高一数学函数的概念1

合集下载

高一函数 知识点大全

高一函数 知识点大全

高一函数知识点大全一、函数的定义函数是一种数学操作,它将输入值(或参数)映射到输出值(或结果)。

函数的定义通常包括函数名称、参数列表和函数体。

在高一阶段,我们将学习一些基本的函数,如一次函数、二次函数、幂函数和对数函数等。

二、函数的表示方法函数的表示方法有三种:符号表示法、列表表示法和图像表示法。

符号表示法是用函数名称和参数列表来表示函数,例如y = 2x + 1;列表表示法是将输入值和对应的输出值列成一个表格;图像表示法是通过绘制函数的图像来表示函数的关系。

三、函数的性质函数的性质包括奇偶性、单调性、周期性和对称性等。

奇偶性是指函数是否具有奇偶性;单调性是指函数在某个区间内是单调递增或单调递减;周期性是指函数是否存在周期性;对称性是指函数是否具有对称性。

四、函数的运算函数的运算包括函数的加减乘除、复合运算和反函数运算等。

函数的加减乘除是指将两个或多个函数进行加、减、乘、除运算;复合运算是指将多个函数嵌套在一起,形成一个复合函数;反函数运算是指将一个函数转换为其反函数。

五、函数的图像函数的图像是用来描述函数变化的直观工具。

在绘制函数的图像时,我们需要先确定函数的定义域和值域,然后根据函数的表达式绘制出对应的图像。

同时,我们还需要掌握一些常见的图像变换方法,如平移、伸缩和对称变换等。

六、函数的实际应用高一函数知识点还包括一些实际应用,如利用函数解决实际问题、利用函数进行数据分析等。

在实际问题中,我们需要根据问题的具体情境来选择合适的函数和数学模型进行解决。

我们还需要掌握一些数据处理和分析的方法,如回归分析、聚类分析等。

高一函数知识点是数学学习的重要内容之一。

通过学习和掌握这些知识点,我们可以更好地理解函数的本质和特点,为后续的学习和实际应用打下坚实的基础。

高一函数知识点总结函数是数学的重要概念,是高中数学的核心内容。

在初中数学中,函数通常被视为变量之间的依赖关系,而高中的函数则更加强调映射的概念。

高一数学函数的概念

高一数学函数的概念

对于(3),A中的负数没有算术平方根,故B中无元素和它们对应.
对于(4),A中的每一个元素都有2个平方根,所以B中有2个元素和 它对应,故不是函数.
对于(5),集合A中的一些元素,如2,立方后不在集合B中,所以在
B中无元素和它对应.
判断下列各组函数是否是相等函数: (1)f(x)= x ,g(x)= x3; (2)f(x)=( x)2,g(x)= x2; (3)f(x)=x2-2x-1,g(t)=t2-2t-1. 【思路点拨】 由题目可获取以下主要信息: ①已知函数的解析式; ②由解析式可确定函数定义域. 解答本题结合相等函数的定义判断函数三要 素是否一致即可.
讨论函数问题时,要保持定义域优先的原则.判断两个函数是否 相等,要先求定义域,若定义域不同,则不相等;若定义域相同,再 化简函数的解析式,若解析式相同,则相等,否则不相等.
2.试判断以下各组函数是否是相等函数: (1)f(x)=x,g(x)= x2 x2-9 (2)f(x)= ,g(x)=x+3 x-3 (3)f(x)=x2,g(x)=(x+1)2 (4)f(x)=(x-1)0,g(x)=1
4.若本例中题设条件不变,求 g(f(2)),f(g(3)) 的值. 1 1 【解析】 ∵f(2)= =4,g(3)=32+1= 2+2 10
1 1 17 2 ∴g(f(2))=f 4=4 +1=16
1 1 f(g(3))=f(10)= = . 10+2 12
【解析】 (1)定义域相同, 都是 R, 但是 g(x) =|x|,即它们的解析式不同,也就是对应关系不 同,故不相等. x2-9 (2)f(x)= =x+3(x≠3),它与 g(x)=x+ x-3 3 的定义域不同,故不是相等函数. (3)定义域相同,都是 R,但是它们的解析式 不同,也就是对应关系不同,故不相等. (4)f(x)的定义域是{x|x≠1},g(x)的定义域是 R,它们的定义域不同,故不相等.

高一数学函数的概念

高一数学函数的概念
函数的定义
定义1:设在一个变化过程中有两个变量x与y,如果 对于x的每一个值,y都有唯一的值与它对应,则称y是 x的函数,x是自变量.
定义2:A、B都是非空数集,如果按某个确定的对应
关系f,使对于A中的任意一个数x,在集合B中都有唯 一确定的数f(x)和它对应,那么就称f:A→B为从集合 A到B的一个函数.记作y=f(x),xA. x叫做自变量,x取值范围A叫做函数的定义域,与x值相对应 的y值叫做函数值,函数值集合{f(x)|x∈A}叫做函数的值域.
1.集合A、B连同对应法则f一起,称为A到B的 一个函数,千万别误认为仅仅f为函数. 2.定义域、值域及对应法则为函数的三大要 素.(值域是由定义域和对应法则决定) 3.两个函数相同的充要条件是:它们的定义 域和对应法则完全相同,但表示自变量和函 数值的符号可以不同,如g(x)、F(t)、h(x) 等. 4.集合B不一定是函数的值域,值域一定是B的 子集.
区间
实数集R
,
xa
a,
a,
, b
xa
xb
1.函数的定义.
2.区间的概念(表示数集的方法). 3.能够灵活解决有关函数定义域、值域的相 关习题.
求函数的值域的方法
1.观察法 2.图像法
3. 换元法 4.反表示法
5.判别式法
1.观察法
y 2x 1 y x 1
R
1,
2.图像法
y x 4 x 6, x 1,5
2
2,11
y 5 4x x
2
0,3
3.换元法
y x 2x 1 y 2x x 1
y 2x 4 1 x y 2 x 3 13 4 x

高一数学第一单元函数的有关概念知识点

高一数学第一单元函数的有关概念知识点

高一数学第一单元函数的有关概念知识点进入高中学习数学重要的是基础的掌握,以下是第一单元函数的有关概念知识点,请大家仔细阅读。

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数.记作: y=f(x),xA.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| xA }叫做函数的值域.注意:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3 函数的定义域、值域要写成集合或区间的形式. 义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义. (又注意:求出不等式组的解集即为函数的定义域。

) 构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)(见课本21页相关例2) 值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。

高一数学概念

高一数学概念

高一数学概念一、函数概念在数学中,函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素上。

函数通常用来描述两个变量之间的关系,并可以进行数学运算和分析。

函数可以用以下的数学表示方式来定义:$$f: X \\rightarrow Y$$其中,f表示函数的名称,f表示函数的定义域(输入值的集合),f表示函数的值域(输出值的集合)。

函数的输入值称为自变量,输出值称为因变量。

当函数f满足以下条件时,称其为一个数学函数:1.每个定义域中的元素都有一个对应的值域元素;2.一个定义域中的元素不能对应到多个值域元素;3.每个值域元素都至少有一个定义域中的元素与之对应。

函数可以通过函数图像、映射关系表、函数关系式等方式进行表示和描述。

函数的概念在高中数学中非常重要,它是学习和理解其他数学概念的基础。

二、三角函数概念三角函数是一种描述三角形边与角度之间关系的函数。

在高中数学中,最常用的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。

1.正弦函数(sin):正弦函数描述了一个角的对边与斜边之间的比值。

在一个直角三角形中,角的正弦值等于对边与斜边的比值。

2.余弦函数(cos):余弦函数描述了一个角的邻边与斜边之间的比值。

在一个直角三角形中,角的余弦值等于邻边与斜边的比值。

3.正切函数(tan):正切函数描述了一个角的对边与邻边之间的比值。

在一个直角三角形中,角的正切值等于对边与邻边的比值。

三角函数广泛应用于几何学、物理学、工程学等科学领域,在实际问题中有着重要的作用。

三、导数概念导数是微积分学中的重要概念,描述了函数在某个点上的变化率。

函数的导数可以用以下的数学表示方式来定义:$$f'(x) = \\lim_{\\Delta x \\to 0} \\frac{f(x + \\Delta x) -f(x)}{\\Delta x}$$其中,f′(f)表示函数f(f)在点f处的导数。

高一数学知识点总结-函数的有关概念

高一数学知识点总结-函数的有关概念

三一文库()/高一〔高一数学知识点总结:函数的有关概念〕以下是为大家整理的关于《高一数学知识点总结:函数的有关概念》,供大家学习参考!函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x) x∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义. #相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备) (见课本21页相关例2)2.值域 : 先考虑其定义域(1)观察法(2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B 中都有唯一确定的元素y与之对应,那么就称对应f:A B 为从集合A到集合B的一个映射。

高一数学必修1-函数的概念及基本性质

高一数学必修1-函数的概念及基本性质

§1·函数的概念(一)函数的有关概念设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的函数,记作)(x f y =, x ∈A其中x 叫自变量,x 的取值范围A 叫做函数)(x f y =的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)((⊆B )叫做函数y=f(x)的值域.函数符号)(x f y =表示“y 是x 的函数”,有时简记作函数)(x f . (1)函数实际上就是集合A 到集合B 的一个特殊对应 B A f →:这里 A, B 为非空的数集.(2)A :定义域,原象的集合;{}A x x f ∈|)(:值域,象的集合,其中{}A x x f ∈|)( ⊆ B ;f :对应法则 ,x ∈A , y ∈B(3)函数符号:)(x f y = ↔y 是 x 的函数,简记 )(x f (二)已学函数的定义域和值域1.一次函数b ax x f +=)()0(≠a :定义域R, 值域R; 2.反比例函xkx f =)()0(≠k :定义域{}0|≠x x , 值域{}0|≠x x ; 3.二次函数c bx ax x f ++=2)()0(≠a :定义域R值域:当0>a 时,⎭⎬⎫⎩⎨⎧-≥a b ac y y 44|2;当0<a 时,⎭⎬⎫⎩⎨⎧-≤a b ac y y 44|2(三)函数的值:关于函数值 )(a f例:)(x f =2x +3x+1 则 f(2)=22+3×2+1=11注意:1︒在)(x f y =中f 表示对应法则,不同的函数其含义不一样2︒)(x f 不一定是解析式,有时可能是“列表”“图象”3︒)(x f 与)(a f 是不同的,前者为变数,后者为常数(四)函数的三要素: 对应法则f 、定义域A 、值域{}A x x f ∈|)( 只有当这三要素完全相同时,两个函数才能称为同一函数(五)区间的概念和记号:在研究函数时,常常用到区间的概念,它是数学中常用的述语和符号.设a,b ∈R ,且a<b.我们规定:①满足不等式a ≤x ≤b 的实数x 的集合叫做闭区间,表示为[a,b]; ②满足不等式a<x<b 的实数x 的集合叫做开区间,表示为(a,b );③满足不等式a ≤x<b 或a<x ≤b 的实数x 的集合叫做半开半闭区间,分别表示为[a ,b) ,(a ,b]. 这里的实数a 和b 叫做相应区间的端点.这样实数集R 也可用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.还可把满足x ≥a ,x>a ,x ≤b ,x<b 的实数x 的集合分别表示为[a ,+∞),(a ,+∞),(- ∞,b ],(- ∞,b). 【例题解析】例1 判断下列各式,哪个能确定y 是x 的函数?为什么?(1)x 2+y =1 (2)x +y 2=1 (3)1x x 1y --= (4)y=x -1x +-例2 求下列函数的定义域: (1)()f x = (2)xx x x f -+=0)1()(例3 已知函数)(x f =32x -5x+2,求f(3), f(-2), f(a+1).例4 已知⎪⎩⎪⎨⎧+=10)(x x f π )0()0()0(>=<x x x ,求)1(f ,)1(-f ,)0(f ,)]}1([{-f f f讨论:函数y=x 、y=(x )2、y=23xx 、y=44x 、y=2x 有何关系?例5 下列各组中的两个函数是否为相同的函数? ⑴3)5)(3(1+-+=x x x y 52-=x y ⑵111-+=x x y )1)(1(2-+=x x y练习:下列各组中的两个函数是否为相同的函数? ① ()f x = 0(1)x -;()g x = 1.② ()f x = x ; ()g x ③ ()f x = x 2;()g x = 2(1)x +.④ ()f x = | x | ;()g x 例6 已知函数)(x f =4x+3,g(x)=x 2,求f[f(x)],f[g(x)],g[f(x)],g[g(x)].复合函数:设 f (x )=2x -3,g (x )=x 2+2,则称 f [g (x )] =2(x 2+2)-3=2x 2+1(或g [f (x )] =(2x -3)2+2=4x 2-12x +11)为复合函数例7求下列函数的值域(用区间表示):(1)y =x 2-3x +4; (2)()f x =(3)y =53x -+; (4)2()3x f x x -=+.例8 ※ 动手试试1. 若2(1)21f x x +=+,求()f x .2. 一次函数()f x 满足[()]12f f x x =+,求()f x .练习 已知二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠0)满足条件f (x -1)=f (3-x )且方程f (x )=2x 有等根,求f (x )的解析式.函数的概念习题:1.如下图可作为函数)(x f =的图像的是( )(D )2.对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。

高一数学函数的概念(1)(PPT)4-3

高一数学函数的概念(1)(PPT)4-3
而在埃及发现了公元前年至前,年间的镀锑的铜器。奥斯汀在 年赫伯特·格拉斯顿的一场演讲时说道:“我们只知道锑现在是一种很易碎的金属,很难被塑造 成实用的花瓶,因此这项值得一提的发现(即上文的花瓶碎片)表现了已失传的使锑具有可塑性的方法。”然而,默里(Moorey)不相信那个碎片真的来自 花瓶,在 7年发表他的分析论文后,认为斯里米卡哈诺夫(Selimkhanov)试图将那块金属与外高加索的天然锑联系起来,但用那种材料制成的都是小饰物。 这大大削弱了锑在古代技术下具有可塑性这种说法的可信度。 欧洲人万诺乔·比林古乔于4年最早在《火焰学》(De la pirotechnia)中描述了提炼锑的方法, 这早于年阿格里科拉出版的名作《论矿冶》(De re Metallica)。此书中阿格里科拉错误地记入了金属锑的发现。4年,德国出版了一本名为《Currus Triumphalis Antimonii》(直译为“凯旋战车锑”)
❖ 初中已经学过:正比例函数、反比例函数、一 次函数、二次函数等
哈萨克斯坦 Kazzinc , 吉尔吉斯斯坦 Kadamdzhai 老挝 SRS 墨西哥 美国锑业 7 缅甸 许多 , 俄罗斯 GeoPDroMining , 南非 默奇森联合公司 , 塔吉克斯坦 YUnzob , 泰国 未知 储量 根据美国地质调查局的统计数据,世界的锑矿藏将在年内枯竭。但美国地质调查局期待这期间会发现更多锑矿。 年的世界锑储量 全球 ,, . 国家 储量(吨) 占比(%) 中华人; 足球比分 / 足球比分 ;民共和国 , . 俄罗斯 , . 玻利维亚 , . 塔吉克斯坦 , .7 南非 , . 其他国家 , . 生产过程 从矿石中提取锑的方法取决于矿石的质量与成分。大部分锑以硫化物矿石形式存在。低品位矿石可用泡沫浮选的方法富集,而高品位 矿石加热到–℃使辉锑矿熔化,并得以从脉石中分离出来。锑可以用铁屑从天然硫化锑中还原并分离出来: SbS + Fe → Sb + FeS 三硫化二锑比三氧化二锑 稳定,因此易于转化,而焙烧后又恢复成硫化物。这种材料直接用于许多应用中,可能产生的杂质是砷和硫化物。 将锑从氧化物中提取出来可使用碳的热还
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习提问
1.初中所学的函数的概念是什么? 在一个变化过程中有两个变量x和y, 如果对于x的每一个值,y都有唯一的值 与它对应. 那么就说y是x的函数,其中x 叫做自变量. 2.初中学过哪些函数? 正比例函数、反比例函数、一次函数、 二次函数等.
新课
示例1:一枚炮弹发射后,经过26s落到 地面击中目标. 炮弹的射高为845m,且 炮弹距地面的高度h (单位:m)随时间t (单位:s)变化的规律是h=130t-5t2.
强调: ④若f(x)是由几个部分的数学式子构成的, 则函数的定义域是使各部分式子都有意义 的实数集合; ⑤若f(x)是由实际问题抽象出来的函数,则 函数的定义域应符合实际问题.
例2已知函数f(x)=3x2-5x+2,求f(3),
f ( 2 ),f (a 1).
例3下列哪个函数与 y = x 是同一函数?
形成概念 1. 定义 设A、B是非空的数集,如果按照某 个确定的对应关系f,使对于集合A中的 任意一个数x,在集合B中都有唯一确定 的数 f(x)和它对应,那么就称f:A→B为 从集合A到集合B的一个函数,记作: y=f (x),xA
下列例1、例2、例3是否满足函数定义
例1若物体以速度v作匀速直线运动,则 物体通过的距离S与经过的时间t的关系
重庆皮肤科医院重庆最好的皮肤科 仧莒狇
4.已学函数的定义域和值域
⑴ 一次函数f(x)=ax+b(a≠0)
定义域R,值域R.
k ⑵ 反比例函数f ( x ) ( k 0) x
定义域{x|x≠0},值域{y|y≠0}.
4.已学函数的定义域和值域
⑶二vt.
例2某水库的存水量Q与水深h(指最深处 的水深)如下表:
水深 h(米)
0
5
10 15 20 25
存水量 0 Q(立方)
20 40 90 160 275
例3设时间为t,气温为T(℃),自动测温 仪测得某地某日从凌晨0点到半夜24点 的温度曲线如下图. ℃ 20 15 10 5 0 6 12 18 24
⑶ f1 ( x ) ( 2 x 5 ) 与f 2 ( x ) 2 x 5.
2
(定义域、值域都不同)
课堂练习
教材P.19练习第1、2、3题
课堂小结
1.函数定义域的求法;
2.判断函数是否为同一函数的方法;
3.求函数值.
课后作业
1.阅读教材; 2.教材P.24习题1.2第1、4、6题.
示例2:近几十年来,大气层中的臭氧迅 速减少,因而出现了臭氧层空沿问题. 下 图中的曲线显示了南极上空臭氧层空洞 的面积从1979~2001年的变化情况.
示例3:国际上常用恩格尔系数反映一个 国家人民生活质量的高低,恩格尔系数 越低,生活质量越高,下表中恩格尔系 数随时间(年)变化的情况表明,“八五” 计划以来,我国城镇居民的生活质量发 生了显著变化.
⑴ y ( x) ;
2
⑵ y
3
x ;
2
3
⑶ y
x ;
2
x . ⑷ y x
当定义域、 对应法则和值域完全一 致时,两个函数才相同.
例4下列各组中的两个函数是否为相同的 函数?
( x 3)( x 5) 与y2 x 5; ⑴ y1 x3
(定义域不同)
⑵ y1 x 1 x 1与y2 ( x 1)( x 1); (定义域不同)
2. 函数的三要素: 定义域A; 值域{f(x)|x∈R}; 对应法则f. (1)函数符号y=f (x) 表示y是x的函数, f (x)不是表示 f 与x的乘积; (2) f 表示对应法则,不同函数中f 的具 体含义不一样;
3. 表示函数的方法: 解析式:把常量和表示自变量的字母 用一系列运算符号连接起来,得到的 式子叫做解析式. 列表法:列出表格来表示两个变量之 间的对应关系. 图象法:用图象表示两个变量之间的 对应关系.
2.求给定函数解析式的定义域往往可以归结 为解不等式或不等式组的问题; 3.如果是实际问题,除应考虑解析式本身有 意义外,还应考虑实际问题有意义.
例题讲解 例1求下列函数的定义域:
1 ⑴ f ( x) ; x2
⑵ f ( x ) 3 x 2;
1 ⑶ f ( x) x 1 . 2 x
Microsoft Office PowerPoint,是微软 公司的演示文稿软件。用户可以在投影仪或 者计算机上进行演示,也可以将演示文稿打 印出来,制作成胶片,以便应用到更广泛的 领域中。利用Microsoft Office PowerPoint不 仅可以创建演示文稿,还可以在互联网上召 开面对面会议、远程会议或在网上给观众展 示演示文稿。 Microsoft Office PowerPoint做出来的东西叫演示文稿,其格 式后缀名为:ppt、pptx;或者也可以保存为: pdf、图片格式等
定义域:R,
2 4ac b 值域:当a>0时, y | y . 4a
4ac b 当a<0时, y | y . 4a
2
5.求函数定义域应注意的问题: 1.一般情况下,应使函数解析式有意义,如 (1)分母不为零; (2)偶次根式的被开方数非负; (3)若有 x0 ,x≠0; (4)以上式子构成的函数定义域是使各部分 式子都有意义的实数集合.
强调: ⑴解题时要注意书写过程,注意紧扣函 数定义域的含义.由本例可知,求函数的 定义域就是根据使函数式有意义的条件, 自变量应满足的不等式或不等式组,解 不等式或不等式组就得到所求的函数的 定义域.
强调:
⑵求用解析式y=f(x)表示的函数的定义域 时,常有以下几种情况: ①若f(x)是整式,则函数的定义域是实数 集 R; ②若f(x)是分式,则函数的定义域是使分 母不等于0的实数集; ③若f(x)是二次根式,则函数的定义域是 使根号内的式子大于或等于0的实数集合;
“八五”计划以来我国城镇居民 恩格尔系数变化情况 199 199 199 1992 1994 1996 时间(年) 1 3 5 城镇居民 家庭恩格 53.8 52.9 50.1 49.9 49.9 48.6 尔系数 (%) 199 199 200 1998 2000 时间(年) 7 9 1 城镇居民 家庭恩格 46.4 44.5 41.9 39.2 37.9 尔系数
相关文档
最新文档