两道数列不等式押题

合集下载

数列不等式题目

数列不等式题目

数列不等式题目39. 已知函数f (x ) =ln(2-x ) +ax 在开区间(0,1)内是增函数.(1)求实数a 的取值范围;(2)若数列{a n }满足a 1∈(0, 1), a n +1=ln(2-a n ) +a n (n ∈N *), 证明:01x -2+a , f (x ) 在(0,1)内是增函数. ………………1分1x -2+a >0在x ∈(0, 1) 时恒成立. 即a >-1x -2∴f '(x )>0在x ∈(0, 1) 时恒成立,即在x ∈(0, 1) 时恒成立. ………………3分1x -212, ∴121x -2(2)证明:由题设知,当n=1时,a 1∈(0, 1).假设当n =k 时,有a k ∈(0, 1), 则当n =k +1时,有a k +1=ln(2-a k ) +a k . ………8分记g (x ) =ln(2-x ) +x , 则g '(x ) =1x -2+1在x ∈(0, 1) 上恒有g '(x ) >0.∴g (x ) 在区间(0,1)上是单调增函数………………10分又 a k +1=g (a k ) =ln(2-a k ) +a k , 且0∴ln(2-0) +0又ln 2>0, ∴000,∴a n +1-a n =ln(2-a n ) >0, 即a n +1>a n . 综上,得06.已知数列{a n }中,a 1=1,且a n =(Ⅰ) 求数列{a n }的通项公式;(Ⅱ)求数列{a n } 的前n 项和为S n ;(Ⅲ) 令c n =a n +1n +1n n -1a n -1+2n ⋅3n -2(n ≥2, n ∈N ) .*(n ∈N ) ,数列{*2c n (c n -1)n n -1的前n 项和为T n .求证:对任意n ∈N , 2*都有 T n6.已知数列{a n }中,a 1=1,且a n =(Ⅰ) 求数列{a n }的通项公式;(Ⅱ) 求数列{a n } 的前n 项和为S n ;a n -1+2n ⋅3n -2(n ≥2, n ∈N ) .*(Ⅲ) 令c n =a n +1n +1(n ∈N ) ,数列{*2c n (c n -1)2的前n 项和为T n .求证:对任意n ∈N ,*都有 T nn n -1a n -1+2n ⋅3a n n -a 11n -2知,a n n=a n -1n -12+2⋅3n -2,n -2由累加法,当n ≥2时,=2+2⨯3+2⨯3+ +2⨯3代入a 1=1,得n ≥2时,又a 1=1,故a n =n ⋅3n -1(III )c n = a n +1n +1na n n1-3*...............4分(n ∈N ) .. =1+2(1-3n -1)=3n -1=3n 2n当n ≥2时,2⨯3(3-1)≤+2⨯3nn n(3-1)(3-3) 2⨯3222=2⨯3n n 2n -1n -1(3-1)(3n-1) 12-=132n -1-1-13-112n. 13-13所以当n ≥2时T n =+ +(且T 1= 1n -1321(3-1)+ +12⨯3(3-1)≤32+() +(3-1-)332-1-3-1n) =2-3-1n故对n ∈N *,T nS n (b n +2b n -b n +1) +b n +1b n =0.22nS n . 数列{b n }满足b 1=b 2=1.(I )求{a n },{b n }的通项公式;a n =4n ,b n = (II )求证:b 1+b 2+ +b n6.已知数列{a n }中,a 1=1,且a n =(Ⅰ) 求数列{a n }的通项公式;(Ⅱ) 求数列{a n } 的前n 项和为S n ;(Ⅲ) 令c n =a n +1n +1n n -12n +42nn -1a n -1+2n ⋅3n -2(n ≥2, n ∈N ) .*(n ∈N ) ,数列{*2c n (c n -1)的前n 项和为T n .求证:对任意n ∈N , 2 *都有 T nn n -1a n -1+2n ⋅3a n n -a 11n -2知,a n n=a n -1n -12+2⋅3n -2,n -2由累加法,当n ≥2时,=2+2⨯3+2⨯3+ +2⨯3代入a 1=1,得n ≥2时,a n n=1+2(1-3n -1)1-3=3n -1又a 1=1,故a n =n ⋅3n -1(n ∈N *) .................4分(III )c n =a n +1n +1n=3n 2n当n ≥2时,2⨯3(3-1)≤+2⨯3nn n(3-1)(3-3) 2⨯32=2⨯3n n 2n -1n -1(3-1)(3n-1) 12-=132n -1-1-13-112n. 13-13所以当n ≥2时T n =+ +(且T 1= 1n -1321(3-1)+ +1(3-1)≤32+(13-1) +(3-1-)332-1-3-1n) =2-3-1n故对n ∈N *,T nS n (b n +2b n -b n +1) +b n +1b n =0.22nS n . 数列{b n }满足b 1=b 2=1.(I )求{a n },{b n }的通项公式;a n =4n ,b n = (II )求证:b 1+b 2+ +b n⎧a +2⎫(II )证明:⎨ln n ⎬是等比数列;⎩a n -2⎭2n +4252nn 2n -1a n +b n2,a n +1=, b n +1=2a n b n a n +b n(Ⅲ)设S n 是数列{a n }的前n 项和,证明:S n⎝⎛4⎫⎪ 3⎭(I )由已知a 1=4,a 2=b n =4a n52,所以b 1=1, a n +1b n +1=a n b n = =a 1b 1=4, +2a n,∴a n +1=a n 2用数学归纳法证明a n >2 (ⅰ)当n =1时,a 1>2. *(ⅱ)假设当n =k (k ∈N ) 时,a k >2则当n =k +1时, a k +1-2=(a k -2)22a ka n 2>0, a k +1>2*根据(ⅰ)和(ⅱ)知a n >2对所有n ∈N 成立于是a n +1-a n =+2a n-a n =4-a n 2a n2即2(II ) a n +1+2=∴lna n +1+2a n +1-2(a n +2)2a n=2ln2,a n +1-2=(a n -2)2a n2,a n +1a n +1+2⎛a n +2⎫= ⎪ -2⎝a n -2⎭2a n +22⎧a +2⎫,⎨ln n ⎬是等比数列a -2a n -2n ⎩⎭(Ⅲ)a n +1-2=(a n -2)2a n,⎛11⎫1,a n +1-2= -a -2a -2≤()(a n -2) ⎪n n +14⎝2a n ⎭111⎫⎛∴(a 1-2)+(a 2-2)+ +(a n -2)≤2 1++2+ +n -1⎪ 444⎭⎝1⎫⎛2 1-n ⎪1⎫84⎭8⎛⎝== 1-n ⎪13⎝4⎭31-44⎫⎛∴S n3⎭⎝5、设集合W 由满足下列两个条件的数列{a n }构成:①a n +a n +22②存在实数M ,使a n ≤M . (n 为正整数)(I )在只有5项的有限数列{a n },{b n }中, 其中a 1=1, a 2=2, a 3=3, a 4=4, a 5=5; b 1=1, b 2=4, b 3=5, b 4=4, b 5=1;试判断数列{a n },{b n }是否为集合W 的元素;(II )设{c n }是等差数列,S n 是其前n 项和,c 3=4, S 3=18, 证明数列{Sn }∈W ;并写出M 的取值范围;(III )设数列{d n }∈W , 且对满足条件的常数M ,存在正整数k ,使d k =M . 求证:d k +1>d k +2>d k +3.解:(I )对于数列{a n },当n=1时,=2=a 2, 显然不满足集合W 的条件,①2故{a n }不是集合W 中的元素, a 1+a 3…………2分对于数列{b n },当n ∈{1, 2, 3, 4, 5}时,不仅有b 3+b 3b 1+b 32=3b 2+b 42=42显然满足集合W 的条件①②,故{b n }是集合W 中的元素.…………4分(II ) {c n }是等差数列,S n 是其前n 项和,c 3=4, S 3=18, 设其公差为d ,∴c 3-2d +c 3-d +c 3=18.∴d =-2∴c n =c 3+(n -3) d =-2n +10, S n =-n +9n2…………7分∴S n +S n +22S n +S n +22-S n +1=-192) +2S n =-(n -814,∴S n 的最大值是S 4=S 5=20,即S n ≤S 4=20.∴{S n }∈W ,且M 的取值范围是[20, +∞)…………9分(III )证明:{d n }∈W , ∴d k +d k +2整理d k +2d k +1+d k +3又∴d k +12>d k +2>d k +3.3、x n +1=4x n -2x n +14965,n =0,1, 2, ,写出{x n }的所有项;(Ⅰ)若x 0=(Ⅱ)确定x 0的值,使{x n }是一个无穷的常数数列;(Ⅲ)若对∀n ∈N +,都有x n353a n 2a n +1,a n +1=, n =1, 2, .⎧1⎫-1⎬为等比数列;(1)求证:数列⎨⎩a n ⎭(2)记S n =1a 1+1a 2+1a n,若S n(3)是否存在互不相等的正整数m , s , n ,使m , s , n 成等差数列,且a m -1, a s -1, a n -1成等比数列,如果存在,请给出证明;如果不存在,请说明理由.(1)∵1a n +11a 1=23+13a n,∴1a n1a n +1-1=13a n*-13,………………………2分且∵-1≠0,∴-1≠0(n ∈N ) ,……………………………3分⎧1⎫-1⎬为等比数列.…………………………………4分∴数列⎨⎩a n ⎭(2)由(1)可求得1a n-1=1n -111n⨯() ,∴=2⨯() +1.…………… 5分 33a n 32S n =++ +=n +2(+2+ +n ) =n +2⋅a 1a 2a n 33311111111-3-1n +1=n +1-13n,…7分若S n13n n(3)假设存在,则m +n =2s , (a m -1) ⋅(a n -1) =(a s -1) 2,………………10分∵a n =3n n3+23+23+23+2化简得:3m +3n =2⋅3s ,………………………………………13分mns,∴(n-1) ⋅(3mm-1) =(3ss-1) .……………12分2∵3+3≥2⋅=2⋅3,当且仅当m =n 时等号成立.………………………15分又m , n , s 互不相等,∴不存在.…………………………………………16分ax n x n +15、已知首项为x 1的数列{x n }满足x n +1=(a 为常数)。

高考数学压轴专题最新备战高考《不等式》真题汇编及答案

高考数学压轴专题最新备战高考《不等式》真题汇编及答案

【最新】数学《不等式》期末复习知识要点一、选择题1.已知函数()2222,2{log ,2x x x f x x x -+≤=> ,若0R x ∃∈,使得()2054f x m m ≤- 成立,则实数m 的取值范围为 ( ) A .11,4⎡⎤-⎢⎥⎣⎦B .1,14⎡⎤⎢⎥⎣⎦C .12,4⎡⎤-⎢⎥⎣⎦D .1,13⎡⎤⎢⎥⎣⎦【答案】B 【解析】由函数的解析式可得函数的最小值为:()11f =,则要考查的不等式转化为:2154m m ≤-,解得:114m ≤≤,即实数m 的取值范围为 1,14⎡⎤⎢⎥⎣⎦. 本题选择B 选项.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.2.若,x y 满足约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则122y x⎛⎫⋅ ⎪⎝⎭的最小值为( )A .116B .18C .1D .2【答案】A 【解析】 【分析】画出约束条件所表示的可行域,结合指数幂的运算和图象确定出目标函数的最优解,代入即可求解. 【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,其中可得(3,1)A -,(5,1)B ,(3,3)C ,因为1222yxx y -⎛⎫⋅= ⎪⎝⎭,令z x y =-,当直线y x z =-经过A 时,z 取得最小值,所以z的最小值为min314z=--=-,则1 222yx x y-⎛⎫⋅=⎪⎝⎭的最小值为41216-=.故选:A.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.3.设变量,x y满足约束条件211x yx yx y-≥⎧⎪+≥⎨⎪+≤⎩,则目标函数5z x y=+的最大值为()A.2 B.3 C.4 D.5【答案】D【解析】【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】根据约束条件211x yx yx y-≥⎧⎪+≥⎨⎪+≤⎩画出可行域如图:目标函数z=5x+y可化为y=-5x+z,即表示斜率为-5,截距为z的动直线,由图可知,当直线5z x y=+过点()1,0A时,纵截距最大,即z最大,由211x yx y+=⎧⎨+=⎩得A(1,0)∴目标函数z=5x+y的最小值为z=5故选D【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4.设实数满足条件则的最大值为()A.1 B.2 C.3 D.4【答案】C【解析】【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.5.已知点P ,Q 分别是抛物线28x y =和圆22(2)1x y +-=上的动点,点(0,4)A ,则2||||PA PQ 的最小值为( ) A .10 B .4C .232D .421【答案】B 【解析】 【分析】设出点P 的坐标()00,x y ,用0y 表示出PA ;根据圆上一点到定点距离的范围,求得PQ 的最大值,再利用均值不等式求得目标式的最值. 【详解】设点()00,P x y ,因为点P 在抛物线上,所以()200080x y y =≥,因为点(0,4)A ,则()()2222200000||48416PA x y y y y =+-=+-=+.又知点Q 在圆22(2)1x y +-=上,圆心为抛物线的焦点(0,2)F ,要使2||||PA PQ 的值最小,则||PQ 的值应最大,即0max 13PQ PF y =+=+.所以()()222000003632516||||33y y y PA PQ y y +-+++==++()002536643y y =++-≥=+ 当且仅当02y =时等号成立.所以2||||PA PQ 的最小值为4.故选:B. 【点睛】本题考查抛物线上一点到定点距离的求解,以及圆上一点到定点距离的最值,利用均值不等式求最值,属综合中档题.6.已知实数x ,y 满足不等式||x y +≥,则22x y +最小值为( )A .2B .4C .D .8【答案】B 【解析】 【分析】先去掉绝对值,画出不等式所表示的范围,再根据22x y +表示圆心在原点的圆求解其最小圆的半径的平方,即可求解. 【详解】 由题意,可得当0y ≥时,x y +≥ (2)当0y <时,x y -≥如图所示,画出的图形,可得不等式表示的就是阴影部分的图形, 又由22xy +最小值即为原点到直线的垂线段的长度的平方,又由2d ==,所以24d =,即22xy +最小值为4.故选:B .【点睛】本题主要考查了线性规划的知识,以及点到直线的距离公式的应用,着重考查了数形结合思想,以及计算能力.7.若,,则()A.B.C.D.【答案】C【解析】【分析】【详解】试题分析:用特殊值法,令,,得,选项A错误,,选项B错误,,选项D错误,因为选项C正确,故选C.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.8.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都、两种设备上加工,生产一件甲产品需用A设备2小时,B设备6小时;生产一需要在A B件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元 B .360千元C .400千元D .440千元【答案】B 【解析】设生产甲、乙两种产品x 件,y 件时该企业每月利润的最大值,由题意可得约束条件:2348069600,0,x y x y x y x N y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈∈⎩, 原问题等价于在上述约束条件下求解目标函数2z x y =+的最大值. 绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知: 目标函数在点()150,60B 处取得最大值:max 2215060360z x y =+=⨯+=千元. 本题选择B 选项.点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.9.某企业生产甲、乙两种产品需用到A,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用总量如下表所示.若生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲 乙 每天原料的可用总量 A(吨)3212B(吨)128A.12万元B.16万元C.17万元D.18万元【答案】D【解析】【分析】根据条件列可行域与目标函数,结合图象确定最大值取法,即得结果.【详解】设每天甲、乙产品的产量分别为x吨、y吨由已知可得3212,28,0,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩目标函数34z x y=+,作出约束条件表示的可行域如图中阴影部分所示,可得目标函数在点P处取得最大值,由28,3212,x yx y+=⎧⎨+=⎩得()2,3P,则max324318z=⨯+⨯=(万元).选D.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.10.设x,y满足102024xx yx y-≥⎧⎪-≤⎨⎪+≤⎩,向量()2,1a x=r,()1,b m y=-r,则满足a b⊥r r的实数m 的最小值为()A.125B.125-C.32D.32-【答案】B【解析】 【分析】先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r,由a b ⊥r r得20x m y +-=,∴当直线经过点C 时,m 有最小值,由242x y x y +=⎧⎨=⎩,得8545x y ⎧=⎪⎪⎨⎪=⎪⎩,∴84,55C ⎛⎫ ⎪⎝⎭,∴416122555m y x =-=-=-, 故选:B.【点睛】本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.11.设m ,n 为正数,且2m n +=,则1312n m n ++++的最小值为( ) A .32B .53 C .74D .95【答案】D 【解析】 【分析】根据2m n +=,化简135112(1)(2)n m n m n ++=++++⋅+,根据均值不等式,即可求得答案; 【详解】 当2m n +=时,Q131111212n m n m n ++=++++++ 3511(1)(2)(1)(2)m n m n m n ++=+=++⋅++⋅+Q 21225(1)(2)24m n m n +++⎛⎫+⋅+≤= ⎪⎝⎭,当且仅当12m n +=+时,即3122m n ==,取等号, ∴139125n m n ++≥++. 故选:D 【点睛】本题主要考查了根据均值不等式求最值,解题关键是灵活使用均值不等式,注意要验证等号的是否成立,考查了分析能力和计算能力,属于中档题.12.若、a b 均为实数,则“()0->ab a b ”是“0a b >>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】通过列举,和推理证明可以推出充要性. 【详解】若()0ab a b ->中,取12a b --=,=,则推不出0a b >>; 若0a b >>,则0a b ->,则可得出()0ab a b ->; 故“()0ab a b ->”是“0a b >>”的必要不充分条件, 故选:B. 【点睛】本题考查充分必要不条件的定义以及不等式的性质,可通过代入特殊值解决.13.在ABC ∆中,222sin a b c C ++=,则ABC ∆的形状是 ( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等边三角形【答案】D 【解析】 【分析】由余弦定理可知2222cos a b c ab C +-=,与已知条件相加,得到cos 3C π⎛⎫-⎪⎝⎭的表达式,利用基本不等式得到范围,结合其本身范围,得到cos 13C π⎛⎫-= ⎪⎝⎭,从而得到C 的大小,判断出ABC ∆的形状,得到答案. 【详解】由余弦定理可知2222cos a b c ab C +-=,222sin a b c C ++=两式相加,得到()22cos 2cos 3a b ab C C ab C π⎛⎫+=+=-⎪⎝⎭所以222cos 1322a b ab C ab ab π+⎛⎫-== ⎪⎝⎭≥,当且仅当a b =时,等号成立, 而[]cos 1,13C π⎛⎫-∈- ⎪⎝⎭所以cos 13C π⎛⎫-= ⎪⎝⎭, 因为()0,C π∈,所以2,333C πππ⎛⎫-∈- ⎪⎝⎭所以03C π-=,即3C π=,又a b =,所以ABC ∆是等边三角形, 故选D 项. 【点睛】本题考查余弦定理解三角形,基本不等式,余弦型函数的性质,判断三角形的形状,属于中档题.14.已知M 、N 是不等式组1,1,10,6x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则||MN 的最大值是( )AB.2C.D .172【答案】A 【解析】 【分析】先作可行域,再根据图象确定MN 的最大值取法,并求结果. 【详解】作可行域,为图中四边形ABCD 及其内部,由图象得A(1,1),B(2,1),C(3.5,2.5),D(1,5)四点共圆,BD 为直径,所以MN 的最大值为BD=21417+=,选A.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.15.已知2(0,0)x y xy x y +=>>,则2x y +的最小值为( ) A .10 B .9C .8D .7【答案】B 【解析】 【分析】由已知等式得到211x y +=,利用()2122x y x y x y ⎛⎫+=++ ⎪⎝⎭可配凑出符合基本不等式的形式,利用基本不等式求得最小值. 【详解】 由2x y xy +=得:211x y+= ()212222225529x y x yx y x y x y y x y x ⎛⎫∴+=++=++≥+⋅= ⎪⎝⎭(当且仅当22x y y x =,即x y =时取等号) 2x y ∴+的最小值为9故选:B 【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活对等于1的式子进行应用,配凑成符合基本不等式的形式.16.若集合()(){}130M x x x =+-<,集合{}1N x x =<,则M N ⋂等于( ) A .()1,3 B .(),1-∞-C .()1,1-D .()3,1-【答案】C 【解析】 【分析】解一元二次不等式求得M ,然后求两个集合的交集. 【详解】由()()130x x +-<解得13x -<<,故()1,1M N ⋂=-,故选C. 【点睛】本小题主要考查集合交集的概念以及运算,考查一元二次不等式的解法,属于基础题.17.实数,x y 满足020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2x y -的最大值为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据平移得到答案. 【详解】如图所示,画出可行域和目标函数,2z x y =-,则2y x z =-,z 表示直线与y 轴截距的相反数,根据平移知:当3,3x y ==时,2z x y =-有最大值为3. 故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.18.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3【答案】B 【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.19.设x ,y 满足约束条件则的最大值与最小值的比值为( )A .B .C.D .【答案】A 【解析】 【分析】作出不等式组所表示的可行域,平移直线,观察直线在轴上取得最大值和最小值时相应的最优解,再将最优解代入目标函数可得出最大值和最小值,于此可得出答案。

数列不等式综合训练假期版

数列不等式综合训练假期版

高考模拟热点交汇试题汇编之数列与不等式(30题)1. 已知函数()()ln 1f x x x =-+,数列{}n a 满足101a <<,()1n n a f a +=; 数列{}n b 满足1111,(1)22n n b b n b +=≥+, *n N ∈.求证:(Ⅰ)101;n n a a +<<<(Ⅱ)21;2n n a a +<(Ⅲ)若12a =则当n ≥2时,!n nb a n >⋅.2.已知α为锐角,且12tan -=α,函数)42sin(2tan )(2παα+⋅+=x x x f ,数列{a n }的首项)(,2111n n a f a a ==+. ⑴ 求函数)(x f 的表达式; ⑵ 求证:n n a a >+1;⑶ 求证:),2(21111111*21N n n a a a n∈≥<++++++<3.(本小题满分14分)已知数列{}n a 满足()111,21n n a a a n N *+==+∈(Ⅱ)若数列{}n b 满足n n b n b b b b a )1(44441111321+=---- ,证明:{}n a 是等差数列;(Ⅲ)证明:()23111123n n N a a a *++++<∈4.设.2)(,ln )(),(2)(--==--=epqe e g x x f x f x q px x g 且其中(e 为自然对数的底数) (I )求p 与q 的关系;(II )若)(x g 在其定义域内为单调函数,求p 的取值范围; (III )证明: ①)1()1(->≤+x xx f ;②)1(412ln 33ln 22ln 2222+--<+++n n n nn (n ∈N ,n ≥2).5.已知数列{}n a 的前n 项和n S 满足:(1)1n n aS a a =--(a 为常数,且0,1a a ≠≠). (Ⅰ)求{}a 的通项公式;(Ⅱ)设021nnS b a =+,若数列{}n b 为等比数列,求a 的值; (Ⅲ)在满足条件(Ⅱ)的情形下,设11111n n n c a a +=++-,数列{}n c 的前n 项和为T n ,求证:123n T n >-.6.已知数列{}n a 满足15a =, 25a =,116(2)n n n a a a n +-=+≥.(1)求证:{}12n n a a ++是等比数列; (2)求数列{}n a 的通项公式;(3)设3(3)n n n n b n a =-,且12n b b b m +++<对于n N *∈恒成立,求m 的取值范7.已知数列{}n a 的首项121a a =+(a 是常数,且1a ≠-),24221+-+=-n n a a n n (2n ≥),数列{}n b 的首项1b a =,2n a b n n +=(2n ≥)。

高三数列与不等式重难点测试题

高三数列与不等式重难点测试题

高三数列与不等式重难点测试题一.选择题。

1.若数列{}11(1)(1)(2)2,n n n a n a n a n a --=+≥=满足且则满足不等式n a <462的最大正整数n 为( )A. 19B. 20C. 21D. 222. 在数列{}n a 中,1222016201711,,1,23n n a a a a a a +===+=则( )A. 56B. 73C. 72D. 5 3. 已知函数{}(),,(),n n y f x x R a a f n n N *=∈=∈数列的通项公式是,那么“函数[)()1,+y f x =∞在上单调递增”是“数列{}n a 是递增数列”的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. 已知数列{}11121311,2,(2,),n n n nn n na a a a a a a n n N a a a *-+-+-===≥∈满足则等于( )A. 26B. 24C. 12212!⨯D. 12213!⨯5. 已知{}101100,n n n k s a n s s s s n N *>=≤∈是等差数列的前项和,并且若对恒成立,则正整数K 构成的集合为( )A. {}5B. {}6C. {}5,6D. {}7 6.已知在等比数列{}181282,4,()()()(),n a a a f x x x a x a x a ===--∙∙- 中,函数=( )A. 122B. 92C. 82D. 627.已知定义在R 上的函数()f x 是奇函数,且满足3()(),(2)3,2f x f x f -=-=-数列{}n a 满足{}11,2(n n n n a s a n s a =-=+且为的前n 项和),则56()()f a f a +=( ) A. 3 B. 4 C. 5 D. 68. 在 平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影,由区域20,0,340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线x+y-2=0上的投影构成的线段记为AB,则AB =( )AB. 4C. D. 69. 设向量(1,),(,),a k b x y a b θ==记与的夹角为。

2018年高考数学三轮冲刺专题数列与不等式练习题理

2018年高考数学三轮冲刺专题数列与不等式练习题理

数列与不等式1.若等差数列{}n a 的前5项和为25,则3a =________2.若241a b+=,则2a b +的最大值为__________. 3.已知实数,x y 满足220{40 10x y x y y --≥+-≤-≥,则y x 的最小值为__________. 4.在圆x 2+y 2=5x 内,过点53,22⎛⎫ ⎪⎝⎭有n 条弦的长度成等差数列,最短弦长为数列的首项a 1,最长弦长为a n ,若公差11,63d ⎛⎤∈ ⎥⎝⎦,那么n 的取值集合为________. 5.在等比数列{}n a 中, 166n a a +=, 2132256n n a a a a --+=,且前n 项和126n S =,则n =( )A. 2B. 4C. 6D. 86.已知等差数列{}n a 的前n 项和为n S ,且51050,200S S ==,则1011a a +的值为( )A. 20B. 40C. 60D. 807.关于x y 、的不等式组360,{20, 40,x y x y x y +-≥--≤+-≤则2z x y =+的最大值是( )A. 3B. 5C. 7D. 98.在各项均为正数的等比数列{}n a 中,若5114a a =, 6128a a =,则89a a =( )A. 12B. 32C. 62D. 429.若a 、b 、c∈R,则下列命题中正确的是( )A. 若ac>bc ,则a>bB. 若a 2>b 2,则a>bC. 若11a b<,则a>b D. 若a b >,则a>b 10.已知均为正实数,且,则 的最小值为( ) A. B. C. D.11.已知全集为R ,集合2{|0.51},{|680}x A x B x x x =≤=-+≤,则C A B ⋂=RA. (],0∞-B. []2,4C. [)()0,24,∞⋃+D. ][()0,24,∞⋃+12.在等比数列{}n a 中, 151,4a a =-=-,则3a =A. 2±B. 2±C. 2D. 2-13.若n S 是数列{}2n 的前n 项和,则83S S -=( ).A. 504B. 500C. 498D. 49614.已知等比数列{}n a 满足: 23428a a a ++=,且32a +是24,a a 的等差中项.则q =( )A. 2-或12B. 12-C. 2或12D. 2- 15.己知121,,,4a a 成等差数列, 1231,,,,4b b b 成等比数列, 122a ab +则的值是( ) A. 52或52- B. 52- C. 52 D. 1216.已知数列{}n a 为等差数列,若11101a a <-,且其前n 项和n S 有最大值,则使得0n S >的最大值n 为 A. 11 B. 19 C. 20 D. 2117. 某市垃圾处理站每月的垃圾处理成本y (元)与月垃圾处理量x (吨)之间的函数关系可近似地表示为21200800002y x x =-+,求该站每月垃圾处理量为多少吨时,才能使每吨垃圾的平均处理成本最低?最低平均处理成本是多少?18.已知正项等比数列{}n b (*n N ∈)中,公比1q >,且3540b b +=, 35·256b b =, 2log 2n n a b =+. (1)求证:数列{}n a 是等差数列.(2)若11·n n n c a a -=,求数列{}n c 的前n 项和n S . 19.设数列{a n }的前n 项和为S n .已知2S n =3n +3.(1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n .20.数列{}n a 的前n 项和记为n S , 11a =,点()1,n n S a +在直线31y x =+上, *N n ∈.(1)求数列{}n a 的通项公式;(2)设41log n n b a +=, n n n c a b =+, n T 是数列{}n c 的前n 项和,求n T .21.设{}n a 是首项为1a ,公比为q 的等比数列, n S 为数列{}n a 的前n 项和.(1)已知22a =,且3a 是13,S S 的等差中项,求数列{}n a 的通项公式;(2)当11,2a q ==时,令()4log 1n n b S =+,求证:数列{}n b 是等差数列.22.设数列{}n a 的前n 项和为n S ,且对任意正整数n ,满足2n n S a =-.(1)求数列{}n a 的通项公式;(2)若2n n b na =,数列{}n b 的前n 项和为n T ,是否存在正整数n ,使53n T <? 若存在,求出符合条件的所有n 的值构成的集合A ;若不存在,请说明理由.。

高考数学专题 不等式高考押题理数(解析)

高考数学专题 不等式高考押题理数(解析)

1.设二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ).若∀x ∈R ,不等式f (x )≥f ′(x )恒成立,则b 2a 2+2c 2的最大值为( )A.6+2B.6-2 C .22+2 D .22-2答案:B2.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0.若z =ax +y 的最大值为4,则a =( )A .3B .2C .-2D .-3答案:B解析:画出不等式组表示的平面区域如图阴影部分所示,若z =ax +y 的最大值为4,则最优解为x =1,y =1或x =2,y =0,经检验知x =2,y =0符合题意, ∴ 2a +0=4,此时a =2.故选B.3.已知点A (2,-2),点P (x ,y )在⎩⎪⎨⎪⎧x -y +1≥0,x +y +1≥0,2x -y -1≥0所表示的平面区域内,则OP →在OA →方向上投影的取值范围是( )A.⎣⎡⎭⎫-22,22 B.⎝⎛⎭⎫-22,22 C.⎝⎛⎦⎤-22,22 D.⎣⎡⎦⎤-22,22 答案:D解析:不等式组表示的平面区域如图阴影部分所示.由向量投影的几何意义知,当点P 与点D 重合时投影最大,当点P 与点B 或点C 重合时投影最小. 又C (-1,0),D (0,-1),所以OC →=(-1,0),OD →=(0,-1), 所以OD →在OA →方向上的投影为OD →·OA →|OA →|=22,OC →在OA →方向上的投影为OC →·OA →|OA →|=-22,故OP →在OA →方向上投影的取值范围是⎣⎡⎦⎤-22,22.4.若a ,b 为实数,则“0<ab <1”是“a <1b 或b >1a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A5.已知三点A (2,1),B (1,-2),C ⎝⎛⎭⎫35,-15,动点P (a ,b )满足0≤OP →·OA →≤2,且0≤OP →·OB →≤2,则动点P 到点C 的距离小于15的概率为( )A.π20 B .1-π20 C.19π20 D .1-19π20 答案:A解析:动点P (a ,b )满足的不等式组为⎩⎪⎨⎪⎧0≤2a +b ≤2,0≤a -2b ≤2,画出可行域可知点P 在以C ⎝⎛⎭⎫35,-15为中心且边长为255的正方形及内部运动,而点P 到点C 的距离小于15的区域是以C ⎝⎛⎭⎫35,-15为圆心且半径为15的圆的内部,所以概率P =π⎝⎛⎭⎫152⎝⎛⎭⎫2552=π20.故选A. 6.已知x ,y ∈R 且满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围是________. 答案:[4,12]7.设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0.若f (f (a ))≤2,则实数a 的取值范围是________.答案:(-∞,2]解析:结合图形(图略),由f (f (a ))≤2可得f (a )≥-2,可得a ≤ 2. 8.设实数x ,y 满足⎩⎪⎨⎪⎧x +y -6≤0,x -y -1≤0,x ≥2,则μ=yx的取值范围是________.答案:⎣⎡⎦⎤12,2解析:由约束条件⎩⎪⎨⎪⎧x +y -6≤0,x -y -1≤0,x ≥2作出可行域如图阴影部分所示.μ=yx的几何意义是原点与可行域内动点连线的斜率, 联立⎩⎪⎨⎪⎧x =2,x -y -1=0,解得A (2,1).联立⎩⎪⎨⎪⎧x =2,x +y -6=0,解得C (2,4).由图可知,当动点为点A 时,k OA 最小,等于12;当动点为点C 时,k OC 最大,等于42=2.所以μ=yx的取值范围是⎣⎡⎦⎤12,2. 9.已知函数f (x )=13ax 3-14x 2+cx +d (a ,c ,d ∈R )满足f (0)=0,f ′(1)=0,且f ′(x )≥0在R 上恒成立.(1)求a ,c ,d 的值;(2)若h (x )=34x 2-bx +b 2-14,解不等式f ′(x )+h (x )<0.(2)由(1)知,f ′(x )=14x 2-12x +14.由f ′(x )+h (x )<0,得14x 2-12x +14+34x 2-bx +b 2-14<0, 即x 2-⎝⎛⎭⎫b +12x +b2<0,即(x -b )⎝⎛⎭⎫x -12<0. 当b >12时,解集为⎝⎛⎭⎫12,b . 当b <12时,解集为⎝⎛⎭⎫b ,12. 当b =12,解集为∅.10.运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油⎝⎛⎭⎫2+x2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.11.已知函数f (x )=13x 3+12ax 2+bx .(1)若a =2b ,试问函数f (x )能否在x =-1处取到极 值?若有可能,求出实数a ,b 的值;否则说明理由;(2)若函数f (x )在区间(-1,2),(2,3)内各有一个极值点,试求w =a -4b 的取值范围. 解:(1)由题意f ′(x )=x 2+ax +b , ∵a =2b ,∴f ′(x )=x 2+2bx +b . 若f (x )在x =-1处取极值, 则f ′(-1)=1-2b +b =0,即b =1, 此时f ′(x )=x 2+2x +1=(x +1)2≥0,函数f (x )为单调递增函数,这与该函数能在x =-1处取极值矛盾, ∴该函数不能在x =-1处取得极值.(2)∵函数f (x )=13x 3+12ax 2+bx 在区间(-1,2),(2,3)内分别有一个极值点,∴f ′(x )=x 2+ax +b =0在(-1,2),(2,3)内分别有一个实根, ∴⎩⎪⎨⎪⎧ f ′-1>0,f ′2<0,f ′3>0⇒⎩⎪⎨⎪⎧1-a +b >0,4+2a +b <0,9+3a +b >0.画出不等式表示的平面区域如图所示,当目标函数w=a-4b过N(-5,6)时,对应的w=-29;当目标函数w=a-4b过M(-2,-3)时,对应的w=10. 故w=a-4b的取值范围为(-29,10).。

高三复习经典专题14:数列不等式综合训练经典30题

高三复习经典专题14:数列不等式综合训练经典30题

高考模拟热点交汇试题汇编之数列与不等式(30题)1. 已知函数()()ln 1f x x x =-+,数列{}n a 满足101a <<,()1n n a f a +=; 数列{}n b 满足1111,(1)22n n b b n b +=≥+, *n N ∈.求证:(Ⅰ)101;n n a a +<<<(Ⅱ)21;2n n a a +<(Ⅲ)若12a =则当n ≥2时,!n n b a n >⋅.2.已知α为锐角,且12tan -=α,函数)42sin(2tan )(2παα+⋅+=x x x f ,数列{a n }的首项)(,2111n n a f a a ==+.⑴ 求函数)(x f 的表达式; ⑵ 求证:n n a a >+1;⑶ 求证:),2(21111111*21N n n a a a n∈≥<++++++<3.(本小题满分14分)已知数列{}n a 满足()111,21n n a a a n N *+==+∈ (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足nn b n b b b b a )1(44441111321+=---- ,证明:{}n a 是等差数列;(Ⅲ)证明:()23111123n n N a a a *++++<∈ 4.设.2)(,ln )(),(2)(--==--=ep qe e g x x f x f xq px x g 且其中(e 为自然对数的底数)(I )求p 与q 的关系;(II )若)(x g 在其定义域内为单调函数,求p 的取值范围; (III )证明: ①)1()1(->≤+x xx f ;②)1(412ln 33ln 22ln 2222+--<+++n n n nn (n ∈N ,n ≥2).5.已知数列{}n a 的前n 项和n S 满足:(1)1n n a S a a =--(a 为常数,且0,1a a ≠≠). (Ⅰ)求{}n a 的通项公式; (Ⅱ)设021n nS b a =+,若数列{}n b 为等比数列,求a 的值;(Ⅲ)在满足条件(Ⅱ)的情形下,设11111n nn c a a +=++-,数列{}n c 的前n 项和为T n ,求证:123n T n >-.6.已知数列{}n a 满足15a =, 25a =,116(2)n n n a a a n +-=+≥.(1)求证:{}12n n a a ++是等比数列; (2)求数列{}n a 的通项公式;(3)设3(3)n nn n b n a =-,且12n b b b m +++<对于n N *∈恒成立,求m 的取值范7.已知数列{}n a 的首项121a a =+(a 是常数,且1a ≠-),24221+-+=-n n a a n n (2n ≥),数列{}n b 的首项1b a =,2n a b n n +=(2n ≥)。

高考数列压轴题含答案

高考数列压轴题含答案

高考数列压轴题一.解答题(共50小题)1.数列{a n}满足a1=1,a2=+,…,a n=++…+(n∈N*)(1)求a2,a3,a4,a5的值;(2)求a n与a n﹣1之间的关系式(n∈N*,n≥2);(3)求证:(1+)(1+)…(1+)<3(n∈N*)2.已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n∈N*),证明:当n∈N*时,(Ⅰ)0<x n<x n;+1﹣x n≤;(Ⅱ)2x n+1(Ⅲ)≤x n≤.3.数列{a n}中,a1=,a n+1=(n∈N*)<a n;(Ⅰ)求证:a n+1(Ⅱ)记数列{a n}的前n项和为S n,求证:S n<1.4.已知正项数列{a n}满足a n2+a n=3a2n+1+2a n+1,a1=1.(1)求a2的值;(2)证明:对任意实数n∈N*,a n≤2a n+1;(3)记数列{a n}的前n项和为S n,证明:对任意n∈N*,2﹣≤S n<3.5.已知在数列{a n}中,.,n∈N*<a n<2;(1)求证:1<a n+1(2)求证:;(3)求证:n<s n<n+2.6.设数列{a n}满足a n+1=a n2﹣a n+1(n∈N*),S n为{a n}的前n项和.证明:对任意n∈N*,(I)当0≤a1≤1时,0≤a n≤1;(II)当a1>1时,a n>(a1﹣1)a1n﹣1;(III)当a1=时,n﹣<S n<n.7.已知数列{a n}满足a1=1,S n=2a n+1,其中S n为{a n}的前n项和(n∈N*).(Ⅰ)求S1,S2及数列{S n}的通项公式;(Ⅱ)若数列{b n}满足,且{b n}的前n项和为T n,求证:当n≥2时,.8.已知数列{a n}满足a1=1,(n∈N*),(Ⅰ)证明:;(Ⅱ)证明:.9.设数列{a n}的前n项的和为S n,已知a1=,a n+1=,其中n∈N*.(1)证明:a n<2;(2)证明:a n<a n+1;(3)证明:2n﹣≤S n≤2n﹣1+()n.10.数列{a n}的各项均为正数,且a n+1=a n+﹣1(n∈N*),{a n}的前n项和是S n.(Ⅰ)若{a n}是递增数列,求a1的取值范围;(Ⅱ)若a1>2,且对任意n∈N*,都有S n≥na1﹣(n﹣1),证明:S n<2n+1.11.设a n=x n,b n=()2,S n为数列{a n•b n}的前n项和,令f n(x)=S n﹣1,x∈R,a∈N*.(Ⅰ)若x=2,求数列{}的前n项和T n;(Ⅱ)求证:对∀n∈N*,方程f n(x)=0在x n∈[,1]上有且仅有一个根;(Ⅲ)求证:对∀p∈N*,由(Ⅱ)中x n构成的数列{x n}满足0<x n﹣x n+p<.12.已知数列{a n},{b n},a0=1,,(n=0,1,2,…),,T n为数列{b n}的前n项和.求证:(Ⅰ)a n<a n;+1(Ⅱ);(Ⅲ).13.已知数列{a n}满足:a1=,a n=a n﹣12+a n﹣1(n≥2且n∈N).(Ⅰ)求a2,a3;并证明:2﹣≤a n≤•3;(Ⅱ)设数列{a n2}的前n项和为A n,数列{}的前n项和为B n,证明:=a n+1.14.已知数列{a n}的各项均为非负数,其前n项和为S n,且对任意的n∈N*,都有.(1)若a1=1,a505=2017,求a6的最大值;(2)若对任意n∈N*,都有S n≤1,求证:.15.已知数列{a n}中,a1=4,a n+1=,n∈N*,S n为{a n}的前n项和.(Ⅰ)求证:n∈N*时,a n>a n+1;(Ⅱ)求证:n∈N*时,2≤S n﹣2n<.16.已知数列{a n}满足,a1=1,a n=﹣.(1)求证:a n≥;﹣a n|≤;(2)求证:|a n+1(3)求证:|a2n﹣a n|≤.17.设数列{a n}满足:a1=a,a n+1=(a>0且a≠1,n∈N*).(1)证明:当n≥2时,a n<a n+1<1;(2)若b∈(a2,1),求证:当整数k≥+1时,a k+1>b.18.设a>3,数列{a n}中,a1=a,a n+1=,n∈N*.(Ⅰ)求证:a n>3,且<1;(Ⅱ)当a≤4时,证明:a n≤3+.19.已知数列{a n}满足a n>0,a1=2,且(n+1)a n+12=na n2+a n(n∈N*).(Ⅰ)证明:a n>1;(Ⅱ)证明:++…+<(n≥2).20.已知数列{a n}满足:.(1)求证:;(2)求证:.21.已知数列{a n}满足a1=1,且a n+12+a n2=2(a n+1a n+a n+1﹣a n﹣).(1)求数列{a n}的通项公式;(2)求证:++…+<;(3)记S n=++…+,证明:对于一切n≥2,都有S n2>2(++…+).22.已知数列{a n}满足a1=1,a n+1=,n∈N*.(1)求证:≤a n≤1;(2)求证:|a2n﹣a n|≤.23.已知数列{a n]的前n项和记为S n,且满足S n=2a n﹣n,n∈N*(Ⅰ)求数列{a n}的通项公式;(Ⅱ)证明:+…(n∈N*)24.已知数列{a n}满足:a1=,a n+1=+a n(n∈N*).(1)求证:a n>a n;+1(2)求证:a2017<1;(3)若a k>1,求正整数k的最小值.25.已知数列{a n}满足:a n2﹣a n﹣a n+1+1=0,a1=2(1)求a2,a3;(2)证明数列为递增数列;(3)求证:<1.26.已知数列{a n}满足:a1=1,(n∈N*)(Ⅰ)求证:a n≥1;(Ⅱ)证明:≥1+(Ⅲ)求证:<a n<n+1.+127.在正项数列{a n}中,已知a1=1,且满足a n+1=2a n(n∈N*)(Ⅰ)求a2,a3;(Ⅱ)证明.a n≥.28.设数列{a n}满足.(1)证明:;(2)证明:.29.已知数列{a n}满足a1=2,a n+1=2(S n+n+1)(n∈N*),令b n=a n+1.(Ⅰ)求证:{b n}是等比数列;(Ⅱ)记数列{nb n}的前n项和为T n,求T n;(Ⅲ)求证:﹣<+…+.30.已知数列{a n}中,a1=3,2a n+1=a n2﹣2a n+4.>a n;(Ⅰ)证明:a n+1(Ⅱ)证明:a n≥2+()n﹣1;(Ⅲ)设数列{}的前n项和为S n,求证:1﹣()n≤S n<1.31.已知数列{a n}满足a1=,a n+1=,n∈N*.(1)求a2;(2)求{}的通项公式;(3)设{a n}的前n项和为S n,求证:(1﹣()n)≤S n<.32.数列{a n}中,a1=1,a n=.(1)证明:a n<a n+1;(2)证明:a n a n+1≥2n+1;(3)设b n=,证明:2<b n<(n≥2).33.已知数列{a n}满足,(1)若数列{a n}是常数列,求m的值;(2)当m>1时,求证:a n<a n+1;(3)求最大的正数m,使得a n<4对一切整数n恒成立,并证明你的结论.34.已知数列{a n}满足:,p>1,.(1)证明:a n>a n+1>1;(2)证明:;(3)证明:.35.数列{a n}满足a1=,a n+1﹣a n+a n a n+1=0(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:a1+a1a2+a1a2a3+…+a1a2…a n<1.36.已知数列{a n}满足a1=1,a n+1=a n2+p.(1)若数列{a n}就常数列,求p的值;(2)当p>1时,求证:a n<a n+1;(3)求最大的正数p,使得a n<2对一切整数n恒成立,并证明你的结论.37.已知数列{a n}满足a1=a>4,,(n∈N*)(1)求证:a n>4;(2)判断数列{a n}的单调性;(3)设S n为数列{a n}的前n项和,求证:当a=6时,.38.已知数列{a n}满足a1=1,a n+1=.<a n;(Ⅰ)求证:a n+1(Ⅱ)求证:≤a n≤.39.已知数列{a n}满足:a1=1,.(1)若b=1,证明:数列是等差数列;}的单调性并说明理由;(2)若b=﹣1,判断数列{a2n﹣1(3)若b=﹣1,求证:.40.已知数列{a n}满足,(n=1,2,3…),,S n=b1+b2+…+b n.证明:(Ⅰ)a n<a n<1(n≥1);﹣1(Ⅱ)(n≥2).41.已知数列{a n}满足a1=1,a n+1=,n∈N*,记S,T n分别是数列{a n},{a}的前n项和,证明:当n∈N*时,<a n;(1)a n+1(2)T n=﹣2n﹣1;(3)﹣1<S n.42.已知数列{a n}满足a1=3,a n+1=a n2+2a n,n∈N*,设b n=log2(a n+1).(I)求{a n}的通项公式;(II)求证:1+++…+<n(n≥2);(III)若=b n,求证:2≤<3.43.已知正项数列{a n}满足a1=3,,n∈N*.(1)求证:1<a n≤3,n∈N*;(2)若对于任意的正整数n,都有成立,求M的最小值;(3)求证:a1+a2+a3+…+a n<n+6,n∈N*.44.已知在数列{a n}中,,,n∈N*.<a n<2;(1)求证:1<a n+1(2)求证:;(3)求证:n<s n<n+2.45.已知数列{a n}中,,(n∈N*).(1)求证:;(2)求证:是等差数列;(3)设,记数列{b n}的前n项和为S n,求证:.46.已知无穷数列{a n}的首项a1=,=n∈N*.(Ⅰ)证明:0<a n<1;(Ⅱ)记b n=,T n为数列{b n}的前n项和,证明:对任意正整数n,T n.47.已知数列{x n}满足x1=1,x n+1=2+3,求证:(I)0<x n<9;(II)x n<x n+1;(III).48.数列{a n}各项均为正数,且对任意n∈N*,满足a n+1=a n+ca n2(c>0且为常数).(Ⅰ)若a1,2a2,3a3依次成等比数列,求a1的值(用常数c表示);(Ⅱ)设b n=,S n是数列{b n}的前n项和,(i)求证:;(ii)求证:S n<S n+1<.49.设数列满足|a n﹣|≤1,n∈N*.(Ⅰ)求证:|a n|≥2n﹣1(|a1|﹣2)(n∈N*)(Ⅱ)若|a n|≤()n,n∈N*,证明:|a n|≤2,n∈N*.50.已知数列{a n}满足:a1=1,a n+1=a n+.(n∈N*)(Ⅰ)证明:≥1+;<n+1.(Ⅱ)求证:<a n+1高考数列压轴题参考答案与试题解析一.解答题(共50小题)1.数列{a n}满足a1=1,a2=+,…,a n=++…+(n∈N*)(1)求a2,a3,a4,a5的值;(2)求a n与a n﹣1之间的关系式(n∈N*,n≥2);(3)求证:(1+)(1+)…(1+)<3(n∈N*)【解答】解:(1)a2=+=2+2=4,a3=++=3+6+6=15,a4=+++=4+4×3+4×3×2+4×3×2×1=64,a5=++++=5+20+60+120+120=325;(2)a n=++…+=n+n(n﹣1)+n(n﹣1)(n﹣2)+…+n!=n+n[(n﹣1)+(n﹣1)(n﹣2)+…+(n﹣1)!]=n+na n﹣1;(3)证明:由(2)可知=,所以(1+)(1+)…(1+)=•…==+++…+=+++…+=+++…+≤1+1+++…+=2+1﹣+﹣+…+﹣=3﹣<3(n≥2).所以n≥2时不等式成立,而n=1时不等式显然成立,所以原命题成立.2.已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n∈N*),证明:当n∈N*时,(Ⅰ)0<x n+1<x n;(Ⅱ)2x n+1﹣x n≤;(Ⅲ)≤x n≤.【解答】解:(Ⅰ)用数学归纳法证明:x n>0,当n=1时,x1=1>0,成立,假设当n=k时成立,则x k>0,那么n=k+1时,若x k+1<0,则0<x k=x k+1+ln(1+x k+1)<0,矛盾,故x n+1>0,因此x n>0,(n∈N*)∴x n=x n+1+ln(1+x n+1)>x n+1,因此0<x n+1<x n(n∈N*),(Ⅱ)由x n=x n+1+ln(1+x n+1)得x n x n+1﹣4x n+1+2x n=x n+12﹣2x n+1+(x n+1+2)ln(1+x n+1),记函数f(x)=x2﹣2x+(x+2)ln(1+x),x≥0∴f′(x)=+ln(1+x)>0,∴f(x)在(0,+∞)上单调递增,∴f(x)≥f(0)=0,因此x n+12﹣2x n+1+(x n+1+2)ln(1+x n+1)≥0,故2x n+1﹣x n≤;(Ⅲ)∵x n=x n+1+ln(1+x n+1)≤x n+1+x n+1=2x n+1,∴x n≥,由≥2x n+1﹣x n得﹣≥2(﹣)>0,∴﹣≥2(﹣)≥…≥2n﹣1(﹣)=2n﹣2,∴x n≤,综上所述≤x n≤.3.数列{a n}中,a1=,a n+1=(n∈N*)(Ⅰ)求证:a n+1<a n;(Ⅱ)记数列{a n}的前n项和为S n,求证:S n<1.【解答】证明:(Ⅰ)∵>0,且a1=>0,∴a n>0,∴a n+1﹣a n=﹣a n=<0.∴a n+1<a n;(Ⅱ)∵1﹣a n+1=1﹣=,∴=.∴,则,又a n>0,∴.4.已知正项数列{a n}满足a n2+a n=3a2n+1+2a n+1,a1=1.(1)求a2的值;(2)证明:对任意实数n∈N*,a n≤2a n+1;(3)记数列{a n}的前n项和为S n,证明:对任意n∈N*,2﹣≤S n<3.【解答】解:(1)a n2+a n=3a2n+1+2a n+1,a1=1,即有a12+a1=3a22+2a2=2,解得a2=(负的舍去);(2)证明:a n2+a n=3a2n+1+2a n+1,可得a n2﹣4a2n+1+a n﹣2a n+1+a2n+1=0,即有(a n﹣2a n+1)(a n+2a n+1+1)+a2n+1=0,由于正项数列{a n},即有a n+2a n+1+1>0,4a2n+1>0,则有对任意实数n∈N*,a n≤2a n+1;(3)由(1)可得对任意实数n∈N*,a n≤2a n+1;即为a1≤2a2,可得a2≥,a3≥a2≥,…,a n≥,前n项和为S n=a1+a2+…+a n≥1+++…+==2﹣,又a n2+a n=3a2n+1+2a n+1>a2n+1+a n+1,即有(a n﹣a n+1)(a n+a n+1+1)>0,则a n>a n+1,数列{a n}递减,即有S n=a1+a2+…+a n<1+1+++…+=1+=3(1﹣)<3.则有对任意n∈N*,2﹣≤S n<3.5.已知在数列{a n}中,.,n∈N*(1)求证:1<a n+1<a n<2;(2)求证:;(3)求证:n<s n<n+2.【解答】证明:(1)先用数学归纳法证明1<a n<2.①.n=1时,②.假设n=k时成立,即1<a k<2.那么n=k+1时,成立.由①②知1<a n<2,n∈N*恒成立..所以1<a n+1<a n<2成立.(2),当n≥3时,而1<a n<2.所以.由,得,所以(3)由(1)1<a n<2得s n>n由(2)得,6.设数列{a n}满足a n+1=a n2﹣a n+1(n∈N*),S n为{a n}的前n项和.证明:对任意n∈N*,(I)当0≤a1≤1时,0≤a n≤1;(II)当a1>1时,a n>(a1﹣1)a1n﹣1;(III)当a1=时,n﹣<S n<n.【解答】证明:(Ⅰ)用数学归纳法证明.①当n=1时,0≤a n≤1成立.②假设当n=k(k∈N*)时,0≤a k≤1,则当n=k+1时,=()2+∈[]⊂[0,1],由①②知,.∴当0≤a1≤1时,0≤a n≤1.(Ⅱ)由a n+1﹣a n=()﹣a n=(a n﹣1)2≥0,知a n+1≥a n.若a1>1,则a n>1,(n∈N*),从而=﹣a n=a n(a n﹣1),即=a n≥a1,∴,∴当a1>1时,a n>(a1﹣1)a1n﹣1.(Ⅲ)当时,由(Ⅰ),0<a n<1(n∈N*),故S n<n,令b n=1﹣a n(n∈N*),由(Ⅰ)(Ⅱ),b n>b n+1>0,(n∈N*),由,得.∴=(b1﹣b2)+(b2﹣b3)+…+(b n﹣b n+1)=b1﹣b n+1<b1=,∵≥,∴nb n2,即,(n∈N*),∵==,∴b1+b2+…+b n[()+()+…+()]=,即n﹣S n,亦即,∴当时,.7.已知数列{a n}满足a1=1,S n=2a n+1,其中S n为{a n}的前n项和(n∈N*).(Ⅰ)求S1,S2及数列{S n}的通项公式;(Ⅱ)若数列{b n}满足,且{b n}的前n项和为T n,求证:当n≥2时,.【解答】解:(Ⅰ)数列{a n}满足S n=2a n+1,则S n=2a n+1=2(S n+1﹣S n),即3S n=2S n+1,∴,即数列{S n}为以1为首项,以为公比的等比数列,∴S n=()n﹣1(n∈N*).∴S1=1,S2=;(Ⅱ)在数列{b n}中,,T n为{b n}的前n项和,则|T n|=|=.而当n≥2时,,即.8.已知数列{a n}满足a1=1,(n∈N*),(Ⅰ)证明:;(Ⅱ)证明:.【解答】(Ⅰ)证明:∵①,∴②由②÷①得:,∴(Ⅱ)证明:由(Ⅰ)得:(n+1)a n+2=na n∴令b n=na n,则③∴b n﹣1•b n=n④由b1=a1=1,b2=2,易得b n>0由③﹣④得:∴b1<b3<…<b2n﹣1,b2<b4<…<b2n,得b n≥1根据b n•b n+1=n+1得:b n+1≤n+1,∴1≤b n≤n∴==一方面:另一方面:由1≤b n≤n可知:.9.设数列{a n}的前n项的和为S n,已知a1=,a n+1=,其中n∈N*.(1)证明:a n<2;(2)证明:a n<a n+1;(3)证明:2n﹣≤S n≤2n﹣1+()n.【解答】证明:(1)a n+1﹣2=﹣2=,由于+2=+1>0,+2=2+>0.∴a n+1﹣2与a n﹣2同号,因此与a1﹣2同号,而a1﹣2=﹣<0,∴a n<2.(2)a n+1﹣1=,可得:a n+1﹣1与a n﹣1同号,因此与a1﹣1同号,而a1﹣1=>0,∴a n>1.又a n<2.∴1<a n<2.a n+1﹣a n=,可得分子>0,分母>0.∴a n+1﹣a n>0,故a n<a n+1.(3)n=1时,S1=,满足不等式.n≥2时,==,∴,即2﹣a n≥.∴2n﹣S n≥=1﹣.即S n≤2n﹣1+.另一方面:由(II)可知:.,=≤.从而可得:=≤.∴2﹣a n≤,∴2n﹣S n≤=.∴S n≥2n﹣>2n﹣.综上可得:2n﹣≤S n≤2n﹣1+()n.10.数列{a n}的各项均为正数,且a n+1=a n+﹣1(n∈N*),{a n}的前n项和是S n.(Ⅰ)若{a n}是递增数列,求a1的取值范围;(Ⅱ)若a1>2,且对任意n∈N*,都有S n≥na1﹣(n﹣1),证明:S n<2n+1.【解答】(I)解:由a2>a1>0⇔﹣1>a1>0,解得0<a1<2,①.又a3>a2>0,⇔>a2,⇔0<a2<2⇔﹣1<2,解得1<a1<2,②.由①②可得:1<a1<2.下面利用数学归纳法证明:当1<a1<2时,∀n∈N*,1<a n<2成立.(1)当n=1时,1<a1<2成立.(2)假设当n=k∈N*时,1<a n<2成立.则当n=k+1时,a k+1=a k+﹣1∈⊊(1,2),即n=k+1时,不等式成立.综上(1)(2)可得:∀n∈N*,1<a n<2成立.于是a n+1﹣a n=﹣1>0,即a n+1>a n,∴{a n}是递增数列,a1的取值范围是(1,2).(II)证明:∵a1>2,可用数学归纳法证明:a n>2对∀n∈N*都成立.于是:a n+1﹣a n=﹣1<2,即数列{a n}是递减数列.在S n≥na1﹣(n﹣1)中,令n=2,可得:2a1+﹣1=S2≥2a1﹣,解得a1≤3,因此2<a1≤3.下证:(1)当时,S n≥na1﹣(n﹣1)恒成立.事实上,当时,由a n=a1+(a n﹣a1)≥a1+(2﹣)=.于是S n=a1+a2+…+a n≥a1+(n﹣1)=na1﹣.再证明:(2)时不合题意.事实上,当时,设a n=b n+2,可得≤1.由a n+1=a n+﹣1(n∈N*),可得:b n+1=b n+﹣1,可得=≤≤.于是数列{b n}的前n和T n≤<3b1≤3.故S n=2n+T n<2n+3=na1+(2﹣a1)n+3,③.令a1=+t(t>0),由③可得:S n<na1+(2﹣a1)n+3=na1﹣﹣tn+.只要n充分大,可得:S n<na1﹣.这与S n≥na1﹣(n﹣1)恒成立矛盾.∴时不合题意.综上(1)(2)可得:,于是可得=≤≤.(由可得:).故数列{b n}的前n项和T n≤<b1<1,∴S n=2n+T n<2n+1.11.设a n=x n,b n=()2,S n为数列{a n•b n}的前n项和,令f n(x)=S n﹣1,x∈R,a∈N*.(Ⅰ)若x=2,求数列{}的前n项和T n;(Ⅱ)求证:对∀n∈N*,方程f n(x)=0在x n∈[,1]上有且仅有一个根;(Ⅲ)求证:对∀p∈N*,由(Ⅱ)中x n构成的数列{x n}满足0<x n﹣x n+p<.【解答】解:(Ⅰ)若x=2,a n=2n,则=(2n﹣1)()n,则T n=1×()1+3×()2+…+(2n﹣1)()n,∴T n=1×()2+3×()3+…+(2n﹣1)()n+1,∴T n=+2×[()2+()3+…+()n]﹣(2n﹣1)()n+1=+2×﹣(2n﹣1)()n+1=+1﹣()n﹣1﹣(2n﹣1)()n+1,∴T n=3﹣()n﹣2﹣(2n﹣1)()n=3﹣;(Ⅱ)证明:f n(x)=﹣1+x+++…+(x∈R,n∈N+),f n′(x)=1+++…+>0,故函数f(x)在(0,+∞)上是增函数.由于f1(x1)=0,当n≥2时,f n(1)=++…+>0,即f n(1)>0.又f n()=﹣1++[+++…+]≤﹣+•()i,=﹣+×=﹣•()n﹣1<0,根据函数的零点的判定定理,可得存在唯一的x n∈[,1],满足f n(x n)=0.(Ⅲ)证明:对于任意p∈N+,由(1)中x n构成数列{x n},当x>0时,∵f n+1(x)=f n(x)+>f n(x),∴f n+1(x n)>f n(x n)=f n+1(x n+1)=0.由f n+1(x)在(0,+∞)上单调递增,可得x n+1<x n,即x n﹣x n+1>0,故数列{x n}为减数列,即对任意的n、p∈N+,x n﹣x n+p>0.由于f n(x n)=﹣1+x n+++…+=0,①,f n+p(x n+p)=﹣1+x n+p+++…++[++…+],②,用①减去②并移项,利用0<x n+p≤1,可得x n﹣x n+p=+≤≤<=﹣<.综上可得,对于任意p∈N+,由(1)中x n构成数列{x n}满足0<x n﹣x n+p<.12.已知数列{a n},{b n},a0=1,,(n=0,1,2,…),,T n为数列{b n}的前n项和.求证:(Ⅰ)a n+1<a n;(Ⅱ);(Ⅲ).【解答】解:证明:(Ⅰ)=,所以a n+1<a n(Ⅱ)法一、记,则,原命题等价于证明;用数学归纳法提示:构造函数在(1,+∞)单调递增,故==+>+×=+×(﹣)=,法二、只需证明,由,故:n=1时,,n≥2,可证:,(3)由,得=,可得:,叠加可得,,所以,13.已知数列{a n}满足:a1=,a n=a n﹣12+a n﹣1(n≥2且n∈N).(Ⅰ)求a2,a3;并证明:2﹣≤a n≤•3;(Ⅱ)设数列{a n2}的前n项和为A n,数列{}的前n项和为B n,证明:=a n+1.【解答】解:(I)a2=a12+a1==,a3=a22+a2==.证明:∵a n=a n﹣12+a n﹣1,∴a n+=a n﹣12+a n﹣1+=(a n﹣1+)2+>(a n﹣1+)2,∴a n+>(a n﹣1+)2>(a n﹣2+)4>>(a n﹣3+)8>…>(a1+)=2,∴a n>2﹣,又∵a n﹣a n﹣1=a n﹣12>0,∴a n>a n﹣1>a n﹣2>…>a1>1,∴a n2>a n,∴a n=a n﹣12+a n﹣1<2a,∴a n<2a<2•22<2•22•24<…<2•22•24•…•2a1=2•()=•3.综上,2﹣≤a n≤•3.(II)证明:∵a n=a n﹣12+a n﹣1,∴a n﹣12=a n﹣a n﹣1,∴A n=a12+a22+a32+…a n2=(a2﹣a1)+(a3﹣a2)+…+(a n+1﹣a n)=a n+1﹣,∵a n=a n﹣12+a n﹣1=a n﹣1(a n﹣1+1),∴==,∴=,∴B n=…+=()+()+(﹣)+…+()=﹣.∴==.14.已知数列{a n}的各项均为非负数,其前n项和为S n,且对任意的n∈N*,都有.(1)若a1=1,a505=2017,求a6的最大值;(2)若对任意n∈N*,都有S n≤1,求证:.【解答】解:(1)由题意知a n+1﹣a n≤a n+2﹣a n+1,设d i=a i+1﹣a i(i=1,2,…,504),则d1≤d2≤d3≤…≤d504,且d1+d2+d3+…+d504=2016,∵=,所以d1+d2+…+d5≤20,∴a6=a1+(d1+d2+…+d5)≤21.(2)证明:若存在k∈N*,使得a k<a k+1,则由,得a k+1≤a k﹣a k+1≤a k+2,因此,从a n项开始,数列{a n}严格递增,故a1+a2+…+a n≥a k+a k+1+…+a n≥(n﹣k+1)a k,对于固定的k,当n足够大时,必有a1+a2+…+a n≥1,与题设矛盾,所以{a n}不可能递增,即只能a n﹣a n+1≥0.令b k=a k﹣a k+1,(k∈N*),由a k﹣a k+1≥a k+1﹣a k+2,得b k≥b k+1,b k>0,故1≥a1+a2+…+a n=(b1+a2)+a2+…+a n=b1+2(b2+a3)+a3+…+a n,=…=b1+2b2+…+nb n+na n,所以,综上,对一切n∈N*,都有.15.已知数列{a n}中,a1=4,a n+1=,n∈N*,S n为{a n}的前n项和.(Ⅰ)求证:n∈N*时,a n>a n+1;(Ⅱ)求证:n∈N*时,2≤S n﹣2n<.【解答】证明:(I)n≥2时,作差:a n+1﹣a n=﹣=,∴a n+1﹣a n与a n﹣a n﹣1同号,由a1=4,可得a2==,可得a2﹣a1<0,∴n∈N*时,a n>a n+1.(II)∵2=6+a n,∴=a n﹣2,即2(a n+1﹣2)(a n+1+2)=a n﹣2,①∴a n+1﹣2与a n﹣2同号,又∵a1﹣2=2>0,∴a n>2.∴S n=a1+a2+…+a n≥4+2(n﹣1)=2n+2.∴S n﹣2n≥2.由①可得:=,因此a n﹣2≤(a1﹣2),即a n≤2+2×.∴S n=a1+a2+…+a n≤2n+2×<2n+.综上可得:n∈N*时,2≤S n﹣2n<.16.已知数列{a n}满足,a1=1,a n=﹣.(1)求证:a n≥;(2)求证:|a n+1﹣a n|≤;(3)求证:|a2n﹣a n|≤.【解答】证明:(1)∵a1=1,a n=﹣.∴a2=,a3=,a4=,猜想:≤a n≤1.下面用数学归纳法证明.(i)当n=1时,命题显然成立;(ii)假设n=k时,≤1成立,则当n=k+1时,a k+1=≤<1.,即当n=k+1时也成立,所以对任意n∈N*,都有.(2)当n=1时,,当n≥2时,∵,∴.(3)当n=1时,|a2﹣a1|=<;当n≥2时,|a2n﹣a n|≤|a2n﹣a2n﹣1|+|a2n﹣1﹣a2n﹣2|+…+|a n+1﹣a n|.17.设数列{a n}满足:a1=a,a n+1=(a>0且a≠1,n∈N*).(1)证明:当n≥2时,a n<a n+1<1;(2)若b∈(a2,1),求证:当整数k≥+1时,a k+1>b.【解答】证明:(1)由a n+1=知a n与a1的符号相同,而a1=a>0,∴a n>0,∴a n+1=≤1,当且仅当a n=1时,a n+1=1下面用数学归纳法证明:①∵a>0且a≠1,∴a2<1,∴=>1,即有a2<a3<1,②假设n=k时,有a k<a k+1<1,则a k+2==<1且=>1,即a k+1<a k+2<1即当n=k+1时不等式成立,由①②可得当n≥2时,a n<a n+1<1;(2)若a k≥b,由(1)知a k+1>a k≥b,若a k<b,∵0<x<1以及二项式定理可知(1+x)n=1+C n1x+…+C n n x n≥nx,而a k2+1<b2+1<b+1,且a2<a3<…<a k<b<1∴a k+1=a2••…,=a2•>a2•()k﹣1>a2•()k﹣1=a2•(1+)k﹣1,≥a2•[1+(k﹣1)],∵k≥+1,∴1+(k﹣1)≥+1=,∴a k+1>b.18.设a>3,数列{a n}中,a1=a,a n+1=,n∈N*.(Ⅰ)求证:a n>3,且<1;(Ⅱ)当a≤4时,证明:a n≤3+.【解答】证明:(I)∵a n+1﹣3=﹣3=.=﹣=,∴()=>0,∴与同号,又a>3,∴=a﹣>0,∴>0,∴a n+1﹣3>0,即a n>3(n=1时也成立).∴==<1.综上可得:a n>3,且<1;(Ⅱ)当a≤4时,∵a n+1﹣3=﹣3=.∴=,由(I)可知:3<a n≤a1=a≤4,∴3<a n≤4.设a n﹣3=t∈(0,1].∴==≤,∴•…•≤,∴a n﹣3≤(a1﹣3)×≤,∴a n≤3+.19.已知数列{a n}满足a n>0,a1=2,且(n+1)a n+12=na n2+a n(n∈N*).(Ⅰ)证明:a n>1;(Ⅱ)证明:++…+<(n≥2).【解答】证明:(Ⅰ)由题意得(n+1)a n+12﹣(n+1)=na n2﹣n+a n﹣1,∴(n+1)(a n+1+1)(a n+1﹣1)=(a n﹣1)(na n+n+1),由a n>0,n∈N*,∴(n+1)(a n+1+1)>0,na n+n+1>0,∴a n+1﹣1与a n﹣1同号,∵a1﹣1=1>0,∴a n>1;(Ⅱ)由(Ⅰ)知,故(n+1)a n+12=na n2+a n<(n+1)a n2,∴a n+1<a n,1<a n≤2,又由题意可得a n=(n+1)a n+12﹣na n2,∴a1=2a22﹣a12,a2=3a32﹣2a22,…,a n=(n+1)a n+12﹣na n2,相加可得a1+a2+…+a n=(n+1)a n+12﹣4<2n,∴a n+12≤,即a n2≤,n≥2,∴≤2(+)≤2(﹣)+(﹣+),n≥2,当n=2时,=<,当n=3时,+≤<<,当n≥4时,++…+<2(+++)+(++﹣)=1+++++<,从而,原命题得证20.已知数列{a n}满足:.(1)求证:;(2)求证:.【解答】证明:(1)由,所以,因为,所以a n+2<a n+1<2.(2)假设存在,由(1)可得当n>N时,a n≤a N+1<1,根据,而a n<1,所以.于是,….累加可得(*)由(1)可得a N+n﹣1<0,而当时,显然有,因此有,这显然与(*)矛盾,所以.21.已知数列{a n}满足a1=1,且a n+12+a n2=2(a n+1a n+a n+1﹣a n﹣).(1)求数列{a n}的通项公式;(2)求证:++…+<;(3)记S n=++…+,证明:对于一切n≥2,都有S n2>2(++…+).【解答】解:(1)a1=1,且a n+12+a n2=2(a n+1a n+a n+1﹣a n﹣),可得a n+12+a n2﹣2a n+1a n﹣2a n+1+2a n+1=0,即有(a n+1﹣a n)2﹣2(a n+1﹣a n)+1=0,即为(a n+1﹣a n﹣1)2=0,可得a n+1﹣a n=1,则a n=a1+n﹣1=n,n∈N*;(2)证明:由=<=﹣,n≥2.则++…+=1+++…+<1++﹣+﹣+…+﹣=﹣<,故原不等式成立;(3)证明:S n=++…+=1++…+,当n=2时,S22=(1+)2=>2•=成立;假设n=k≥2,都有S k2>2(++…+).则n=k+1时,S k+12=(S k+)2,S k+12﹣2(++…++)=(S k+)2﹣2(++…+)﹣2•=S k2﹣2(++…+)++2•﹣2•=S k2﹣2(++…+)+,由k>1可得>0,且S k2>2(++…+).可得S k2﹣2(++…+)>0,则S k+12>2(++…++)恒成立.综上可得,对于一切n≥2,都有S n2>2(++…+).22.已知数列{a n}满足a1=1,a n+1=,n∈N*.(1)求证:≤a n≤1;(2)求证:|a2n﹣a n|≤.【解答】证明:(1)用数学归纳法证明:①当n=1时,=,成立;②假设当n=k时,有成立,则当n=k+1时,≤≤1,≥=,∴当n=k+1时,,命题也成立.由①②得≤a n≤1.(2)当n=1时,|a2﹣a1|=,当n≥2时,∵()()=()=1+=,∴|a n+1﹣a n|=||=≤|a n﹣a n﹣1|<…<()n﹣1|a2﹣a1|=,∴|a2n﹣a2n﹣1|≤|a2n﹣a2n﹣1|+|a2n﹣1﹣a2n﹣2|+…+|a n+1﹣a n|≤==()n﹣1﹣()2n﹣1≤,综上:|a2n﹣a n|≤.23.已知数列{a n]的前n项和记为S n,且满足S n=2a n﹣n,n∈N*(Ⅰ)求数列{a n}的通项公式;(Ⅱ)证明:+…(n∈N*)【解答】解:(Ⅰ)∵S n=2a n﹣n(n∈N+),∴S n﹣1=2a n﹣1﹣n+1=0(n≥2),两式相减得:a n=2a n﹣1+1,变形可得:a n+1=2(a n﹣1+1),又∵a1=2a1﹣1,即a1=1,∴数列{a n+1}是首项为2、公比为2的等比数列,∴a n+1=2•2n﹣1=2n,a n=2n﹣1.(Ⅱ)由,(k=1,2,…n),∴=,由=﹣,(k=1,2,…n),得﹣=,综上,+…(n∈N*).24.已知数列{a n}满足:a1=,a n+1=+a n(n∈N*).(1)求证:a n+1>a n;(2)求证:a2017<1;(3)若a k>1,求正整数k的最小值.【解答】(1)证明:a n+1﹣a n=≥0,可得a n+1≥a n.∵a1=,∴a n.∴a n+1﹣a n=>0,∴a n+1>a n.(II)证明:由已知==,∴=﹣,由=,=,…,=,累加求和可得:=++…+,当k=2017时,由(I)可得:=a1<a2<…<a2016.∴﹣=++…+<<1,∴a2017<1.(III)解:由(II)可得:可得:=a1<a2<…<a2016<a2017<1.∴﹣=++…+>2017×=1,∴a2017<1<a2018,又∵a n+1>a n.∴k的最小值为2018.25.已知数列{a n}满足:a n2﹣a n﹣a n+1+1=0,a1=2(1)求a2,a3;(2)证明数列为递增数列;(3)求证:<1.【解答】(1)解:∵a1=2,,∴a2=22﹣2+1=3,同理可得:a3=7.(2)证明:,对n∈N*恒成立,∴a n+1>a n.(3)证明:故=.26.已知数列{a n}满足:a1=1,(n∈N*)(Ⅰ)求证:a n≥1;(Ⅱ)证明:≥1+(Ⅲ)求证:<a n+1<n+1.【解答】证明:(I)数列{a n}满足:a1=1,(n∈N*),可得:,⇒a n+1≥a n≥a n﹣1≥…≥a1=1;(Ⅱ)由(Ⅰ)可得:;(Ⅲ),由(Ⅱ)得:,所以,累加得:,另一方面由a n≤n可得:原式变形为,所以:,累加得.27.在正项数列{a n}中,已知a1=1,且满足a n+1=2a n(n∈N*)(Ⅰ)求a2,a3;(Ⅱ)证明.a n≥.【解答】解:(Ⅰ)∵在正项数列{a n}中,a1=1,且满足a n+1=2a n(n∈N*),∴=,=.证明:(Ⅱ)①当n=1时,由已知,成立;②假设当n=k时,不等式成立,即,∵f(x)=2x﹣在(0,+∞)上是增函数,∴≥=()k+()k﹣=()k+=()k+,∵k≥1,∴2×()k﹣3﹣3=0,∴,即当n=k+1时,不等式也成立.根据①②知不等式对任何n∈N*都成立.28.设数列{a n}满足.(1)证明:;(2)证明:.【解答】(本题满分15分)证明:(I)易知a n>0,所以a n+1>a n+>a n,所以a k+1=a k+<a k+,所以.所以,当n≥2时,=,所以a n<1.又,所以a n<1(n∈N*),所以a n<a n+1<1(n∈N*).…(8分)(II)当n=1时,显然成立.由a n<1,知,所以,所以,所以,所以,当n≥2时,=,即.所以(n∈N*).…(7分)29.已知数列{a n}满足a1=2,a n+1=2(S n+n+1)(n∈N*),令b n=a n+1.(Ⅰ)求证:{b n}是等比数列;(Ⅱ)记数列{nb n}的前n项和为T n,求T n;(Ⅲ)求证:﹣<+…+.【解答】(I)证明:a1=2,a n+1=2(S n+n+1)(n∈N*),∴a2=2×(2+1+1)=8.n≥2时,a n=2(S n﹣1+n),相减可得:a n+1=3a n+2,变形为:a n+1+1=3(a n+1),n=1时也成立.令b n=a n+1,则b n+1=3b n.∴{b n}是等比数列,首项为3,公比为3.(II)解:由(I)可得:b n=3n.∴数列{nb n}的前n项和T n=3+2×32+3×33+…+n•3n,3T n=32+2×33+…+(n﹣1)•3n+n•3n+1,∴﹣2T n=3+32+…+3n﹣n•3n+1=﹣n•3n+1=×3n+1﹣,解得T n=+.(III)证明:∵b n=3n=a n+1,解得a n=3n﹣1.由=.∴+…+>…+==,因此左边不等式成立.又由==<=,可得+…+<++…+=<.因此右边不等式成立.综上可得:﹣<+…+.30.已知数列{a n}中,a1=3,2a n+1=a n2﹣2a n+4.(Ⅰ)证明:a n+1>a n;(Ⅱ)证明:a n≥2+()n﹣1;(Ⅲ)设数列{}的前n项和为S n,求证:1﹣()n≤S n<1.【解答】证明:(I)a n+1﹣a n=﹣a n=≥0,∴a n+1≥a n≥3,∴(a n﹣2)2>0∴a n+1﹣a n>0,即a n+1>a n;(II)∵2a n+1﹣4=a n2﹣2a n=a n(a n﹣2)∴=≥,∴a n﹣2≥(a n﹣1﹣2)≥()2(a n﹣2﹣2)≥()3(a n﹣3﹣2)≥…≥()n﹣1(a1﹣2)=()n﹣1,∴a n≥2+()n﹣1;(Ⅲ)∵2(a n+1﹣2)=a n(a n﹣2),∴==(﹣)∴=﹣,∴=﹣+,∴S n=++…+=﹣+﹣+…+﹣=﹣=1﹣,∵a n+1﹣2≥()n,∴0<≤()n,∴1﹣()n≤S n=1﹣<1.31.已知数列{a n}满足a1=,a n+1=,n∈N*.(1)求a2;(2)求{}的通项公式;(3)设{a n}的前n项和为S n,求证:(1﹣()n)≤S n<.【解答】(1)解:∵a1=,a,n∈N+.∴a2==.(2)解:∵a1=,a,n∈N+.∴=﹣,化为:﹣1=,∴数列是等比数列,首项与公比都为.∴﹣1=,解得=1+.(3)证明:一方面:由(2)可得:a n=≥=.∴S n≥+…+==,因此不等式左边成立.另一方面:a n==,∴S n≤+++…+=×<×3<(n≥3).又n=1,2时也成立,因此不等式右边成立.综上可得:(1﹣()n)≤S n<.32.数列{a n}中,a1=1,a n=.(1)证明:a n<a n+1;(2)证明:a n a n+1≥2n+1;(3)设b n=,证明:2<b n<(n≥2).【解答】证明:(1)数列{a n}中,a1=1,a n=.可得a n>0,a n2=a n a n+1﹣2,可得a n+1=a n+>a n,即a n<a n+1;(2)由(1)可得a n a n﹣1<a n2=a n a n+1﹣2,可得a n a n+1﹣a n a n﹣1>2,n=1时,a n a n+1=a12+2=3,2n+1=3,则原不等式成立;n≥2时,a n a n+1>3+2(n﹣1)=2n+1,综上可得,a n a n+1≥2n+1;(3)b n=,要证2<b n<(n≥2),即证2<a n<,只要证4n<a n2<5n,由a n+1=a n+,可得a n+12=a n2+4+,且a2=3,a n+12﹣a n2=4+>4,且4+<4+=4+=,即有a n+12﹣a n2∈(4,),由n=2,3,…,累加可得a n2﹣a22∈(4(n﹣2),),即有a n2∈(4n+1,)⊆(4n,5n),故2<b n<(n≥2).33.已知数列{a n}满足,(1)若数列{a n}是常数列,求m的值;(2)当m>1时,求证:a n<a n+1;(3)求最大的正数m,使得a n<4对一切整数n恒成立,并证明你的结论.【解答】解:(1)若数列{a n}是常数列,则,得.显然,当时,有a n=1.…(3分)(2)由条件得,得a2>a1.…(5分)又因为,,两式相减得.…(7分)显然有a n>0,所以a n+2﹣a n+1与a n+1﹣a n同号,而a2﹣a1>0,所以a n+1﹣a n>0,从而有a n<a n+1.…(9分)(3)因为,…(10分)所以a n=a1+(a2﹣a1)+…+(a n﹣a n﹣1)≥1+(n﹣1)(m﹣2).这说明,当m>2时,a n越来越大,显然不可能满足a n<4.所以要使得a n<4对一切整数n恒成立,只可能m≤2.…(12分)下面证明当m=2时,a n<4恒成立.用数学归纳法证明:当n=1时,a1=1显然成立.假设当n=k时成立,即a k<4,则当n=k+1时,成立.由上可知a n<4对一切正整数n恒成立.因此,正数m的最大值是2.…(15分)34.已知数列{a n}满足:,p>1,.(1)证明:a n>a n+1>1;(2)证明:;(3)证明:.【解答】证明:(1)先用数学归纳法证明a n>1.①当n=1时,∵p>1,∴;②假设当n=k时,a k>1,则当n=k+1时,.由①②可知a n>1.再证a n>a n+1.,令f(x)=x﹣1﹣xlnx,x>1,则f'(x)=﹣lnx<0,所以f(x)在(1,+∞)上单调递减,所以f(x)<f(1)=0,所以,即a n>a n+1.(2)要证,只需证,只需证其中a n>1,先证,令f(x)=2xlnx﹣x2+1,x>1,只需证f(x)<0.因为f'(x)=2lnx+2﹣2x<2(x﹣1)+2﹣2x=0,所以f(x)在(1,+∞)上单调递减,所以f(x)<f(1)=0.再证(a n+1)lna n﹣2a n+2>0,令g(x)=(x+1)lnx﹣2x+2,x>1,只需证g(x)>0,,令,x>1,则,所以h(x)在(1,+∞)上单调递增,所以h(x)>h(1)=0,从而g'(x)>0,所以g(x)在(1,+∞)上单调递增,所以g(x)>g(1)=0,综上可得.(3)由(2)知,一方面,,由迭代可得,因为lnx≤x﹣1,所以,所以ln(a1a2…a n)=lna1+lna2+…+lna n=;另一方面,即,由迭代可得.因为,所以,所以=;综上,.35.数列{a n}满足a1=,a n+1﹣a n+a n a n+1=0(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:a1+a1a2+a1a2a3+…+a1a2…a n<1.【解答】解(Ⅰ):由已知可得数列{a n}各项非零.否则,若有a k=0结合a k﹣a k﹣1+a k a k﹣1=0⇒a k﹣1=0,继而⇒a k﹣1=0⇒a k﹣2=0⇒…⇒a1=0,与已知矛盾.所以由a n+1﹣a n+a n a n+1=0可得.即数列是公差为1的等差数列.所以.所以数列{a n}的通项公式是(n∈N*).(Ⅱ)证明一:因为.所以a1+a1a2+a1a2a3+…+a1a2…a n=.所以a1+a1a2+a1a2a3+…+a1a2…a n<1.证明二:a1+a1a2+a1a2a3+…+a1a2…a n===.所以a1+a1a2+a1a2a3+…+a1a2…a n<1.36.已知数列{a n}满足a1=1,a n+1=a n2+p.(1)若数列{a n}就常数列,求p的值;(2)当p>1时,求证:a n<a n+1;(3)求最大的正数p,使得a n<2对一切整数n恒成立,并证明你的结论.【解答】解:(1)若数列{a n}是常数列,则,;显然,当时,有a n=1(2)由条件得得a2>a1,又因为,两式相减得显然有a n>0,所以a n+2﹣a n+1与a n+1﹣a n同号,而a2﹣a1>0,所以a n+1﹣a n>0;从而有a n<a n+1.(3)因为,所以a n=a1+(a2﹣a1)+…(a n﹣a n﹣1)>1+(n﹣1)(p﹣1),这说明,当p>1时,a n越来越大,不满足a n<2,所以要使得a n<2对一切整数n恒成立,只可能p≤1,下面证明当p=1时,a n<2恒成立;用数学归纳法证明:当n=1时,a1=1显然成立;假设当n=k时成立,即a k<2,则当n=k+1时,成立,由上可知对一切正整数n恒成立,因此,正数p的最大值是137.已知数列{a n}满足a1=a>4,,(n∈N*)(1)求证:a n>4;(2)判断数列{a n}的单调性;(3)设S n为数列{a n}的前n项和,求证:当a=6时,.【解答】(1)证明:利用数学归纳法证明:①当n=1时,a1=a>4,成立.②假设当n=k≥2时,a k>4,.则a k+1=>=4.∴n=k+1时也成立.综上①②可得:∀n∈N*,a n>4.(2)解:∵,(n∈N*).∴﹣=﹣2a n﹣8=﹣9>(4﹣1)2﹣9=0,∴a n>a n+1.∴数列{a n}单调递减.(3)证明:由(2)可知:数列{a n}单调递减.一方面S n>a1+4(n﹣1)=4n+2.另一方面:=<,∴a n﹣4<,∴S n﹣4n<<.即S n<4n+.∴当a=6时,.38.已知数列{a n}满足a1=1,a n+1=.(Ⅰ)求证:a n+1<a n;(Ⅱ)求证:≤a n≤.【解答】解:(Ⅰ)证明:由a1=1,a n+1=,得a n>0,(n∈N),则a n+1﹣a n=﹣a n=<0,∴a n+1<a n;(Ⅱ)证明:由(Ⅰ)知0<a n<1,又a n+1=.,∴=≥,即a n+1>a n,∴a n>a n﹣1≥()2a n﹣1≥…≥()2a n﹣1≥()n﹣1a1=,即a n≥.由a n+1=,则=a n+,∴﹣=a n,∴﹣=a1=1,﹣=a2=,﹣=a3=()2…﹣=a n﹣1≥()n﹣2,累加得﹣=1++()2+…+()n﹣2==2﹣()n﹣2,而a1=1,∴≥3﹣()n﹣2==,∴a n≤.综上得≤a n≤.39.已知数列{a n}满足:a1=1,.(1)若b=1,证明:数列是等差数列;(2)若b=﹣1,判断数列{a2n﹣1}的单调性并说明理由;(3)若b=﹣1,求证:.【解答】解:(1)证明:当b=1,a n+1=+1,∴(a n+1﹣1)2=(a n﹣1)2+2,即(a n+1﹣1)2﹣(a n﹣1)2=2,∴(a n﹣1)2﹣(a n﹣1﹣1)2=2,∴数列{(a n﹣1)2}是0为首项、以2为公差的等差数列;(2)当b=﹣1,a n+1=﹣1,数列{a2n﹣1}单调递减.可令a n+1→a n,可得1+a n=,可得a n→,即有a n<(n=2,3,…),再令f(x)=﹣1,可得在(﹣∞,1]上递减,可得{a2n﹣1}单调递减.(3)运用数学归纳法证明,当n=1时,a1=1<成立;设n=k时,a1+a3+…+22k﹣1<,当n=k+1时,a1+a3+…+a2k﹣1+a2k+1<+=,综上可得,成立.40.已知数列{a n}满足,(n=1,2,3…),,S n=b1+b2+…+b n.证明:(Ⅰ)a n﹣1<a n<1(n≥1);(Ⅱ)(n≥2).【解答】证明:(Ⅰ)由得:(*)显然a n>0,(*)式⇒故1﹣a n与1﹣a n﹣1同号,又,所以1﹣a n>0,即a n<1…(3分)(注意:也可以用数学归纳法证明)所以a n﹣1﹣a n=(2a n+1)(a n﹣1)<0,即a n﹣1<a n所以a n﹣1<a n<1(n≥1)…(6分)(Ⅱ)(*)式⇒,由0<a n﹣1<a n<1⇒a n﹣1﹣a n+1>0,从而b n=a n﹣1﹣a n+1>0,于是,S n=b1+b2+…+b n>0,…(9分)由(Ⅰ)有1﹣a n﹣1=2(1+a n)(1﹣a n)⇒,所以(**)…(11分)所以S n=b1+b2+…+b n=(a0﹣a1+1)+(a1﹣a2+1)+…(a n﹣1﹣a n+1)=…(12分)=…(14分)∴(n≥2)成立…(15分)41.已知数列{a n}满足a1=1,a n+1=,n∈N*,记S,T n分别是数列{a n},{a}的前n项和,证明:当n∈N*时,(1)a n+1<a n;(2)T n=﹣2n﹣1;(3)﹣1<S n.【解答】解:(1)由a1=1,a n+1=,n∈N*,知a n>0,故a n+1﹣a n=﹣a n=<0,因此a n+1<a n;(2)由a n+1=,取倒数得:=+a n,平方得:=+a n2+2,从而﹣﹣2=a n2,由﹣﹣2=a12,﹣﹣2=a22,…,﹣﹣2=a n2,累加得﹣﹣2n=a12+a22+…+a n2,即T n=﹣2n﹣1;(3)由(2)知:﹣=a n,可得﹣=a1,﹣=a2,…,﹣=a n,由累加得﹣=a1+a2+…+a n=S n,又因为=a12+a22+…+a n2+2n+1>2n+2,所以>,S n=a n+a n﹣1+…+a1=﹣>﹣1>﹣1;又由>,即>,得当n>1时,a n<=<=(﹣),累加得S n<a1+[(﹣1)+(﹣)+…+(﹣)]=1+(﹣1)<,当n=1时,S n成立.因此﹣1<S n.42.已知数列{a n}满足a1=3,a n+1=a n2+2a n,n∈N*,设b n=log2(a n+1).(I)求{a n}的通项公式;(II)求证:1+++…+<n(n≥2);(III)若=b n,求证:2≤<3.【解答】解:(I)由,则,由a1=3,则a n>0,两边取对数得到,即b n+1=2b n(2分)又b1=log2(a1+1)=2≠0,∴{b n}是以2为公比的等比数列.即(3分)又∵b n=log2(a n+1),∴(4分)(2)用数学归纳法证明:1o当n=2时,左边为=右边,此时不等式成立;(5分)2o假设当n=k≥2时,不等式成立,则当n=k+1时,左边=(6分)<k+1=右边∴当n=k+1时,不等式成立.综上可得:对一切n∈N*,n≥2,命题成立.(9分)(3)证明:由得c n=n,∴,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档