩余7本D .其中一个人分7本,则其他同学每人可分9本 二、填空题(每题3分)1、若是关于的一元一次不等式,则的取值是 .2、不等式2x <4x ﹣6的最小整数解为 .3、若点(2,m -1)在第四象限,则实数m 的取值范围是______.4、某试卷共有30道题,每道题选对得10分,选错了或者不选扣5分,至少要选对______ 道题,其得分才能不少于80分.5、一队卡车运一批货物,若每辆卡车装7吨货物,则剩余10吨货物装不完;若每辆卡车装8吨货物,则最后一辆卡车只装3吨货物就装完了这批货物,那么这批货物共有______ 吨.6、已知x =3是不等式mx +2<1-4m 的一个解,如果m 是整数,那么m 的最大值是______ .7、若不等式 的正整数解是1,2,3,则m 的取值范围是______. 8、不等式组的解集是,则的取值 .9、若不等式组0,0x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组5,21ax y x by +=⎧⎨-=⎩的解为 .10、已知关于x 的不等式组有且只有三个整数解,则a的取值范围是 .三、解答题1、(8)解不等式(组):(1)2x -1>3x -12; (2)⎩⎪⎨⎪⎧2x +5>3(x -1)①,4x >x+72②.2、(10)已知关于y x 、的方程组⎩⎨⎧--=++=-a y x ay x 731的解x 为非正数,y为负数.(1)求a 的取值范围;(2)结合(1)中的a 取值范围,当a 为何整数时扌,不等式122++a x ax >的解集为1<x .211133x ax +-+>53x <a 5a >5a =5a >-5a =-(1)20m m x ++>x m ⎩⎨⎧-<+<632a x a x 32+<a x a C 1 -0 D1 -0 B 1 -0 A 1 -03、(12)某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元. (1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?4、(12)光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其他天气平均每天可发电5度,已知某月(按30天计)共发电550度. (1)求这个月晴天的天数;(2)已知该家庭每月平均用电量为150度,结合图中信息,若按每月发电550度计算,至少需要几年才能收回成本(不计其他费用,结果取整数).5、(12)某工厂准备用图甲所示的A 型正方形板材和B 型长方形板材,制作成图乙所示的竖式和横式两种无盖..箱子. (1)若该工厂准备用不超过10000元的资金去购买A ,B 两种型号板材,并全部..制作竖式箱子,已知A 型板材每张30元,B 型板材每张90元,求最多可以制作竖式箱子多少个?(2)①若该工厂仓库里现有A 型板材65张、B 型板材110张,用这批板材制作两种..类型的箱子,问制作竖式和横式两种箱子各多少个,恰好将库存的板材用完?②若该工厂新购得65张规格为(3×3)m 的C 型正方形板材,将其全部切割成A 型或B 型板材(不计损耗),用切割成的板材制作两.种.类型的箱子,要求竖式箱子不少于20个,且材料恰好用完,则能制作两种箱子共_______个.附加题:1、已知关于y x 、的方程组⎩⎨⎧-=--=+a y x ay x 343,其中-3≤a ≤1,给出下列说法:①当a =1时,方程组的解也是方程a y x -=+2的解;②当a=-2时,y x 、的值互为相反数;③若x ≤1,则1≤y ≤4;④⎩⎨⎧-==14y x 是方程组的解.其中说法正确的是( )A.①②③④B.①②③C.②④D.②③2、运行程序如图所示,从“输入实数x ”到“结果是否<18”为一次程序操作.若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是 .3、不等式2+x 3>2x -15的解都是3x-a<2x+3的解,则a 的取值范围为(第24题图)横式竖式A B 甲乙。

八年级(下)数学第七章一元一次不等式(组)单元测试卷

八年级(下)数学第七章一元一次不等式(组)单元测试卷

第七章 一元一次不等式单元测试班级 姓名 学号 得分一、选择题:(每小题2分,共16分) 1、下列结论:①4a>3a ②4+a>3+a ③4-a>3-a 中正确的是………………………………( ) A.①② B. ①③ C.②③ D.①②③ 2、下列不等式中,是一元一次不等式的是………………………………………………( )A .21->-B .1-<xC .3≤-y xD .0122≥++x x3、与不等式1523-<-x的解集相同的是………………………………………………( ) A .3-2x>5 B.3-2x<5 C.2x-3>5 D.x<4 4、若不等式b ax >的解集是abx <,则 ………………………………………………( ) A .0≥a B .0≤a C .0>a D .0<a5、下列不等式组中,无解的是 ……………………………………………………………( ) A .⎩⎨⎧<+<-0201x x B .⎩⎨⎧>+<-0201x x C .⎩⎨⎧<+>-0201x x D .⎩⎨⎧>+>-0201x x6、若点)2,1(+-a a M 在第二象限,则a 的取值范围是………………………………( ) A .2->a B .12<<-a C .2-<a D .1>a7、不等式)12(213x x -≤-的正整数解有 ……………………………………………( ) A .3个 B .4个 C .5个 D .6个8、若不等式组⎩⎨⎧>≤<m x x 21有解,则m 的取值范围是……………………………………( )A .1<mB .2<mC .2≤mD .21≤≤m二、填空题:(每空2分,共22分) 9、用适当符号表示下列关系:(1)a 、b 两数的和是负数: ;(2)m 与2的差不小于21: 。

滨湖寿春中学第七章《一元一次不等式与不等式组》单元测试卷

滨湖寿春中学第七章《一元一次不等式与不等式组》单元测试卷

滨湖寿春中学第七章《一元一次不等式与不等式组》单元测试卷温馨提示:新学期,老师相信你们,你们更要自信,但细心、认真答题同样重要!1.下列不等式中,1x =不是它的解的是---------------------------------( )A .213x +≤-B .213x -≥-C .213x -+≥D .213x --≤ 2.图1是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是C3.不等式组23x x <-⎧⎨->⎩的解集是-------------------------------------------( )A .3x <-B .2x <-C .2x -3<<-D .无解4.下列四个命题中,正确的个数有--------------------------------------( ) ①若a b >,则+1+1a b >;②若a b >,则11a b ->-;③若a b >,则a b >-2-2;④若a b >,则a b <22;A .1个B .2个C .3个D .4个5.若a 是实数,且x y >,则下列不等式中,正确的是---------------------( )A.ax ay >B. 22a x a y ≤ C. 22a x a y > D. 22a x a y ≥6.若11a a -=-,则 a 的取值范围为----------------------------------( )A .1a ≥B .1a ≤C .1a >D .1a <7.不等式组5x x <⎧⎨<1的解集在数轴上表示,正确的是-------------------------( ))D ()C ()B ()A (A . B. C . D . 8.若x a y a +<+ 且ax ay >,则------------------------------------------( )A .,0x y a <>B .,0x y a <<C .,0x y a >>D .,0x y a ><9.若a 0<<1,则21,,a a a的大小关系是----------------------------------( ) A .21a a a >>B .21a a a >>C .21a a a >>D .21a a a>> 10.若关于x 的不等式组6x x m<⎧⎨>⎩有解,则m 的取值范围是-------------------( )A .6m >B .6m ≥C .6m <D .6m ≤二.填空题:本大题共7小题,每小题3分,共21分。

人教版七年级下册数学一元一次不等式单元测试题

人教版七年级下册数学一元一次不等式单元测试题

七年级下册数学一元一次不等式单元测试题(考试时间60分钟 试卷分数100分)一、填空题:(每小题3分,共30分)1、不等式62>-x 的解集是 ;2、一个三角形的三边长分别为3、5、a -1则a 的取值范围是 ; 3、当x 时,代数式32-x 的值是非负数;4、不等式138≥-x 的正整数解是 ;5、“a 的一半与负6的差不大于负2”所列的不等式是 。

6、用不等号填空:若0<<b a ,则8a 8b ; a 1- b1-; 12+-a 12+-b 。

7、当x 时,52-x 不小于零;当x 时,1-x 大于2;当x 时,52-x 不大于1-x 。

8、不等式2x+9≥3(x+2)的正整数解是9、不等式x-2≤0的解集是10、不等式32x -1>2x的解是二、选择题:(每小题3分,共30分)11、如果y x >,那么下列不等式不成立的是( )A 、33->-y xB 、y x 33>C 、33yx > D 、y x 33->-12、不等式512>-x 的解集是( )A 、5>xB 、2>xC 、3>xD 、3<x13、下列各式中,是一元一次不等式的是( ) A、835<- B、xx 112<- C、832≥x D、1822≤+x π14、若b a >,则下列各式中不正确的是( )A、22->-b a B、0<-b a C、b a 66-<- D、b a 2121-<- 15、下列说法中,肯定错误的是( )A、62->-x 的解集是3<x B、-8是不等式82-<-x 的解 C、2>x 的整数解有无数个 D、3>x 没有负整数解16、已知三角形的两边8=b ,10=c ,则这个三角形的第三边a 的取值范围是( )A、182<<-a B、 182<<a C、182≤≤-a D、182≤≤a17、已知a >b,c 为任意实数,则下列不等式中总是成立的是( )A 、a+c <b+cB 、a -c >b -cC 、ac <bcD 、ac >bc 18、下列说法中,错误的是( )A 、不等式2<x 的正整数解中有一个B 、2-是不等式012<-x 的一个解C、不等式93>-x的解集是3->x D、不等式10<x的整数解有无数个19、已知不等式10x-≥,此不等式的解集在数轴上表示为()20、在数轴上表示不等式x-1<0的解集,正确的是()A B C D三、解答题:(共40分)21、(7分)解不等式2(x-1)-3<1,并把它的解在数轴上表示出来.321-1-2-322、(7分)解不等式:4)3(2>-+x,并把解集在下列的数轴上表示出来.23、(8分)解不等式65232413-≥-+xx,并把它的解集在数轴上表示出来。

第7章 元一次不等式与不等式组单元测试卷(沪科版)

第7章 元一次不等式与不等式组单元测试卷(沪科版)

《一元一次不等式与不等式组》单元测试卷一、选择题1、若实数m 在数轴上表示的点在原点的左边,则不等式0≥+n mx 的解集是 ( ) A.mn x -≥ B.mn x -≤ C.mn x ≥ D.mn x ≤2、如果|34-x |=-)43(x -,那么x 的取值范围是 ( ) A.等于43 B.大于43 C.不大于43 D.不小于433、不等式组⎪⎩⎪⎨⎧>-<+-nx x x3212的解集是16>x ,那么n 的取值范围是 ( )A.4≤nB.4≥nC.4<nD.4=n4、已知0<b<a,那么下列不等式组中无解的是 ( ) A.x a x b>< B.x a x b>-<- C.x a x b<-< D.x a x b>-<5、如果不等式组841x x x m +<-⎧⎨>⎩的解集是x >4,那么m 的取值范围是 ( )A .m ≥4B .m ≤4C .m=4D .m<46、甲从一个鱼摊上买了三条鱼,平均每条a 元;又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条2a b +元的价钱把鱼全部卖给了乙,结果发现陪了钱,原因是( ) A .a b B .a b C .a b = D .a 和b 的大小无关 7、若不等式组232x a x a +- 无解,则常数a 的取值范围是 ( )A .2aB . 2a ≤C .2aD .2a ≥8、关于x 的不等式组⎪⎩⎪⎨⎧<++>+01234a x x x 的解集为x<2,则a 的取值范围是 ( ) A . a ≤-2 B.a ≥-2 C.a ≤2 D.a ≥29、如果a<b<0,下列不等式中错误的是 ( )A .ab>0 B.a+b<0 C.ba<1 D.a-b<010、在数轴上与原点的距离小于8的点对应的x 满足 ( )A 、x <8B 、x >8C 、x <-8或x >8D 、-8<x <8二、填空题1、适合1<|x|<3的整数解有 个.2、若a >b >c,则不等式组x a x b x c <⎧⎪>⎨⎪>⎩的解集为 .3、已知关于x 的不等式组521x x a-≥-⎧⎨>⎩无解,则a 的取值范围是 .4、不等式a a x 233-≤-的正整数解为1,2,则a 的取值范围是 .5、当k 时,12(4)63x k x k +=-+的解是非正数.6、已知关于x 的不等式组⎩⎨⎧≥-≤-320x b x 整数解有4个,则b 的取值范围是 .7、不等式组⎩⎨⎧-<+<212m x m x 的解集是x <m -2,则m 的取值应为 .8、若不等式组⎩⎨⎧>->-022x b a x 的解集是-1<x<1.则+2008)(b a .9、某品牌电脑的成本为2400元,标价为2980元,如果商店要以利润不低于5%的售价打折销售,是低可打 折出售.10、如果m 2,m ,m -1这三个实数在数轴上所对应的点从左到右依次排列,那么m 的取值范围是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

让学习成为一种习惯!yOxBA第七章 第八章 章节测试卷提高卷(本卷满分 100分)姓名: 成绩:一、选择题(每小题2分,共20分)01、若b a <,则下列各式中一定成立的是( )A .11-<-b aB .33ba >C . b a -<-D . bc ac <02、据佛山日报报道,2009年6月1日佛山市最高气温是33℃,最低气温是24℃,则当天佛山市气温t (℃)的变化范围是( )A .33t >B .24t ≤C .2433t <<D .2433t ≤≤ 03、实数a ,b 在数轴上的对应点如图1所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1a b <D .0a b -< 04、 若01x <<,则21x x x,,的大小关系是( )A .21x x x <<B .21x x x <<C .21x x x <<D .21x x x<<05、一个不等式的解集为12x -<≤,那么在数轴上表示正确的是( )06、不等式53-x <x +3的正整数解有()A. 1个B. 2个C. 3个D. 4个 07、若440-=m ,则估计m 的值所在的范围是( )A .21<<mB .32<<mC .43<<mD .54<<m08、一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有 ( ) A . 4种 B .3种 C .2种 D .1种09、小刚准备用自己节省的零花钱购买一台MP4来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他至少..有280元.设x 个月后小刚至少有280元,则可列计算月数的不等式为( ) A .3050280x +> B .3050280x -≥ C .3050280x -≤ D .3050280x +≥10、如图2,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,则不等式20x kx b <+<的解集为( ) A .2x <- B .21x -<<- C .20x -<<D .10x -<<1- 02A B CD1- 021- 021- 02ab 0图1让学习成为一种习惯!二、填空题:(每小题3分,共30分)1.如果x -y <0,那么x 与y 的大小关系是x y .(填<或>符号)2. “m 与10的和不小于m 的一半”用代数式表示为 . 3.已知三角形的三条边长分别为3、5、x ,则x 的取值范围是 .4.不等式23x x >-的解集为 . 5.若不等式组220x a b x ->⎧⎨->⎩的解集是11x -<<,则2009()a b += .6.不等式2x +7>-5-2x 的负整数解有 .7. 不等式组250112x x -<⎧⎪⎨+⎪⎩≥所有整数解的和是 .8.若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是9. 某次环保知识竞赛试卷有20道题。

评分办法是答对一题记5分,答错一题扣2分,不答记0分。

小明有3道题没答,但成绩超过了60分。

小明最多答对了 道题。

10.如图3,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 .三、解答题:(本大题30分)1.(本题6分)x 取什么值时,代数式5x –12不大于2(4x -3)?并将解集表示在数轴上.2.(本题7分)解不等式组331213(1)8x x x x -⎧+>+⎪⎨⎪---⎩,≤并求出所有整数解的和.3.(本题8分)先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式290x ->. 解:∵29(3)(3)x x x -=+-,∴(3)(3)0x x +->.由有理数的乘法法则“两数相乘,同号得正”,有3210-1-3-2yxO A B图3让学习成为一种习惯!(1)3030x x +>⎧⎨->⎩ (2)3030x x +<⎧⎨-<⎩解不等式组(1),得3x >, 解不等式组(2),得3x <-,故(3)(3)0x x +->的解集为3x >或3x <-, 即一元二次不等式290x ->的解集为3x >或3x <-.问题:求分式不等式51023x x +<-的解集.4. (本题8分)星期天,小明和七名同学共8人去郊游,途中,他用20元钱去买饮料,商店只有可乐和奶茶,已知可乐2元一杯,奶茶3元一杯,如果20元钱刚好用完. (1)有几种购买方式?每种方式可乐和奶茶各多少杯? (2)每人至少一杯饮料且奶茶至少二杯时,有几种购买方式?5. (本题10分)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所彖的竖式与横式两种长方体形状的无盖纸盒.(1) 现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共l00个,设做竖式纸盒2个.①根据题意,完成以下表格:竖式纸盒(个)横式纸盒(个)x正方形纸板(张)2(100-x )长方形纸板(张)4x②按两种纸盒的生产个数来分,有哪几种生产方案?(2)若有正方形纸板162张,长方形纸板口张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.则n 的值是 .(写出一个即可)让学习成为一种习惯!6.(本题10分)“六一”前夕,某玩具经销商用去2350元购进A 、B 、C 三种新型的电动玩具共50套,并且购进的三种玩具都不少于10套,设购进A 种玩具x 套,B 种玩具y 套,三种电动玩具的进价和售价如右表所示, ⑴用含x 、y 的代数式表示购进C 种玩具的套数; ⑵求y 与x 之间的函数关系式;⑶假设所购进的这三种玩具能全部卖出,且在购销这种玩具的过程中需要另外支出各种费用200元。

① 求出利润P (元)与x (套)之间的函数关系式; ②求出利润的最大值,并写出此时三种玩具各多少套。

第八章《分式》章节测试卷(本卷满分 100分)姓名: 成绩: 一、填空题(每空2分,共24分) 1.若分式221x x --的值为0,则x 的值为________;当x=________时,分式1x x+没有意义.2.当x=________,2x -3与543x +的值互为倒数.3.写出一个含有字母x 的分式(要求:不论x 取任何实数,该分式都有意义)_________. 4.23m m x=-的根为1,则m=__________.5.当m=________时,关于x 的分式方程213x m x +=--无解.6.在分式12111Ff f =+中,f 1≠-f 2,则F=_________.7.a 、b 为实数,且ab=1,设11a b P a b =+++,1111Q a b =+++,则P_________Q .8.已知113xy-=,则代数式21422x xy y x xy y----的值为_________.9.某商店经销一种商品,由于进货价降低6.4%,使得利润率提高了8%,那么原来经销这种商品的利进价(元/套) 40 55 50售价(元/套) 50 80 65让学习成为一种习惯!润率是_________.10.对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b=a b a b+-,如3※2=32532+=-,那么12※4=__________. 11.已知()()341212x A B x x x x -=+----,则整式A -B=_________.二、选择题(每题3分,共27分) 12.在式子1a,2xyπ,2334a b c ,56x+,78x y +,109x y+中,分式的个数是 ( )A .2B .3C .4D .5 13.如果把分式2xx y+的x 和y 都扩大k 倍,那么分式的值应 ( )A .扩大k 倍B .不变C .扩大k 2倍 D .缩小k 倍 14.如果方程8877x k x x--=--有增根,那么k 的值 ( )A .1B .-1C .±1D .7 15.分式233a a b-、222b ab-与3358c a bc-的最简公分母是 ( )A .24a 2b 2c 2B .24a 6b 4c 3C .24a 3b 2c 3D .24a 2b 3c 3 16.若分式22325xx -+的值是负数,则x 的取值范围是 ( )A .23x >B .23x < C .x <0 D .不能确定17.下列各分式中,最简分式是 ( )A .()()3485x y x y -+ B .22y x x y-+ C .2222x yx y xy++ D .()222x yx y -+18.若分式212x x m-+不论m 取何实数总有意义,则m 的取值范围是 ( )A .m ≥1B .m >1C .m ≤1D .m <119.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程 ( )让学习成为一种习惯!A .9696944x x +=+- B .4848944x x +=+-C .4849x +=D .4848944x x +=+-20.已知1110xyz ++=,则111111x y z y z x z xy ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值是 ( ) A .1 B .-1 C .-3 D .3 三、解答题(49分)21.化简.(每题4分,共8分) (1)22225103621xy y y x x ÷ ; (2)4222a a a a ⎛⎫⎛⎫+-÷ ⎪ ⎪--⎝⎭⎝⎭.22.解下列分式方程.(每题4分,共8分)(1)132x x=-; (2)2133112133119x x xx x-++=+--.23.(6分)设14m n -=,m+n=2,求2222221112m n m m n n m n m n m n⎡⎤⎛⎫-÷+⎢⎥ ⎪++-⎝⎭⎢⎥⎣⎦ 的值.24.(6分)若关于x 的方程211333x x k x xxx ++-=--有增根,求增根和k 的值.25.(6分)小芳在计算2222cb a abc a ++-+(a 、b 、c 互不相等)时,发现若交换a 与b 时,这个式子的值不变;若把a 和c 交换时,这个式子的值也不变.如果1=++c b a ,请你求出这个不变的值.26.(7分)某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款让学习成为一种习惯!1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合作3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.27.(8分)跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.让学习成为一种习惯!参考答案一、选择题(每小题2分,共20分)1. A2. D3. C4. C5. A6. C7. B8. C9. D 10. B 二、填空题(每小题3分,共30分) 1. < ;2. m +10≥21m ;3. 2<x <8 ;4. x >1;5. -1 ;6. -2,-1; 7. 3 ;8. a >-1 ;9. 17 ;10. 12x -<< ; 三、解答题(本大题30分)1. 解:5x –12≤8x -6.3x -≤6.x ≥-2 .解集在数轴上表示为:2. 解:解不等式(1)得1x <解不等式(2)得2x -≥所以不等式组的解集为21x -<≤.满足不等式解集的所有整数有-2,-1,0,所有整数解的和是:(-2)+(-1)+0=-3. 3. 解:由有理数的除法法则“两数相除,同号得正”,有(1)510230x x +>⎧⎨-<⎩ (2)510230x x +<⎧⎨->⎩解不等式组(1),得135x -<<,解不等式组(2),得无解, 故分式不等式51023x x +<-的解集为135x -<<.4. 解:(1)设买可乐、奶茶分别为x 、y 杯,根据题意得 2x +3y =20(且x 、y 均为自然数) ∴x =2032y -≥0 解得y ≤203-2让学习成为一种习惯!∴y =0,1,2,3,4,5,6.代入2x +3y =20 并检验得10,0;x y =⎧⎨=⎩7,2;x y =⎧⎨=⎩4,4;x y =⎧⎨=⎩1,6.x y =⎧⎨=⎩所以有四种购买方式,每种方式可乐和奶茶的杯数分别为:(亦可直接列举法求得) 10,0;7,2;4,4;1,6.(2)根据题意:每人至少一杯饮料且奶茶至少二杯时,即y ≥2且x +y ≥8由(1)可知,有二种购买方式. 5. 解:(1)①竖式纸盒(个)横式纸盒(个)100-x 正方形纸板(张) x 长方形纸板(张)3 (100-x )②由题意得解得38≤x≤40又因为x 取整数,所以x=38,39,40答:有三种方案:生产竖式纸盒38个,横式纸盒62个;生产竖式纸盒39个,横式纸盒61个;生产竖式纸盒40个,横式纸盒60个。

相关文档
最新文档