AD与DA转换
ad转换器和da转换器

电流输出型DA转换原理
总电流
•转换电流
分支电流
……
•I01转换电流与“逻辑开关”为1的各支路电流的总和成正比 ,即与D0~D7口输入的二进制数成正比。
•DAC0832
•反馈电 阻 •外接放大器
转换电压
•即,转换电压正比于待转换的二进制数和参考电压
DAC的性能指标: 1、分辨率 通常将DAC能够转换的二进制的位数称为分辨率。 位数越多分辨率也越高,一般为8位、10位、12位、16位等
•参考程序如下:
INIT1: SETB IT1
;选择外部中断1为跳沿触发方式
SETB EA
;总中断允许
SETB EX1 ;允许外部中断1中断
MOV DPTR,#7FF8H ;端口地址送DPTR
MOV A,#00H
MOVX @DPTR,A;启动ADC0809对IN0通道转换
………
;完成其他的工作
•电路分析
➢ 由P2.0形成高8位地址(0xfe),与WR信号合成START/ALE正脉冲启动 ADC,与RD信号合成OE正脉冲输出转换数据;
➢ 启动IN0~IN7通道AD转换的命令的地址为:0xfef8,……,0xfeff。
➢ 读取AD结果的命令的地址为:任何高8位为0xfe的地址均可。
•电路分析
DAC2第1级地址: 1111 1101 …(0xfdff) DAC1和2第二级地址:1110 1111 …(0xefff)
例3参考程序
•语句DAOUT = num的作用只是启动DAC寄存器,传输什么数据都没关 系。
例3 运行效果 (多路D/A同步输出 )
•11.2 AT89S51与ADC的接口
AD和DA转换

AD和DA转换在数字系统的应用中,通常要将一些被测量的物理量通过传感器送到数字系统进行加工处理;经过处理获得的输出数据又要送回物理系统,对系统物理量进行调节和控制。
传感器输出的模拟电信号首先要转换成数字信号,数字系统才能对模拟信号进行处理。
这种模拟量到数字量的转换称为模-数(A/D)转换。
处理后获得的数字量有时又需转换成模拟量,这种转换称为数-模(D/A)变换。
A/D变换器简称为ADC和D/A变换器简称为DAC是数字系统和模拟系统的接口电路。
第一节基本概念一、D/A变换D/A变换器一般由变换网络和模拟电子开关组成。
输入n位数字量D(=D…DD)n-110分别控制这些电子开关,通过变换网络产生与数字量各位权对应的模拟量,通过加法电路输出与数字量成比例的模拟量。
(1)变换网络变换网络一般有权电阻变换网络、R-2RT型电阻变换网络和权电流变换网络等几种。
?、权电阻变换网络n-1-i 权电阻变换网络如图8-1所示,每一个电子开关S所接的电阻R等于2R(i=0,n-1),iin-1即与二进制数的位权相似,R=2R,R=R。
对应二进制位D=1时,电子开关S合上,0n-1iiR上流过的电流 iI=V/R。
iREFin-1令V/2R=I,则有 REFREFi I=2I, iREF即R上流过对应二进位权倍的基准电流,R称为权电阻。
iin-1 权电阻网络中的电阻从R到2R成倍增大,位数越多阻值越大,很难保证精度。
Rf? - … … v I- O n1 + IiI 0+ RRRR R--2 n1 ni 1 0S -S S S -2n1S i0n1V REFDDDD D --n1 n2 I 1 0图8-1 权电阻D/A变换器?、R-2R电阻变换网络R-2R电阻网络中串联臂上的电阻为R,並联臂上的电阻为2R,如图8-2所示。
从每个並联臂2R电阻往后看,电阻都为2R,所以流过每个与电子开关S相连的2R 电阻的电流Iii是前级电流I的一半。
第8章DA与AD转换电路

10 28
7
Di
i0
2i
当输入的数字量在全0和全1之间变化时,输出模拟电压的 变化范围为0~9.96V。
8.3 A/D转换器
一、A/D转换器的基本原理
四个步骤:采样、保持、量化、编码。
模拟电子开关S在采样脉冲CPS的控制下重复接通、断开 的过程。S接通时,ui(t)对C充电,为采样过程;S断开时,C
I0
VREF 8R
I1
VREF 4R
I2
VREF 2R
I3
VREF R
i I0d0 I1d1 I2d2 I3d3
VREF 8R
d0
VREF 4R
d1
VREF 2R
d2
VREF R
d3
VREF 23 R
(d3
23
d2
22
d1
21
d0
20)
uo
RFiF
R i 2
VREF 24
(d3 23
可推得n位倒T形权电流D/A转换器的输出电压
vO
VREF R1
Rf 2n
n1
Di
2i
i0
❖ 该电路特点为,基准电流仅与基准电压VREF和电 阻R1有关,而与BJT、R、2R电阻无关。这样,电 路降低了对BJT参数及R、2R取值的要求,对于集
成化十分有利。
❖ 由于在这种权电流D/A转换器中采用了高速电子 开关,电路还具有较高的转换速度。采用这种权 电流型D/A转换电路生产的单片集成D/A转换器有 AD1408、DAC0806、DAC0808等。这些器件都采用 双极型工艺制作,工作速度较高。
三、D/A转换器的主要技术指标
1.转换精度 D/A转换器的转换精度通常用分辨率和转换误差来描述。 (1)分辨率——D/A转换器模拟输出电压可能被分离的等级数。 N位D/A转换器的分辨率可表示为 1
《AD及DA转换》课件

《AD及DA转换》PPT课件
本PPT课件将深入介绍AD及DA转换的原理、分类、工作模式,以及采样率、 量化精度等关键概念。我们还会探讨信号处理技术、硬件实现和电路设计等 重要话题。
什么是AD和DA转换
AD(模数)转换将模拟信号转换为数字信号,DA(数模)转换将数字信号转换为模拟信号。这两种转换器 在许多电子系统中起着关键作用。
AD转换器可根据工作原理和特性进行分类,如逐次逼近型、积分型、双斜率 型和ΔΣ型等。每种类型都有其适用的应用场景和性能特点。
DA转换器的分类
DA转换器可以按照数字信号转换为模拟信号的方法进行分类,如加权电阻型、 串行型、并行型和PDM型等。不同类型的转换器适用于不同的应用需求。
AD转换器的工作模式
AD转换的原理和作用
AD转换器使用采样和量化技术将连续的模拟信号转换为离散的数字信号。它 在信号处理、通信系统和传感器中都有广泛应用。
DA转换的原理和作用
DA转换器将数字信号转换为模拟信号,使其能够在模拟电路中进行进一步处 理和传输。它在音频、视频和通信等领域中扮演着核心角色。
AD转换器的分类
AD-DA信号转换

1、A/D:将模拟信号转换成数字信号的电路,称为模数转换器(简称a/d
转换器或adc,analog to digital converter),A/D转换的作用是将时间连续、幅值也连续的模拟量转换为时间离散、幅值也离散的数字信号,因此,A/D转换一般要经过取样、保持、量化及编码4个过程。
在实际电路中,这些过程有的是合并进行的,例如,取样和保持,量化和编码往往都是在转换过程中同时实现的;
2、模拟量转换成数字量的过程被称为模数转换,简称A/D(Analog to
Digital)转换;完成模数转换的电路被称为A/D 转换器,简称ADC(Analog to Digital Converter)。
数字量转换成模拟量的过程称为数模转换,简称D/A(Digital to Analog)转换;完成数模转换的电路称为D/A转换器,简称DAC(Digital to Analog Converter)。
模拟信号由传感器转换为电信号,经放大送入AD 转换器转换为数字量,由数字电路进行处理,再由DA转换器还原为模拟量,去驱动执行部件。
为了保证数据处理结果的准确性,AD转换器和DA转换器必须有足够的转换精度。
同时,为了适应快速过程的控制和检测的需要,AD转换器和DA转换器还必须有足够快的转换速度。
因此,转换精度和转换速度乃是衡量AD转换器和DA转换器性能优劣的主要标志。
3、由于计算机只能处理数字信号,故对于接收的模拟量信号必须要转化
才能处理;反之,输出模拟量信号也是类似;
4、信号转换的方式有很多,常见的有逐次逼近法、双积分法、电压频率
转换法;主要技术标准:分辨率、转换误差、转换时间;。
《AD及DA转换》课件

一、AD及DA转换简介1.1 AD转换概述模拟信号与数字信号的概念模拟信号转换为数字信号的意义1.2 DA转换概述数字信号转换为模拟信号的意义DA转换的基本原理1.3 AD及DA转换的应用领域电子秤工业控制音频处理二、AD转换器(模数转换器)2.1 AD转换器的工作原理采样保持量化和编码2.2 AD转换器的类型逐次逼近型(SAR)双积分型流水线型2.3 AD转换器的主要性能指标分辨率和量化误差转换时间和转换速率动态范围和线性范围三、DA转换器(数模转换器)3.1 DA转换器的工作原理数字到模拟的转换过程D/A转换器的类型及特点3.2 DA转换器的主要性能指标分辨率转换误差转换速度3.3 DA转换器的应用实例音频DAC视频DAC通信系统中的DA转换应用四、AD及DA转换器的选择与评估4.1 AD及DA转换器的选择依据精度要求转换速度要求成本和功耗考虑4.2 AD及DA转换器的评估方法测试转换特性分析转换误差对比不同转换器的性能4.3 AD及DA转换器的应用案例分析模拟信号采集与数字处理数字信号调节与模拟输出五、AD及DA转换技术的未来发展5.1 高速AD及DA转换技术亚微米和深亚微米工艺并行处理技术5.2 高精度AD及DA转换技术低噪声和低功耗设计温度补偿技术5.3 集成AD及DA转换技术片上系统(SoC)混合信号集成技术5.4 新型AD及DA转换技术展望生物医学信号处理领域无线通信和物联网应用领域六、模拟信号的采样与保持6.1 采样定理奈奎斯特采样定理采样频率的选择6.2 采样保持电路采样保持电路的工作原理采样保持电路的设计要点七、模拟信号的量化与编码7.1 量化过程量化的概念与过程量化误差7.2 编码方法二进制编码格雷码编码八、逐次逼近型AD转换器(SAR ADC)8.1 SAR ADC的工作原理转换过程解析转换速率与功耗8.2 SAR ADC的设计要点模拟开关的选择基准电压源的设计九、双积分型AD转换器9.1 双积分型ADC的工作原理转换过程解析转换时间与精度9.2 双积分型ADC的应用场景电流传感器压力传感器十、流水线型AD转换器10.1 流水线型ADC的工作原理转换过程解析转换速率与功耗10.2 流水线型ADC的设计要点级间匹配与补偿模拟开关的选择十一、DA转换器(数模转换器)的类型及原理11.1 权电阻网络DA转换器工作原理分辨率和线性度11.2 电压反馈型DA转换器工作原理特点和应用11.3 电流反馈型DA转换器工作原理特点和应用十二、DA转换器的性能指标及评估12.1 分辨率数字位数的含义分辨率与精度的关系12.2 转换误差静态误差动态误差12.3 转换速度转换时间更新速率十三、DA转换器的应用实例13.1 音频DAC音频信号的数字到模拟转换音频DAC芯片的选择13.2 视频DAC视频信号的数字到模拟转换视频DAC芯片的选择十四、AD及DA转换器的接口技术14.1 模拟接口差分信号传输阻抗匹配14.2 数字接口SPI接口I2C接口USB接口十五、AD及DA转换器的实际应用问题与解决方案15.1 噪声问题模拟噪声的来源数字噪声的来源降噪技术15.2 匹配问题内部组件匹配外部组件匹配匹配技术15.3 温度补偿温度对AD及DA转换器的影响温度补偿技术重点和难点解析本文主要介绍了AD及DA转换的相关概念、原理、性能指标、应用实例以及接口技术,重点内容包括:1. AD及DA转换的基本原理:理解模拟信号与数字信号的转换过程,掌握AD 及DA转换的意义和应用领域。
第9章AD与DA转换

例如,满量程值为10V时,n位D/A转换器的 精度为±1/2 LSB,则其最大可能误差为:
精度为±0.05%表示最大可能误差为:
(3)转换速率 转换速率是指大信号工作时,模拟输出电压 的最大变化速度,单位为V/μs (4)建立时间 建立时间指的是,当输入数值满量程后,输 出模拟值稳定到最终值的±1/2LSB时所需要 的时间。该时间是表征D/A转换器性能的重要 指标,显然建立时间越大,转换速率越低。
DI7~ DI0:8位数据输入端,与CPU数据总线 相连。 CS:片选信号,输入,低电平有效,与ILE 配合决定WR1是否起作用。 ILE:输入锁存允许信号,输入,高电平有 效。
WR1 :写信号1,将数据8位输入数据锁存到输入寄 存器中,低电平有效。此信号必须同CS、ILE同时 有效,即当CS和WR1同时为低电平、ILE为高电平时, 输入数据不锁存;当WR1变为高电平、ILE变为低电 平时,输入数据被锁存在输入寄存器中。 WR2 :写信号2将锁存在输入寄存器中的数据送到8 位DAC寄存器中进行锁存,低电平有效。当WR2与传 送控制信号XFER同时为低电平时,DAC寄存器中的 数据不锁存;当WR2 或XFER变为高电平时,输入寄 存器中的数据被锁存在DAC寄存器中。
1.ADC0809引脚
ADC0809是28引脚的双列直插式芯片,如 图9-15所示。各引脚的定义及功能如下。
IN7~IN0:8路模拟电压输入端。 D7~D0:8位数字量输出端。 ADDA、ADDB和ADDC:地址输入端, 它们的不同组合可用来选择不同的模拟 输 入 通 道 , 编 码 000~111 分 别 对 应 IN0~IN7,如表9-1所示。 START:启动转换的控制信号,输入, 高电平有效。
AD和DA转换器的分类及其主要技术指标

AD和DA转换器的分类及其主要技术指标AD和DA转换器(Analog-to-Digital and Digital-to-Analog converters)是电子设备中常用的模数转换器和数模转换器。
AD转换器将连续的模拟信号转换成对应的离散数字信号,而DA转换器则将离散的数字信号转换成相应的连续模拟信号。
本篇文章将介绍AD和DA转换器的分类以及它们的主要技术指标。
一、AD转换器分类AD转换器主要分为以下几个类型:1.逐次逼近型AD转换器(Successive Approximation ADC)逐次逼近型AD转换器是一种常见且常用的AD转换器。
它采用逐渐逼近的方法逐位进行转换。
其基本原理是将模拟输入信号与一个参考电压进行比较,不断调整比较电压的大小,确保比较结果与模拟输入信号的差别小于一个允许误差。
逐次逼近型AD转换器的转换速度相对较快,精度较高。
2.模数积分型AD转换器(Sigma-Delta ADC)模数积分型AD转换器是一种利用高速和低精度的ADC与一个可编程数字滤波器相结合的技术。
它通过对输入信号进行高速取样并进行每个采样周期的累积和平均,降低了后续操作所需的带宽。
模数积分型AD转换器具有较高的分辨率和较好的线性度,适用于高精度应用。
3.并行型AD转换器(Parallel ADC)并行型AD转换器是一种通过多个比较器并行操作的AD转换器。
它的转换速度较快,但其实现成本相对较高。
并行型AD转换器适用于高速数据采集和信号处理。
4.逐渐逼近型AD转换器(Ramp ADC)逐渐逼近型AD转换器是一种通过线性递增电压与输入信号进行比较的转换器。
它利用逐渐逼近的方法寻找与输入信号最接近的电压值,然后以此电压值对应的时间来估计输入信号的值。
逐渐逼近型AD转换器转换速度较慢,但精度较高。
5.其他类型AD转换器除了上述几种常见的AD转换器类型外,还有其他一些特殊的AD转换器类型,如比例调制型AD转换器、索耳转换器等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(实验报告)
学院:电气工程学院姓名:朱进锋班级:测控0901 学号:200948770122
实验指导老师:孙红鸽、李攀峰成绩:____________________
A/D与D/A转换
一、实验目的
1.通过实验了解实验系统的结构与使用方法;
2.通过实验了解模拟量通道中模数转换与数模转换的实现方法。
二、实验设备
1.THBCC-1型信号与系统•控制理论及计算机控制技术实验平台
2.THBXD数据采集卡一块(含37芯通信线、16芯排线和USB电缆线各1根) 3.PC机1台(含软件“THBCC-1”)
三、实验内容
1.输入一定值的电压,测取模数转换的特性,并分析之;
2.在上位机输入一十进制代码,完成通道的数模转换实验。
四、实验步骤
1. 启动实验台的“电源总开关”,打开±5、±15V电源。
将“阶跃信号发生器”单元输出端连接到“数据采集接口单元“的“AD1”通道,同时将采集接口单元的“DA1”输出端连接到接口单元的“AD2”输入端;
2、将“阶跃信号发生器”的输入电压调节为1V;
3. 启动计算机,在桌面双击图标“THBCC-1”软件,在打开的软件界面上点击“开始采集”按钮;
4. 点击软件“系统”菜单下的“AD/DA实验”,在AD/DA实验界面上点击“开始”按钮,观测采集卡上AD转换器的转换结果,在输入电压为1V(可以使用面板上的直流数字电压表进行测量)时应为00001100011101(共14位,其中后几位将处于实时刷新状态)。
调节阶跃信号的大小,然后继续观察AD转换器的转换结果,并与理论值(详见本实验附录)进行比较;
5. 根据DA转换器的转换规律(详见本实验附录),在DA部分的编辑框中输入一个十进制数据(如2457,其范围为0~4095),然后虚拟示波器上观测DA
转换值的大小;
6 实验结束后,关闭脚本编辑器窗口,退出实验软件
五、实验数据或曲线
实验曲线
对应参数如下:阶跃信号发生器”的输入电压调节为1V
六、实验总结
在老师与同学们的帮助下,通过该实验我们了解了电压进行二进制的变换和十进制二进制的变换,同时掌握了THBCC的基本操作。
严格按照实验步骤及流程得到了正确的实验结果和实验图形。