5.1.任意角和弧度制及任意角的三角函数

合集下载

任意角、弧度制及任意角的三角函数

任意角、弧度制及任意角的三角函数

1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. (2)分类:①按旋转方向不同分为正角、负角、零角;②按终边位置不同分为象限角和轴线角.(3)终边相同的角❶:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+2k π,k ∈Z}. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx (x ≠0).(2).若α的终边上有一点P (x ,y )(与原点O 不重合),则sin α=yr ,cos α=xr ,tan α=yx (x ≠0),其中r=√x 2+y 2.(3)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线❷.(4)三角函数值在各象限内的符号,1.三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦. (1)终边相同的角不一定相等.(2)“锐角”不等同于“第一象限的角”,锐角的集合为{α|0°<α<90°},第一象限的角的集合为{α|k ·360°<α<k ·360°+90°,k ∈Z},小于90°的角包括锐角、负角、零角.(3)角的集合的表示形式不是唯一的,如⎩⎨⎧⎭⎬⎫α|α=2k π+π3,k ∈Z =⎩⎨⎧⎭⎬⎫β|β=2k π+7π3,k ∈Z .当角α的终边与x 轴重合时,正弦线、正切线都变成一个点,此时角α的正弦值和正切值都为0;当角α的终边与y 轴重合时,余弦线变成一个点,正切线不存在,此时角α的余弦值为0,正切值不存在.1.象限角角α的弧度数公式 |α|=lr (l 表示弧长)注意:(1)正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.(2)在一个式子中,采用的度量制度必须一致,不可混用 角度与弧度的换算①1°=π180rad ;②1 rad =⎝⎛⎭⎫180π° 弧长公式 l =|α|r扇形面积公式S =12lr =12|α|r 22.轴线角4.四种角的终边关系(1)β,α终边相同⇔β=α+2k π,k ∈Z . (2)β,α终边关于x 轴对称⇔β=-α+2k π,k ∈Z . (3)β,α终边关于y 轴对称⇔β=π-α+2k π,k ∈Z .(4)β,α终边关于原点对称(终边互为反向延长线)⇔β=π+α+2k π,k ∈Z . (5)β,α终边在一条直线上⇔β=π+α+k π,k ∈Z .5.若α∈⎝⎛⎭⎫0,π2,则tan α>α>sin α. 角α的终边上到原点的距离为r 的点P 的坐标可写为:()cos ,sin P r r αα(3)特殊角的三角函数值2.弧度制(1)定义:长度等于半径的圆弧所对的圆心角叫做1弧度的角.(2)计算:如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α弧度数的绝对值是 =l rα 其中,α的正负由角α的终边的旋转方向决定. 注意:弧长公式: =l r α. 扇形面积公式: 21122==S lr r α. (3)换算:360°=2π 180°=π 1001745180π≈=.1801=()5730≈.π说明:①1800=π是所有换算的关键,如ππ====,18018030456644;②1设θ是第三象限角,且⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( )A.第一象限角 B.第二象限角 C.第三象限角 D.角α 0° 30° 45° 60°90°120°135°150°180° 270°360° 角α的弧度数π6π4 π3 π22π 3π 5π6π 3π2π sin α 0 12√22√321 √32√22120 -1 0 cos α 1 √32√22120 -12-√22-√32-1 0 1 tan α√331√3 不 存在-√3 -1-√33不 存在第四2.若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角 3.若α是第二象限的角,则下列结论一定成立的是( )A .sin α2>0B .cos α2>0C .tan α2>0D .sin α2cos α2<04.已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________.5.设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =k 2·180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k4·180°+45°,k ∈Z ,那么( ) A.M =N B.M ⊆N C.N ⊆M D.M ∩N =∅6.若角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边在直线y=-√3x 上,则角α的取值集合是 ( ) A.{α|α=2kπ-π3,k ∈Z} B.{α|α=2kπ+2π3,k ∈Z} C.{α|α=kπ-2π3,k ∈Z}D.{α|α=kπ-π3,k ∈Z}7.已知角α的终边上一点P (-3,m )(m ≠0),且sin α=2m4,求cos α,tan α的值. 8.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A.3 B .±3 C .- 2 D .-39.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( ) A.-12B.12C.-32D.3210.已知点P (tan α,cos α)在第三象限,则角α的终边所在象限是( )A.第一象限 B.第二象限 C.第三象限D.第四象11.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( ) A.-45B.-35C.35D.4512.设α为第四象限角,则下列函数值一定是负值的是________.①tan α2 ②sin α2 ③cos α2④cos2α13.(2008年高考全国卷Ⅱ改编)若sin α<0且tan α>0,则α是第_______象限的角.14.函数y =|sin x |sin x +cos x |cos x |+|tan x |tan x的值域为________.15.(原创题)若一个α角的终边上有一点P (-4,a ),且sin α·cos α=34,则a 的值为________.16.已知角α的终边上的一点P 的坐标为(-3,y )(y ≠0),且sin α=24y ,求cos α,tan α的值.17.已知角α的终边过点P (a ,|a |),且a ≠0,则sin α的值为________.18.已知扇形的周长为6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是_____. 19.如果一扇形的圆心角为120°,半径等于 10 cm ,则扇形的面积为________.4.若角θ的终边与168°角的终边相同,则在0°~360°内终边与θ3角的终边相同的角的集合为__________.答20.设角α的终边经过点P (-6a ,-8a )(a ≠0),则sin α-cos α的值是________.1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1❶;(2)商数关系:tan α=sin αcos α❷.2.三角函数的诱导公式断三角函数值的符号. 作用:切化弦,弦切互化.同角三角函数的基本关系式的几种变形(1)sin 2α=1-cos 2α=(1+cos α)(1-cos α); cos 2α=1-sin 2α=(1+sin α)(1-sin α);(sin α±cos α)2=1±2sin αcos α.(2)sin α=tan αcos α⎝⎛⎭⎫α≠π2+k π,k ∈Z . (3)sin 2α=sin 2αsin 2α+cos 2α=tan 2αtan 2α+1;cos 2α=cos 2αsin 2α+cos 2α=1tan 2α+1.(4)(sin α±cos α)2=1±2sin αcos α;(sin α+cos α)2+(sin α-cos α)2=2;(sin α+cos α)2-(sin α-cos α)2=4sin αcos α.考法(一)是公式的直接应用,即已知sin α,cos α,tan α中的一个求另外两个的值.解决此类问题时,直接套用公式sin 2α+cos 2α=1及tan α=sin αcos α即可,但要注意α的范围,即三角函数值的符号.1.已知cos α=k ,k ∈R ,α∈⎝⎛⎭⎫π2,π,则sin α=( )A .-1-k 2 B.1-k 2 C .±1-k 2 D.1+k 22.sin 21°+sin 22°+…+sin 289°=________. 3.若角α的终边落在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为( )A .3 B .-3 C .1D .-14.已知sin α+cos α=-15,且π2<α<π,则1sin (π-α)+1cos (π-α)的值为________.5.若sin α=-513,且α为第四象限角,则tan α=( )A.125 B.-125 C.512 D.-5126.已知α为锐角,且sin α=45,则cos (π+α)=( )A.-35 B.35 C.-45 D .457.已知△ABC 中,sin A +cos A =-713,则tan A =________.8.已知tan α=12,且α∈⎝⎛⎭⎫π,3π2,则cos ⎝⎛⎭⎫α-π2=( )A .-55 B.55 C.255 D .-255 考法(二)的分式中分子与分母是关于sin α,cos α的齐次式,往往转化为关于tan α的式子求解.1.已知tan α=2,求sin α-4cos α5sin α+2cos α的值.3.已知tan αtan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α; (2)sin 2α+sin αcos α+2.4.若3sin α+cos α=0,则1cos 2α+2sin αcos α的值为______.5.已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin 2α的值是_____.6已知tan α=-43,求2sin 2α+sin αcos α-3cos 2α的值. 7.已知tan α=3,则1+2sin αcos αsin 2α-cos 2α的值是( )A.12 B.2 C.-12 D.-2 8.已知θ为直线y =3x -5的倾斜角,若A (cos θ,sin θ),B (2cos θ+sin θ,5cos θ-sin θ),则直线AB 的斜率为( )A .3B .-4 C.13 D .-14考法(三)是考查sin α±cos α与sin αcos α的关系.对于sin α+cos α,sin α-cos α,sin αcos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二1.已知x ∈(-π,0),sin x +cos x =15.(1)求sin x -cos x 的值; (2)求sin 2x +2sin 2x 1-tan x 的值.2.已知sin 2α=34,π4<α<π2,则sin α-cos α的值是( )A.12 B .-12 C.14D .-143.已知sin α-cos α=43,则sin 2α=( ) A.-79 B.-29C.29D.794.已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α=( )A.-32 B.32 C.-34 D .345.已知角A 为△ABC 的内角,且sin A +cos A =15,则tan A 的值为__________. 6.(2018自贡一模)求值:√1-2sin10°cos10°√2=.7..若θ∈⎝⎛⎭⎫π4,π2,sin 2θ=116,则cos θ-sin θ的值是________. 8.已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,则sin θ-cos θ的值为________.1.(2018·大连二模)已知sin ⎝⎛⎭⎫π3-α=13,则cos ⎝⎛⎭⎫5π6-α=( )A.13 B .-13 C.222 D .-23 2.已知θ是第四象限角,且sin ⎝⎛⎭⎫θ+π4=35,则tan ⎝⎛⎭⎫θ-π4=( )A.34 B .-43 C .-34 D.433.已知cos ⎝ ⎛⎭⎪⎫π6-θ=a ,则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ的值是________. 4.已知sin ⎝ ⎛⎭⎪⎫α+π3=1213,则cos ⎝ ⎛⎭⎪⎫π6-α=( )A.513 B.1213 C.-513D.-12135.已知sin (π3-α)=12,则cos (π6+α)= .6..(2016·全国Ⅰ卷)已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,则tan ⎝⎛⎭⎪⎫θ-π4=________.1.两角和与差的正弦、余弦和正切公式(1)sin(α±β)=sin αcos β±cos αsin β(异名相乘、加减一致);(2)cos(α∓β)=cos αcos β±sin αsin β(同名相乘、加减相反);(3)tan(α±β)=tan α±tan β1∓tan αtan β(两式相除、上同下异).(1)二倍角公式就是两角和的正弦、余弦、正切中α=β的特殊情况. (2)二倍角是相对的,如:α2是α4的2倍,3α是3α2的2倍.2.二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α; (2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;(3)tan 2α=2tan α1-tan 2α.1.公式的常用变式:tan α±tan β=tan(α±β)(1∓tan αtan β);tan α·tan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1.2.降幂公式:sin 2α=1-cos 2α2;cos 2α=1+cos 2α2;sin αcos α=12sin 2α. 3.升幂公式:1+cos α=2cos 2α2;1-cos α=2sin 2α2;1+sin α=⎝⎛⎭⎫sin α2+cos α22;1-sin α=⎝⎛⎭⎫sin α2-cos α22. 4.常用拆角、拼角技巧:例如,2α=(α+β)+(α-β);α=(α+β)-β=(α-β)+β;β=α+β2-α-β2=(α+2β)-(α+β);α-β=(α-γ)+(γ-β);15°=45°-30°;π4+α=π2-⎝⎛⎭⎫π4-α等. (1)sin(A+B )=sin C ;(2)cos(A+B )=-cos C ; (3)sin A+B 2=cos C 2;(4)cosA+B 2=sin C2; (5)tan(A+B )=-tan C ;(6)∵tan(A+B )=tan(π-C ),∴tanA+tanB1-tanAtanB=-tan C ,去分母,移项,整理可得tan A+tan B+tan C=tan A tan B tan C.2.找出下列复角的一个关系式,并写出它们的一个三角函数关系式.提示:(1)π4+α+π4-α=π2,sin (π4+α)=cos (π4-α);(2)(2π3+α)-(π6+α)=π2,sin (2π3+α)=cos (π6+α);(3) (π4+α)+(3π4-β)=π+(α-β),sin(α-β)=-sin [(3π4-β)+(π4+α)]; (4) (4)(3π4-β)-(π4+α)=π2-(α+β),sin(α+β)=cos [(3π4-β)-(π4+α)].5.辅助角公式:一般地,函数f (α)=a sin α+b cos α(a ,b 为常数)可以化为f (α)=a 2+b 2sin(α+φ)⎝⎛⎭⎫其中tan φ=ba 或f (α)=a 2+b 2cos(α-φ)⎝⎛⎭⎫其中tan φ=ab . 1.cos 18°cos 42°-cos 72°sin 42°=( )A .-32B.32 C .-12 D.122.cos(α+β)cos β+sin(α+β)sin β=( )A.sin(α+2β) B.sin α C.cos(α+2β)D.cos α3..3cos 15°-4sin 215°cos 15°=________.4.1+tan 18°)(1+tan 27°)的值是( ) A.√2 B.√3 C.2D.√55.已知cos x =34,则cos 2x =________6.若tan α=13,tan(α+β)=12,则tan β=________.7.已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan(π-β)=12,则tan(α-β)的值为( )A .-211 B.211 C.112D .-1128.设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________. 9.在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C =________. 10.sin 10°1-3tan 10°=________.(3)化简sin 235°-12cos 10°cos 80°=________.11.已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4=( )A.16B .-16 C.12 D.2312.已知cos ⎝⎛⎭⎫x -π6=13,则cos x +cos ⎝⎛⎭⎫x -π3=( )A.32 B.3 C.12 D.3313.(2019·南昌模拟)设α为锐角,若cos ⎝⎛⎭⎫α+π6=-13,则sin ⎝⎛⎭⎫2α+π12的值为( )A.725 B.72-818C .-17250 D.25 14.已知tan θ+1tan θ=4,则cos 2⎝⎛⎭⎫θ+π4=( )A.12 B.13 C.14 D.1515.(2018·全国卷Ⅲ)若sin α=13,则cos 2α=( )A.89 B.79 C .-79 D .-8916.下列式子的运算结果为3的是( )①tan 25°+tan 35°+3tan 25°tan 35°;②2(sin 35°cos 25°+cos 35°cos 65°);③1+tan 15°1-tan 15°;④tanπ61-tan2π6.A .①②④ B .③④C .①②③ D .②③④17.若cos α=13,α∈(0,π),则cos α2的值为( )A.√63B.-√63C.±√63D.√3318已知α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫α+π3=-23,则cos α=( )A.5+23 B.15-26 C.5-23 D.15+2619.(2016课标Ⅱ,9,5分)若cos (π4-α)=35,则sin 2α=( )A.725B.15C.-15D.-72520.(2015课标Ⅰ,2,5分)sin 20°cos 10°-cos 160°·sin 10°=( ) A.-√32 B.√32 C.-12 D.12 考法(一) 给角求值 1.cos 10°-3cos (-100°)1-sin 10°=________ 2.sin 50°+sin 10°(1+3tan 10°)]·2sin 280°=________.3.2sin 235°-1cos 10°-3sin 10°的值为( )A .1 B .-1C.12 D .-124.cos 165°的值是( ). A.√6-√22B.√6+√22C.√6-√24D.-√6-√245.sin47°-sin17°cos30°cos17°= .6.(2018年全国Ⅱ卷)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)= .考法(二) 给值求值1.已知cos ⎝⎛⎭⎫π4+x =35,若17π12<x <7π4,则sin 2x +2sin 2x 1-tan x 的值为________. 2.若tan α=2,tan(β-α)=3,则tan(β-2α)=( ).A.-1B.-15C.57D.173.已知0<α<π2<β<π,cos (β-π4)=13,sin(α+β)=45,求cos (α+π4)的值.4.已知sin (α+π3)=35,α∈(-π2,π6),求sin α的值. 5.在△ABC 中,若sin A=35,cos B=513,则cos C= .考法(三) 给值求角 1. 若sin 2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是________. 2.已知cos α=17,cos(α-β)=1314,若0<β<α<π2,则β=________. 3.已知α,β为锐角,cos α=17,且sin(α+β)=5314,则角β=________. 4.设cos α=-55,tan β=13,π<α<3π2,0<β<π2,则α-β=________.5.已知0<α<π2<β<π,cos (β-π4)=13,sin(α+β)=45,求cos (α+π4)的值.(2)已知sin (α+π3)=35,α∈(-π2,π6),求sin α的值.6.已知α∈(π2,π),且sin α2+cos α2=√62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈(π2,π),求cos β的值.辅助角公式 (1)sin x±cos x ;(2)sin x±√3cos x ;(3)√3sin x±cos x.2.(2013年全国Ⅰ卷)设当x=θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ= .3.(2014年全国Ⅱ卷)函数f (x )=sin(x+2φ)-2sin φcos(x+φ)的最大值为 .1.tan α±tan β=tan(α±β)(1∓tan αtan β).2.cos 2α=1+cos 2α2,sin 2α=1-cos 2α2. 3.1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,4.sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4.3.tan 20°+tan 40°+3tan 20°·tan 40°=________.考点一 三角函数式的化简【例1】 (1)化简:sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=________. (2)化简:(1+sin α+cos α)·⎝ ⎛⎭⎪⎫cos α2-sin α22+2cos α(0<α<π)=________.(1)cos(α+β)cos β+sin(α+β)sin β=( )A.sin(α+2β) B.sin α C.cos(α+2β) D.cos α 角度1 给角(值)求值(1)计算:cos 10°-3cos (-100°)1-sin 10°=________.(2)(2018·江苏卷)已知α,β为锐角,tan α=43,cos(α+β)=-55. ①求cos 2α的值;②求tan(α-β)的值.角度2 给值求角(1)(2019·河南六市联考)已知cos α=17,cos(α-β)=1314,若0<β<α<π2,则β=___. (2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________. 考点三 三角恒等变换的简单应用【例3】 (2019·郑州模拟)设函数f (x )=sin 2ωx -cos 2ωx +23sin ωx cos ωx +λ的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝ ⎛⎭⎪⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,0,求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,3π5上的最值. (2016·全国Ⅲ卷)若tan θ=-13,则cos 2θ=( )A.-45 B.-15 C.15 D.45 1..sin 10°1-3tan 10°=( )A.14 B.12C.32 D .12..(2017·江苏卷)若tan ⎝ ⎛⎭⎪⎫α-π4=16,则tan α=________.3.(2017·全国Ⅰ卷)已知α∈⎝ ⎛⎭⎪⎫0,π2,tan α=2,则cos ⎝ ⎛⎭⎪⎫α-π4=________.4..已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan(π-β)=12,则tan(α-β)的值为( )A .-211 B.211 C.112 D .-1125..设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________.3.下列式子的运算结果为3的是( ) ①tan 25°+tan 35°+3tan 25°tan 35°;②2(sin 35°cos 25°+cos 35°cos 65°); ③1+tan 15°1-tan 15°;④tan π61-tan2π6.A .①②④B .③④C .①②③D .②③④6.(2016·高考全国卷Ⅱ)若cos(π4-α)=35,则sin 2α=( )1、已知θ是第三象限角,且4459sincos θθ+=,那么2sin θ等于() A 、3B 、3-C 、23D 、23- 2、函数222y sin x x =-+的最小正周期 A 、2π B 、π C 、3π D 、4π 3、tan 70cos10(3tan 201)-等于 ( )A 、1B 、2C 、-1D 、-2 4、设10,sin cos 2απαα<<+=,则cos2α=_____。

高三数学一轮复习知识点讲解5-1任意角和弧度制及任意角的三角函数

高三数学一轮复习知识点讲解5-1任意角和弧度制及任意角的三角函数

高三数学一轮复习知识点讲解专题5.1 任意角和弧度制及任意角的三角函数【考纲解读与核心素养】1.了解角、角度制与弧度制的概念,掌握弧度与角度的换算.2. 理解正弦函数、余弦函数、正切函数的定义.3.本节涉及所有的数学核心素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等. 4.高考预测:(1)三角函数的定义;(2)扇形的面积、弧长及圆心角;(3)在大题中考查三角函数的定义,主要考查:一是直接利用任意角三角函数的定义求其三角函数值;二是根据任意角三角函数的定义确定终边上一点的坐标. 5.备考重点:(1) 理解三角函数的定义;(2) 掌握扇形的弧长及面积计算公式.【知识清单】知识点1.象限角及终边相同的角 1.(1)任意角的分类:①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角:终边与角α相同的角可写成α+k ·360°(k ∈Z ). 2.弧度制:①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr ,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值lr 与所取的r 的大小无关,仅与角的大小有关.3.弧度与角度的换算:360°=2π弧度;180°=π弧度.若一个角的弧度数为α,角度数为n ,则α rad =(180απ)°,n °=n ·π180rad .知识点2.三角函数的定义 1.任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点P (x ,y ),那么 (1)点P 的纵坐标叫角α的正弦函数,记作sin α=y ; (2)点P 的横坐标叫角α的余弦函数,记作cos α=x ;(3)点P 的纵坐标与横坐标之比叫角α的正切函数,记作tan α=yx .它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.将正弦函数、余弦函数和正切函数统称为三角函数,通常将它们记为: 正弦函数y =sinx ,x ∈R ; 余弦函数 y =cosx ,x ∈R ; 正切函数 y =tanx ,x ≠π2+k π(k ∈Z ).2.三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦 知识点3.扇形的弧长及面积公式 (1)弧长公式在半径为r 的圆中,弧长为l 的弧所对的圆心角大小为α,则|α|=lr ,变形可得l =|α|r ,此公式称为弧长公式,其中α的单位是弧度. (2)扇形面积公式由圆心角为1 rad 的扇形面积为πr 22π=12r 2,而弧长为l 的扇形的圆心角大小为l r rad ,故其面积为S =l r ×r 22=12lr ,将l =|α|r 代入上式可得S =12lr =12|α|r 2,此公式称为扇形面积公式.(3)弧长公式及扇形面积公式的两种表示名称 角度制 弧度制 弧长公式 l =n πr180l =__|α|r __ 扇形面积公式 S =n πr 2360S =|α|2r 2 = 12lr 注意事项r 是扇形的半径,n 是圆心角的角度数r 是扇形的半径,α是圆心角的弧度数,l 是弧长【典例剖析】高频考点一 象限角及终边相同的角【典例1】(2019·乐陵市第一中学高三专题练习)如果,那么与终边相同的角可以表示为A .B .C .D .【答案】B 【解析】 由题意得,与终边相同的角可以表示为.故选B . 【规律方法】象限角的两种判断方法(1)图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角. (2)转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α终边所在的象限判断已知角是第几象限角.【变式探究】若角α是第二象限角,试确定α2,2α的终边所在位置.【答案】角α2的终边在第三象限或第四象限或y 轴的负半轴上,2α的终边在第一象限或第三象限.【解析】∵角α是第二象限角,∴ 22,2k k k Z ππαππ+<<+∈,(1)4242,k k k Z ππαππ+<<+∈,∴ 角α2的终边在第三象限或第四象限或y 轴的负半轴上. (2) ,422k k k Z παπππ+<<+∈,当2 ,k n n Z =∈时, ∴ 22 ,422n n n Z παπππ+<<+∈,∴2α的终边在第一象限.当2 1 ,k n n Z =+∈时, ∴5322 ,422n n n Z παπππ+<<+∈, ∴2α的终边在第三象限.综上所述,2α的终边在第一象限或第三象限.【总结提升】象限角与轴线角(终边在坐标轴上的角)的集合表示 (1)象限角:象限角集合表示第一象限角{α|k·360°<α<k·360°+90°,k∈Z}第二象限角{α|k·360°+90°<α<k·360°+180°,k∈Z}第三象限角{α|k·360°+180°<α<k·360°+270°,k∈Z}第四象限角{α|k·360°+270°<α<k·360°+360°,k∈Z} (2)轴线角:角的终边的位置集合表示终边落在x轴的非负半轴上{α|α=k·360°,k∈Z}终边落在x轴的非正半轴上{α|α=k·360°+180°,k∈Z}终边落在y轴的非负半轴上{α|α=k·360°+90°,k∈Z}终边落在y轴的非正半轴上{α|α=k·360°+270°,k∈Z}终边落在y轴上{α|α=k·180°+90°,k∈Z}终边落在x轴上{α|α=k·180°,k∈Z}终边落在坐标轴上{α|α=k·90°,k∈Z}高频考点二三角函数的定义【典例2】已知角的终边过点,且,则的值为( )A. B. C. D.【答案】B【解析】由题意可知,,,是第三象限角,可得,即,解得,故选B.【典例3】已知角的终边落在直线y=2x上,求sinα、cosα、tanα的值.【答案】【解析】当角的终边在第一象限时,在角的终边上取点P(1,2),由r=|OP|=12+22=5,得sinα=2 5=255,cos α=15=55,tan α=21=2. 当角的终边在第三象限时,在角的终边上取点Q (-1,-2), 由r =|OQ |=-12+-22=5,得:sin α=-25=-255,cos α=-15=-55,tan α=-2-1=2.【典例4】(2011·江西高考真题(文))已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若()4,p y 是角θ终边上一点,且25sin 5θ=-,则y=_______. 【答案】-8 【解析】根据正弦值为负数,判断角在第三、四象限,再加上横坐标为正,断定该 角为第四象限角.=【规律方法】1.已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后利用三角函数的定义求解.2.已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题.若直线的倾斜角为特殊角,也可直接写出角α的三角函数值. 【变式探究】1.(浙江省嘉兴市第一中学期中)已知角的终边与单位圆交于点,则的值为( )A. B. C. D.【答案】B 【解析】由三角函数的定义可得.故选B .2.已知角的终边在射线上,则等于( )A. B. C. D.【答案】A 【解析】由题得在第四象限,且,所以故答案为: A.【总结提升】(1)已知角α的终边在直线上的问题时,常用的解题方法有以下两种:①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值. ②注意到角的终边为射线,所以应分两种情况处理,取射线上任意一点坐标(a ,b ),则对应角的正弦值sin α=b a 2+b2,余弦值cos α=aa 2+b2,正切值tan α=ab. (2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论. 高频考点三:三角函数值的符号判定 【典例5】已知且,则角的终边所在的象限是A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】B【解析】依据题设及三角函数的定义可知角终边上的点的横坐标小于零,纵坐标大于零,所以终边在第二象限,应选答案B.【典例6】确定下列各式的符号: (1)sin105°·cos230°; (2)sin 7π8·tan 7π8;(3)cos6·tan6. 【答案】【解析】先确定角所在象限,进而确定各式的符号. (1)∵105°、230°分别为第二、第三象限角, ∴sin105°>0,cos230°<0. 于是sin105°·cos230°<0.(2)∵π2<7π8<π,∴7π8是第二象限角,则sin 7π8>0,tan 7π8<0. ∴sin 7π8·tan 7π8<0.(3)∵3π2<6<2π,∴6是第四象限角.∴cos6>0,tan6<0,则cos6·tan6<0. 【总结提升】判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果角不能确定所在象限,那就要进行分类讨论求解. 【变式探究】1.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( ) A .(-2,3] B .(-2,3) C .[-2,3)D .[-2,3]【答案】A【解析】 ∵00cos ,sin αα≤>,∴角α的终边落在第二象限或y 轴的正半轴上. ∴39020a a ⎧-≤⎨+>⎩∴23-a <≤.故选A.2.(1)判断下列各式的符号: ①sin3·cos4·tan5;②α是第二象限角,sin α·cos α.(2)若cos θ<0且sin θ>0,则θ2是第( )象限角.A .一B .三C .一或三D .任意象限角【答案】(1)①正,②负;(2)C【解析】 (1)①π2<3<π,π<4<3π2,3π2<5<2π,∴sin3>0,cos4<0,tan5<0,∴sin3·cos4·tan5>0. ②∵α是第二象限角,∴sin α>0,cos α<0,∴sin αcos α<0.(2)由cos θ<0且sin θ>0,知θ是第二象限角,所以θ2是第一或三象限角.高频考点四:扇形的弧长及面积公式【典例7】(2018·湖北高考模拟(理))《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中,)A .15B .16C .17D .18 【答案】B 【解析】因为圆心角为,弦长为,所以圆心到弦的距离为半径为40,因此根据经验公式计算出弧田的面积为,实际面积等于扇形面积减去三角形面积,为,因此两者之差为,选B.【典例8】(2019·河南高考模拟(理))已知圆O 与直线l 相切于A ,点,P Q 同时从点A 出发,P 沿着直线l 向右、Q 沿着圆周按逆时针以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积1S ,2S 的大小关系是( )A .12S S =B .12S S ≤C .12S S ≥D .先12S S <,再12S S =,最后12S S >【答案】A 【解析】如图所示,因为直线l 与圆O 相切,所以OA AP ⊥, 所以扇形的面积为1122AOQ S AQ r AQ OA =⋅⋅=⋅⋅扇形,12AOP S OA AP ∆=⋅⋅, 因为AQ AP =,所以扇形AOQ 的面积AOP AOQ S S ∆=扇形, 即AOP AOQ AOB AOB S S S S ∆-=-扇形扇形扇形, 所以12S S =,【典例9】已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?【答案】r=10cm, θ==2rad, 100 cm 2【解析】设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S ,则l +2r =40,∴l =40-2r .(0<r <20) ∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010=2(rad).【总结提升】1.(1) 弧度制下l =|α|·r ,S =12lr ,此时α为弧度.扇形面积公式,扇形中弦长公式,扇形弧长公式在角度制下,弧长l =n πr 180,扇形面积S =n πr 2360,此时n 为角度,它们之间有着必然的联系.(2)在解决弧长、面积及弓形面积时要注意合理应用圆心角所在的三角形.2.当扇形周长一定时,其面积有最大值,最大值的求法是把面积S 转化为r 的函数,函数思想、转化为方程的思想是解决数学问题的常用思想. 【变式探究】1.(2019·甘肃高三月考(理))若一个扇形的周长与面积的数值相等,则该扇形所在圆的半径不可能等于( )A .5B .2C .3D .4 【答案】B 【解析】因为扇形的周长与面积的数值相等,所以设扇形所在圆的半径为R ,扇形弧长为l ,则lR=2R+l ,所以即是lR=4R+2l , ∴l=∵l>0,∴R>2 故选:B .2.已知扇形的周长是12,面积是8,则扇形的中心角的弧度数是( ) A. 1 B. 4 C. 1或4 D. 2或4 【答案】C【解析】设扇形的半径为r ,弧长为 l ,则121282l r S lr +===,,∴解得28r l ==, 或44r l ==, 41lrα==或,故选C .3.一个扇形的周长为20 cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?并求出这个扇形的最大面积.【答案】圆心角α等于2弧度时,这个扇形的最大面积是25 cm 2. 【解析】设扇形的半径为r cm ,则弧长为l =(20-2r ) cm . 由0<l <2πr ,得0<20-2r <2πr ,∴10π+1<r <10.于是扇形的面积为S =12(20-2r )r =-(r -5)2+25(10π+1<r <10).当r =5时,l =10,α=2,S 取到最大值,此时最大值为25 cm 2.故当扇形的圆心角α等于2弧度时,这个扇形的面积最大,最大面积是25 cm 2. 【特别提醒】应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度;(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决;(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.11金榜题名前程似锦。

高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知角为第二象限角,且,则的值为()A.B.C.D.【答案】B【解析】由,得:又因为:所以,解得:又因为角为第二象限角,所以,所以,故选B.【考点】同角三角函数基本关系及诱导公式.2.如图,A,B是单位圆上的两个质点,点B坐标为(1,0),∠BOA=60°.质点A以1 rad/s的角速度按逆时针方向在单位圆上运动,质点B以1 rad/s的角速度按顺时针方向在单位圆上运动.(1)求经过1 s 后,∠BOA的弧度;(2)求质点A,B在单位圆上第一次相遇所用的时间.【答案】(1)+2.(2)s【解析】解:(1)经过1 s 后,∠BOA的弧度为+2.(2)设经过t s 后质点A,B在单位圆上第一次相遇,则t(1+1)+=2π,所以t=,即经过s 后质点A,B在单位圆上第一次相遇.3.设角α是第三象限角,且=-sin,则角是第________象限角.【答案】四【解析】由α是第三象限角,知2kπ+π<α<2kπ+ (k∈Z),kπ+<<kπ+ (k∈Z),知是第二或第四象限角,再由=-sin知sin<0,所以只能是第四象限角.4.点P从(1,0)出发,沿单位圆x2+y2=1逆时针方向运动弧长到达Q点,则Q点的坐标为()A.(-,)B.(-,-)C.(-,-)D.(-,)【解析】设α=∠POQ,由三角函数定义可知,Q点的坐标(x,y)满足x=cosα,y=sinα,∴x=-,y=,∴Q点的坐标为(-,).5.已知角α终边经过点P(x,-)(x≠0),且cosα=x,求sinα、tanα的值.【答案】sinα=-,tanα=【解析】解:∵P(x,-)(x≠0),∴P到原点的距离r=.又cosα=x,∴cosα==x,∵x≠0,∴x=±,∴r=2.当x=时,P点坐标为(,-),由三角函数定义,有sinα=-,tanα=-.当x=-时,P点坐标为(-,-),∴sinα=-,tanα=.6. [2014·潍坊质检]已知角α的终边经过点P(m,-3),且cosα=-,则m等于()A.-B.C.-4D.4【答案】C【解析】cosα==- (m<0),解之得m=-4,选C项.7.角终边上有一点,则下列各点中在角的终边上的点是()A.B.C.D.【答案】B【解析】因为角终边上有一点,所以因此即角的终边上的点在第三象限,所以选C.【考点】三角函数定义8.把表示成θ+2kπ(k∈Z)的形式,使|θ|最小的θ值是()A.B.C.D.【解析】∵∴与是终边相同的角,且此时=是最小的,选A.9.若角α,β满足-<α<β<π,则α-β的取值范围是()A.(-,)B.(-,0)C.(0,)D.(-,0)【答案】B【解析】由-<α<β<π知,-<α<π,-<β<π,且α<β,所以-π<-β<,所以-<α-β<且α-β<0,所以-<α-β<0.10.计算2sin(-600°)+tan(-855°)的值为()A.B.1C.2D.0【答案】C【解析】∵sin(-600°)=-sin600°=-sin(360°+240°)=-sin240°=-sin(180°+60°)=sin60°=,同理tan(-855°)=-tan(2×360°+135°)=-tan135°=-tan(180°-45°)=tan45°=1,∴原式=2×+×1=2.11.已知角α的终边上一点的坐标为(sin,cos),则角α的最小正值为()A.B.C.D.【答案】C【解析】∵sin>0,cos>0,∴角α的终边在第一象限,∴tanα====,∴角α的最小正值为.12.若角θ的终边在射线y=-2x(x<0)上,则cosθ=.【答案】-【解析】由已知得角的终边落在第二象限,故可设角终边上一点P(-1,2),则r2=(-1)2+22=5,∴r=,此时cosθ==-.13.已知点P落在角θ的终边上,且θ∈[0,2π],则θ的值为________.【答案】【解析】由题意可知,点P在第四象限,且点P落在角θ的终边上,所以tan θ=-1,故θ=.14.已知则= .【答案】【解析】.【考点】三角函数求值.15.已知角x的终边上一点坐标为,则角x的最小正值为( ) A.B.C.D.【答案】C【解析】因为角终边上一点的坐标为,在第四象限,所以角是第四象限角,又,所以角的最小正值为.【考点】特殊角的三角函数值16.( )A.B.C.D.【答案】A【解析】.【考点】特殊角的三角函数值17.角的终边经过点,则的可能取值为( )A.B.C.D.【答案】D【解析】.【考点】1.任意角的三角函数;2.同角三角函数的基本关系18.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2B.C.D.【答案】B【解析】已知弧度数为2的圆心角所对的弦长也是2,所以,即,所以.【考点】弧度制.19.求值:________.【答案】【解析】.【考点】三角函数的计算及诱导公式.20.如图,在平面直角坐标系中,以x轴为始边作两个锐角、,它们的终边分别与单位圆交于A、B两点.已知点A的横坐标为;B点的纵坐标为.则 .【答案】【解析】单位圆的半径是1,根据勾股定理以及点A的横坐标为,B点的纵坐标为,可知点A的纵坐标为,点B的横坐标为,所以,,,,因为,是锐角,所以,所以.【考点】1.任意角的三角函数;2.三角函数的和角公式21.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2B.C.D.【答案】C【解析】.故选C.【考点】扇形弧长公式.22.在平面直角坐标系xOy中,若角α的始边与x轴的正半轴重合,终边在射线y=-x(x>0)上,则sin5α=.【答案】【解析】根据题意,由于平面直角坐标系xOy中,若角α的始边与x轴的正半轴重合,终边在射线y=-x(x>0)上,则可知,那么可知sin5α=sin,故答案为【考点】三角函数定义点评:解决的关键是利用三角函数的定义来求解三角函数值,属于基础题。

高考数学复习:任意角和弧度制及任意角的三角函数

高考数学复习:任意角和弧度制及任意角的三角函数

当m=- 5 时,r=2 2,点P的坐标为 ( 3, 5),
所以cos x 3 6 ,tan y 5 15 ,
r 22 4
x 3 3
综上可知,cos θ=- ,t6an θ=- 或c1o5 s θ=- , 6
2
2.若圆弧长度等于圆内接正方形的边长,则该圆弧所对
圆心角的弧度数为 ( )
A.
B.
C. 2
D. 2
4
2
2
【解析】选D.设圆的直径为2r,则圆内接正方形的边长 为 2r, 因为圆的圆弧长度等于该圆内接正方形的边长, 所以圆弧的长度为 2r, 所以圆心角弧度为 2r 2.
r
考点三 任意角三角函数的定义及应用 【明考点·知考法】
【典例】函数y= sin x 3 的定义域为________.
2
世纪金榜导学号
【解析】由题意可得sin x- ≥30,即sin x≥ .作 3
2
2
直线y= 3交单位圆于A,B两点,连接OA,OB,则OA与OB围
2
成的区域(图中阴影部分含边界)即为角x的终边的范围,
故满足条件的角x的集合为
{x|2k x 2k 2 , k Z}.
2
答案:6π
题组二:走进教材
1.(必修4P5T4改编)下列与 9 的终边相同的角的表达
4
式中正确的是 ( )
A.2kπ+45°(k∈Z) C.k·360°-315°(k∈Z)
B.k·360°+ 9 π(k∈Z)
4
D.kπ+ 5 (k∈Z)
4
【解析】选C.由定义知终边相同的角的表达式中不能
同时出现角度和弧度,应为 +2kπ或k·360°+45°

高考数学专题《任意角和弧度制及任意角的三角函数》习题含答案解析

高考数学专题《任意角和弧度制及任意角的三角函数》习题含答案解析

专题5.1 任意角和弧度制及任意角的三角函数1.(2021·宁夏高三三模(文))已知角α终边经过点()1,2,P-则cosα=()A.12B.12-C D.【答案】D【解析】直接利用三角函数的定义即可.【详解】由三角函数定义,cos5α==-.故选:D.2.(2021·中牟县教育体育局教学研究室高一期中)已知角α的终边经过点()3,1P-,则cosα=()A B.C.D【答案】C【解析】由三角函数的定义即可求得cosα的值.【详解】角α的终边经过点(3,1)P-,cosα∴==故选:C.3.(2020·全国高一课时练习)若α=-2,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】练基础根据角的弧度制与角度制之间的转化关系可得选项.【详解】因为1 rad≈57.30°,所以-2 rad≈-114.60°,故α的终边在第三象限.故选:C.4.(2021·江苏高一期中)下列命题:①钝角是第二象限的角;②小于90︒的角是锐角;③第一象限的角一定不是负角;④第二象限的角一定大于第一象限的角;⑤手表时针走过2小时,时针转过的角度为60︒;⑥若5α=,则α是第四象限角.其中正确的题的个数是()A.1个B.2个C.3个D.4个【答案】B【解析】结合象限角和任意角的概念逐个判断即可.【详解】对于①:钝角是大于90小于180的角,显然钝角是第二象限角. 故①正确;对于②:锐角是大于0小于90的角,小于90的角也可能是负角. 故②错误;对于③:359-显然是第一象限角. 故③错误;对于④:135是第二象限角,361是第一象限角,但是135361<. 故④错误;对于⑤:时针转过的角是负角. 故⑤错误;对于⑥:因为157.3rad≈,所以5557.3=286.5rad≈⨯,是第四象限角. 故⑥正确.综上,①⑥正确.故选:B.5.(2021·辽宁高三其他模拟)装饰公司制作一种扇形板状装饰品,其圆心角为23π,并在扇形弧上正面等距安装7个发彩光的小灯泡且在背面用导线将小灯泡串连(弧的两端各一个灯泡,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线大致需要的长度约为()A.55厘米B.63厘米C.69厘米D.76厘米【答案】B【解析】由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.【详解】因为在弧长比较短的情况下分成6等份,每部分的弦长和弧长相差很小, 所以可以用弧长近似代替弦长, 所以导线的长度为23020633ππ⨯=≈(厘米). 故选:B6.(2021·上海格致中学高三三模)半径为2,中心角为3π的扇形的面积等于( ) A .43π B .πC .23π D .3π 【答案】C 【解析】根据扇形的面积公式即可求解. 【详解】解:因为扇形的半径2r ,中心角3πα=,所以扇形的面积2211222233S r ππα==⨯⨯=, 故选:C.7.(2021·辽宁高三其他模拟)“数摺聚清风,一捻生秋意”是宋朝朱翌描写折扇的诗句,折扇出人怀袖,扇面书画,扇骨雕琢,是文人雅士的宠物,所以又有“怀袖雅物”的别号.如图是折扇的示意图,其中OA =20cm ,∠AOB =120°,M 为OA 的中点,则扇面(图中扇环)部分的面积是( )A .50πcm 2B .100πcm 2C .150πcm 2D .200πcm 2【答案】B 【解析】根据扇形面积公式计算可得; 【详解】解:扇环的面积为22211332400100222883r S r r παααπ⎛⎫=-==⨯⨯= ⎪⎝⎭.故选:B8.(2021·重庆八中高三其他模拟)如图所示,扇环ABCD 的两条弧长分别是4和10,两条直边AD 与BC 的长都是3,则此扇环的面积为( )A .84B .63C .42D .21【答案】D 【解析】设扇环的圆心角为α,小圆弧的半径为r ,依题意可得4αr =且()310αr +=,解得α、r ,进而可得结果. 【详解】设扇环的圆心角为α,小圆弧的半径为r ,由题可得4αr =且()310αr +=,解得2α=,2r ,从而扇环面积()221252212S =⨯⨯-=. 故选:D .9.(2021·浙江高二期末)已知角α的终边过点(1,)P y ,若sin 3α=,则y =___________.【答案】【解析】利用三角函数的定义可求y . 【详解】由三角函数的定义可得sin α==y =故答案为:10.(2021·山东日照市·高三月考)已知函数()3sin,06log ,0xx f x x x π⎧≤⎪=⎨⎪>⎩,则13f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭______. 【答案】12- 【解析】利用分段函数直接进行求值即可. 【详解】∵函数()3,06log ,0xsinx f x x x π⎧≤⎪=⎨⎪>⎩, ∴311log 133f ⎛⎫=- ⎪⎝⎭=, ∴611(1)sin 32f f f π⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 故答案为:12-.1.(2021·河南洛阳市·高一期中(文))点P 为圆221x y +=与x 轴正半轴的交点,将点P 沿圆周逆时针旋转至点P ',当转过的弧长为2π3时,点P '的坐标为( )A .1,2⎛ ⎝⎭B .12⎛- ⎝⎭C .21⎛⎫⎪ ⎪⎝⎭D .122⎛⎫- ⎪ ⎪⎝⎭【答案】B 【解析】先求出旋转角,就可以计算点的坐标了. 【详解】设旋转角为θ,则22123θπππ⨯⨯=,得23πθ=,从而可得1(,22P '-. 故选:B.2.(2021·上海高二课时练习)若A 是三角形的最小内角,则A 的取值范围是( )练提升A .0,2π⎛⎫⎪⎝⎭B .0,3π⎛⎫ ⎪⎝⎭C .,32ππ⎛⎫ ⎪⎝⎭D .0,3π⎛⎤ ⎥⎝⎦【答案】D 【解析】由给定条件结合三角形三内角和定理即可作答. 【详解】设B ,C 是三角形的另外两个内角,则必有,A B A C ≤≤,又A B C π++=, 则3A A A A A B C π=++≤++=,即3A π≤,当且仅当3C B A π===,即A 是正三角形内角时取“=”,又0A >,于是有03A π<≤,所以A 的取值范围是(0,]3π.故选:D3.(2021·北京清华附中高三其他模拟)已知,R αβ∈.则“,k k Z αβπ=+∈”是“sin 2sin 2αβ=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】求解出sin 2sin 2αβ=成立的充要条件,再与,k k Z αβπ=+∈分析比对即可得解. 【详解】,R αβ∈,sin 2sin 2sin[()()]sin[()()]αβαβαβαβαβ=⇔++-=+--⇔2cos()sin()0αβαβ+-=,则sin()0αβ-=或cos()0αβ+=,由sin()0αβ-=得,k k k Z αβπαβπ-=⇔=+∈, 由cos()0αβ+=得,22k k k Z ππαβπαβπ+=+⇔=-+∈,显然s ,in 2sin 2k k Z απαββ=+∈=⇒,sin 2s ,in 2k k Z αβαβπ=+=∈,所以“,k k Z αβπ=+∈”是“sin 2sin 2αβ=”的充分不必要条件. 故选:A4.(2021·安徽池州市·池州一中高三其他模拟(理))已知一个半径为3的扇形的圆心角为()02θθπ<<,面积为98π,若()tan 3θϕ+=,则tan ϕ=( ) A .12-B .34C .12D .43【答案】C 【解析】由扇形的面积公式得4πθ=,进而根据正切的和角公式解方程得1tan 2ϕ=. 【详解】解:由扇形的面积公式212S r θ=得9928πθ=,解得4πθ=, 所以()tan tan 1tan tan 31tan tan 1tan θϕϕθϕθϕϕ+++===--,解得1tan 2ϕ=故选:C5.(2021·新蔡县第一高级中学高一月考)一个圆心角为60的扇形,它的弧长是4π,则扇形的内切圆(与扇形的弧和半径的相切)的半径等于( ) A .2 B .4 C .2π D .4π【答案】B 【解析】设扇形内切圆的半径为x ,扇形所在圆的半径为r ,求得3r x =,结合弧长公式,列出方程,即可求解. 【详解】如图所示,设扇形内切圆的半径为x ,扇形所在圆的半径为r , 过点O 作OD CD ⊥, 在直角CDO 中,可得2sin 30ODCO x ==,所以扇形的半径为23r x x x =+=, 又由扇形的弧长公式,可得343x ππ⨯=,解得4x =,即扇形的内切圆的半径等于4. 故选:B.6.(2021·安徽合肥市·合肥一中高三其他模拟(文))已知顶点在原点的锐角α,始边在x 轴的非负半轴,始终绕原点逆时针转过3π后交单位圆于1(,)3P y -,则sin α的值为( )A .6B C .16D .16【答案】B 【解析】根据任意角的三角函数的定义求出1cos()33πα+=-,然后凑角结合两角差的正弦公式求出sin α. 【详解】由题意得1cos()33πα+=-(α为锐角) ∵α为锐角,∴5336πππα,∴sin()03πα+>sin()sin sin ()3333πππααα⎡⎤⇒+=⇒=+-⎢⎥⎣⎦1132326⎛⎫=⨯--⨯=⎪⎝⎭ 故选:B7.(2020·安徽高三其他模拟(文))已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边经过点A (1,-3),则tan()4πα+=( )A .12B .12-C .1D .-1【解析】根据终边上的点求出tan 3α=-,再结合正切和公式求解即可. 【详解】由题知tan 3α=-,则tan tan3114tan()41321tan tan 4παπαπα+-++===-+-. 故选:B8.(2021·合肥一六八中学高三其他模拟(理))已知顶点在原点,始边在x 轴非负半轴的锐角α绕原点逆时针转π3后,终边交单位圆于P x ⎛ ⎝⎭,则sin α的值为( ) ABCD. 【答案】C 【解析】设锐角α绕原点逆时针转π3后得角β,由2113x +=,则x =,分x 的值结合三角函数的定义,求解即可,根据条件进行取舍. 【详解】设锐角α绕原点逆时针转π3后得角β,则3πβα=+,由α为锐角, 根据题意角β终边交单位圆于,3P x ⎛ ⎝⎭,则2113x +=,则3x =±若3x =,则sin ,cos 33ββ==所以sin sin sin cos cos sin 03336πππαβββ⎛⎫=-=-=< ⎪⎝⎭,与α为锐角不符合.若x =,则sin ββ==所以sin sin sin cos cos sin 0333πππαβββ⎛⎫=-=-=> ⎪⎝⎭,满足条件.9.(2021·安徽宣城市·高三二模(文))刘徽是中国魏晋时期杰出的数学家,他提出“割圆求周”方法:当n 很大时,用圆内接正n 边形的周长近似等于圆周长,并计算出精确度很高的圆周率 3.1416π≈.在《九章算术注》中总结出“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”的极限思想.运用此思想,当π取3.1416时,可得sin 2︒的近似值为( )A .0.00873B .0.01745C .0.02618D .0.03491【答案】D 【解析】由圆的垂径定理,求得2sin 2AB =︒,根据扇形对应的弦长之和近似于单位圆的周长,列出方程,即可求解. 【详解】将一个单位圆分成90个扇形,则每个扇形的圆心角度数均为4︒由圆的垂径定理,可得每个圆心角所对的弦长221sin 22sin 2AB AC ==⨯⨯︒=︒, 因为这90个扇形对应的弦长之和近似于单位圆的周长, 所以9021sin 2180sin 22π⨯⨯⨯︒=︒≈, 所以22 3.1416sin 20.03491180180π⨯︒≈=≈. 故选:D .10.(2021·江苏南通市·高三其他模拟)某设计师为天文馆设计科普宣传图片,其中有一款设计图如图所示.QRT 是一个以点O 为圆心、QT 长为直径的半圆,QT =.QST 的圆心为P ,2dm PQ PT ==.QRT与QST 所围的灰色区域QRTSQ 即为某天所见的月亮形状,则该月亮形状的面积为___________2dm .6π 【解析】连接PO ,可得PO QT ⊥,求出23QPT π∠=,利用割补法即可求出月牙的面积. 【详解】解:连接PO ,可得PO QT ⊥,因为sin 2QO QPO PQ ∠==, 所以3QPO π∠=,23QPT π∠=,所以月牙的面积为2221121(21)dm 22326S πππ=⨯⨯-⨯⨯-⨯=.6π.1.(全国高考真题)已知角α的终边经过点(−4,3),则cosα=( )A .45B .35C .−35D .−45 练真题【答案】D【解析】由题意可知x=-4,y=3,r=5,所以cosα=x r =−45.故选D. 2.(2020·全国高考真题(理))若α为第四象限角,则( )A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<0 【答案】D【解析】方法一:由α为第四象限角,可得3222,2k k k Z ππαππ+<<+∈, 所以34244,k k k Z ππαππ+<<+∈此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin 20α<故选:D. 方法二:当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误; 当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误; 由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确; 故选:D.3.(2015·上海高考真题(文))已知点的坐标为,将绕坐标原点逆时针旋转至,则点的纵坐标为( ). A . B . C . D .【答案】D【解析】由题意,设OA 与x 轴所成的角为,显然,,故,故纵坐标为4.(2018·全国高考真题(文))已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1 , a),B(2 , b),且cos2α=23,则|a −b |= A .15 B .√55 C .2√55D .1 【答案】B【解析】由O,A,B 三点共线,从而得到b =2a ,因为cos2α=2cos 2α−1=2⋅(√a 2+1)2−1=23, 解得a 2=15,即|a |=√55, 所以|a −b |=|a −2a |=√55,故选B.5.(2017·北京高考真题(理))在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则()cos αβ-=___________. 【答案】79- 【解析】因为α和β关于y 轴对称,所以2,k k Z αβππ+=+∈,那么1sin sin 3βα==,cos cos 3αβ=-=(或cos cos 3βα=-=), 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 6.(2021·北京高考真题)若点(cos ,sin )P θθ与点(cos(),sin())66Q ππθθ++关于y 轴对称,写出一个符合题意的θ=___. 【答案】512π(满足5,12k k Z πθπ=+∈即可) 【解析】根据,P Q 在单位圆上,可得,6πθθ+关于y 轴对称,得出2,6k k Z πθθππ++=+∈求解. 【详解】(cos ,sin )P θθ与cos ,sin66Q ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭关于y 轴对称, 即,6πθθ+关于y 轴对称,2,6k k Z πθθππ++=+∈, 则5,12k k Z πθπ=+∈, 当0k =时,可取θ的一个值为512π. 故答案为:512π(满足5,12k k Z πθπ=+∈即可).。

【2019版新教材】高中数学A版必修第一册第五章全章节教案教学设计+课后练习及答案(名师推荐精编版)

【2019版新教材】高中数学A版必修第一册第五章全章节教案教学设计+课后练习及答案(名师推荐精编版)

【新教材】人教统编版高中数学A版必修第一册第五章教案教学设计+课后练习及答案5.1.1《任意角和弧度制---任意角》教案教材分析:学生在初中学习了o 0~o 360,但是现实生活中随处可见超出o 0~o 360范围的角.例如体操中有“前空翻转体o 540”,且主动轮和被动轮的旋转方向不一致.因此为了准确描述这些现象,本节课主要就旋转度数和旋转方向对角的概念进行推广.教学目标与核心素养:课程目标1.了解任意角的概念.2.理解象限角的概念及终边相同的角的含义.3.掌握判断象限角及表示终边相同的角的方法.数学学科素养1.数学抽象:理解任意角的概念,能区分各类角;2.逻辑推理:求区域角;3.数学运算:会判断象限角及终边相同的角.教学重难点:重点:理解象限角的概念及终边相同的角的含义;难点:掌握判断象限角及表示终边相同的角的方法.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

教学过程:一、情景导入初中对角的定义是:射线OA 绕端点O 按逆时针方向旋转一周回到起始位置,在这个过程中可以得到o 0~o 360范围内的角.但是现实生活中随处可见超出o 0~o 360范围的角.例如体操中有“前空翻转体o 540”,且主动轮和被动轮的旋转方向不一致.请学生思考,如何定义角才能解决这些问题呢?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本168-170页,思考并完成以下问题1.角的概念推广后,分类的标准是什么?2.如何判断角所在的象限?3.终边相同的角一定相等吗?如何表示终边相同的角?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1.任意角(1)角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的表示如图,OA是角α的始边,OB是角α的终边,O是角的顶点.角α可记为“角α”或“∠α”或简记为“α”.(3)角的分类按旋转方向,角可以分为三类:名称定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转形成的角2.象限角在平面直角坐标系中,若角的顶点与原点重合,角的始边与 x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.四、典例分析、举一反三题型一任意角和象限角的概念例1(1)给出下列说法:①锐角都是第一象限角;②第一象限角一定不是负角;③小于180°的角是钝角、直角或锐角;④始边和终边重合的角是零角.其中正确说法的序号为________(把正确说法的序号都写上).(2)已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,作出下列各角,并指出它们是第几象限角.①420°,②855°,③-510°.【答案】(1)①(2)图略,①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.【解析】(1)①锐角是大于0°且小于90°的角,终边落在第一象限,是第一象限角,所以①正确;②-350°角是第一象限角,但它是负角,所以②错误;③0°角是小于180°的角,但它既不是钝角,也不是直角或锐角,所以③错误;④360°角的始边与终边重合,但它不是零角,所以④错误.(2) 作出各角的终边,如图所示:由图可知:①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.解题技巧:(任意角和象限角的表示)1.判断角的概念问题的关键与技巧.(1)关键:正确的理解角的有关概念,如锐角、平角等;(2)技巧:注意“旋转方向决定角的正负,旋转幅度决定角的绝对值大小.2.象限角的判定方法.(1)图示法:在坐标系中画出相应的角,观察终边的位置,确定象限.(2)利用终边相同的角:第一步,将α写成α=k·360°+β(k∈Z,0°≤β<360°)的形式;第二步,判断β的终边所在的象限;第三步,根据β的终边所在的象限,即可确定α的终边所在的象限.跟踪训练一1.已知集合A={第一象限角},B={锐角},C={小于90°的角},则下面关系正确的是( )A.A=B=C B.A⊆CC.A∩C=B D.B∪C⊆C【答案】D【解析】由已知得B C,所以B∪C⊆C,故D正确.2.给出下列四个命题:①-75°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-315°是第一象限角.其中正确的命题有( )A.1个 B.2个 C.3个 D.4个【答案】D【解析】-90°<-75°<0°,180°<225°<270°,360°+90°<475°<360°+180°,-315°=-360°+45°且0°<45°<90°.所以这四个命题都是正确的.题型二终边相同的角的表示及应用例2(1)将-885°化为k·360°+α(0°≤α<360°,k∈Z)的形式是________.(2)写出与α=-910°终边相同的角的集合,并把集合中适合不等式-720°<β<360°的元素β写出来.【答案】(1)(-3)×360°+195°,(2)终边相同的角的集合为{β|β=k·360°-910°,k∈Z},适合不等式-720°<β<360°的元素-550°、-190°、170°.【解析】(1)-885°=-1 080°+195°=(-3)×360°+195°.(2)与α=-910°终边相同的角的集合为{β|β=k·360°-910°,k∈Z},∵-720°<β<360°,即-720°<k·360°-910°<360°,k∈Z,∴k取1,2,3.当k=1时,β=360°-910°=-550°;当k=2时,β=2×360°-910°=-190°;当k=3时,β=3×360°-910°=170°.解题技巧:(终边相同的角的表示)1.在0°到360°范围内找与给定角终边相同的角的方法(1)一般地,可以将所给的角α化成k·360°+β的形式(其中0°≤β<360°,k∈Z),其中β就是所求的角.(2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所给角是负角时,采用连续加360°的方式;当所给角是正角时,采用连续减360°的方式,直到所得结果达到所求为止.2.运用终边相同的角的注意点所有与角α终边相同的角,连同角α在内可以用式子k·360°+α,k∈Z表示,在运用时需注意以下四点:(1)k是整数,这个条件不能漏掉.(2)α是任意角.(3)k·360°与α之间用“+”连接,如k·360°-30°应看成k·360°+(-30°),k∈Z.(4)终边相同的角不一定相等,但相等的角终边一定相同,终边相同的角有无数个,它们相差周角的整数倍.跟踪训练二1.下面与-850°12′终边相同的角是( )A .230°12′B .229°48′C .129°48′D .130°12′【答案】B【解析】与-850°12′终边相同的角可表示为α=-850°12′+k ·360°(k ∈Z),当k =3时,α=-850°12′+1 080°=229°48′.2.写出角α的终边落在第二、四象限角平分线上的角的集合为________.【答案】{α|α=k ·180°+135°,k ∈Z}.【解析】落在第二象限时,表示为k ·360°+135°.落在第四象限时,表示为k ·360°+180°+135°,故可合并为{α|α=k ·180°+135°,k ∈Z}. 题型三 任意角终边位置的确定和表示例3 (1)若α是第一象限角,则α2是( )A .第一象限角B .第一、三象限角C .第二象限角D .第二、四象限角(2)已知,如图所示.①分别写出终边落在OA ,OB 位置上的角的集合;②写出终边落在阴影部分(包括边界)的角的集合.【答案】(1)B (2) ①终边落在OA 位置上的角的集合为{α|α=135°+k ·360°,k ∈Z};终边落在OB 位置上的角的集合为{β|β=-30°+k ·360°,k ∈Z}.②故该区域可表示为{γ|-30°+k ·360°≤γ≤135°+k ·360°,k ∈Z}.【解析】(1) 因为α是第一象限角,所以k ·360°<α<k ·360°+90°,k ∈Z ,所以k ·180°<α2<k ·180°+45°,k ∈Z ,当k 为偶数时,α2为第一象限角;当k 为奇数时,α2为第三象限角.所以α2是第一、三象限角.(2) ①终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{β|β=-30°+k·360°,k∈Z}.②由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的与之终边相同的角组成的集合,故该区域可表示为{γ|-30°+k·360°≤γ≤135°+k·360°,k∈Z}.解题技巧:(任意角终边位置的确定和表示)1.表示区间角的三个步骤:第一步:先按逆时针的方向找到区域的起始和终止边界;第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x|α<x<β},其中β-α<360°;第三步:起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.提醒:表示区间角时要注意实线边界与虚线边界的差异.2.nα或所在象限的判断方法:的范围;(1)用不等式表示出角nα或αn所在象限.(2)用旋转的观点确定角nα或αn跟踪训练三1.如图所示的图形,那么终边落在阴影部分的角的集合如何表示?【答案】角β的取值集合为{β|n·180°+60°≤β<n·180°+105°,n∈Z}.【解析】在0°~360°范围内,终边落在阴影部分(包括边界)的角为60°≤β<105°与240°≤β<285°,所以所有满足题意的角β为{β|k·360°+60°≤β<k·360°+105°,k∈Z}∪{β|k·360°+240°≤β<k·360°+285°,k∈Z}={β|2k·180°+60°≤β<2k·180°+105°,k∈Z}∪{β|(2k+1)·180°+60°≤β<(2k+1)·180°+105°,k∈Z}={β|n·180°+60°≤β<n·180°+105°,n∈Z}.故角β的取值集合为{β|n·180°+60°≤β<n·180°+105°,n∈Z}.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本171页练习及175页习题5.1 1、2、7题.教学反思:本节课主要采用讲练结合与分组探究的教学方法,让学生从旋转方向和旋转度数熟悉角的概念,象限角,终边相同的角等,并且掌握其应用.5.1.2《任意角和弧度制---弧度制》教案教材分析:前一节已经学习了任意角的概念,而本节课主要依托圆心角这个情境学习一种用长度度量角的方法—弧度制,从而将角与实数建立一一对应关系,为学习本章的核心内容—三角函数扫平障碍,打下基础.教学目标与核心素养:课程目标1.了解弧度制,明确1弧度的含义.2.能进行弧度与角度的互化.3.掌握用弧度制表示扇形的弧长公式和面积公式.数学学科素养1.数学抽象:理解弧度制的概念;2.逻辑推理:用弧度制表示角的集合;3.直观想象:区域角的表示;4.数学运算:运用已知条件处理扇形有关问题.教学重难点:重点:弧度制的概念与弧度制与角度制的转化;难点:弧度制概念的理解.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知角为第二象限角,且,则的值为()A.B.C.D.【答案】B【解析】由,得:又因为:所以,解得:又因为角为第二象限角,所以,所以,故选B.【考点】同角三角函数基本关系及诱导公式.2.设α是第二象限角,P(x,4)为其终边上的一点,且cosα=x,则tanα=() A.B.C.-D.-【答案】D【解析】∵α是第二象限角,∴cosα=x<0,即x<0.又cosα=x=,解得x=-3,∴tanα==-.3.已知点P(sinα-cosα,tanα)在第一象限,则在[0,2π]内α的取值范围是()A.(,)B.(π,)C.(,)D.(,)∪(π,)【答案】D【解析】由已知得,解得α∈(,)∪(π,).4.已知角α终边上一点P(-,y),且sinα=y,求cosα和tanα的值.【答案】cosα=-1,tanα=0.【解析】r2=x2+y2=y2+3,由sinα===y,∴y=±或y=0.当y=即α是第二象限角时,cosα==-,tanα=-;当y=-即α是第三象限角时,cosα==-,tanα=;当y=0时,P(-,0),cosα=-1,tanα=0.5.设集合M=,N={α|-π<α<π},则M∩N=________.【答案】【解析】由-π<<π,得-<k<.∵k∈Z,∴k=-1,0,1,2,故M∩N=6.一段圆弧的长度等于其圆内接正三角形的边长,则其圆心角的弧度数为()A.B.C.D.【答案】C【解析】由题意可知,圆内接正三角形边长a与圆的半径之间关系为a=r,∴α===.7. tan(-1 410°)的值为()A.B.-C.D.-【答案】A【解析】tan(-1 410°)=tan(-4×360°+30°)=tan 30°=8.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦´矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长等于9米的弧田.(1)计算弧田的实际面积;(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)【答案】(1) ();(2)少.【解析】(1)本题比较简单,就是利用扇形面积公式来计算弧田面积,弧田面积等于扇形面积对应三角形面积.(2)由弧田面积的经验计算公式计算面积与实际面积相减即得.试题解析:(1) 扇形半径, 2分扇形面积等于 5分弧田面积=(m2) 7分(2)圆心到弦的距离等于,所以矢长为.按照上述弧田面积经验公式计算得(弦´矢+矢2)=. 10分平方米 12分按照弧田面积经验公式计算结果比实际少1.52平米.【考点】(1)扇形面积公式;(2)弧田面积的经验计算公式.9.在平面直角坐标系中,若角的顶点在坐标原点,始边在轴的非负半轴上,终边经过点(其中)则的值为( )A.B.C.D.【答案】D【解析】,根据任意角的三角函数的定义得,,所以.【考点】任意角三角函数的定义.10.( )A.B.C.D.【答案】A【解析】.【考点】特殊角的三角函数值11.在平面直角坐标系中,已知角的顶点在坐标原点,始边在轴的非负半轴上,终边经过点,则 .【答案】【解析】由任意角的三角函数的定义得:.【考点】任意角的三角函数的定义.12.已知,则满足的角所在的象限为.【答案】二或四【解析】根据指数函数的单调性和,得,即和异号,所以角是第二象限或第四象限的角.【考点】指数函数的单调性、各象限三角函数的符号.13.已知为钝角,且,则与角终边相同的角的集合为.【答案】【解析】由为钝角,且,得,所以与角终边相同的角的集合为,当然也可写成,但注意制度要统一,不要丢掉.【考点】特殊角的三角函数、终边相同角的集合.14.已知,则满足的角所在的象限为.【答案】二或四【解析】根据指数函数的单调性和,得,即和异号,所以角是第二象限或第四象限的角.【考点】指数函数的单调性、各象限三角函数的符号.15.如图所示,在平面直角坐标系xOy中,角α的终边与单位圆交于点A,点A的纵坐标为,则cosα=.【答案】.【解析】由题意及图所示,易知A点的横坐标为,所以.【考点】三角函数的定义.16.已知函数的定义域为[a,b],值域为[-2,1],则的值不可能是()A.B.C.D.【答案】C【解析】因的值域[-2,1]含最小值不含最大值,根据图象可知定义域小于一个周期,故选D.【考点】三角函数的定义域和值域.17.若角的终边上有一点P(a,-2),则实数a的值为()A.B.C.D.【答案】D【解析】因为,所以.【考点】三角函数的定义.18.若,则角是()A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第二或第四象限角【答案】D【解析】因为,则角是第二或第四象限角,选D19.点位于直角坐标面的A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为,位于直角坐标面的第四象限,选D20.已知圆与轴的正半轴相交于点,两点在圆上,在第一象限,在第二象限,的横坐标分别为,则=( )A.B.C.D.【答案】B【解析】设与轴正半轴的夹角分别为则,21.已知动点在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周,已知时间t=0时,点A(,则0≤t≤12时,动点A的横坐标x关于t(单位:秒)的函数单调递减区间是()A.[0, 4]B.[4,10]C.[10,12]D.[0,4]和[10,12]【答案】D【解析】解:设动点A与x轴正方向夹角为α,则t=0时α=π/ 3 ,每秒钟旋转π /6 ,在t∈[0,1]上α∈[π/ 3 ,π/ 2 ],在[7,12]上α∈[3π/ 2 ,7π /3 ],动点A的纵坐标y关于t都是单调递增的.故选D.22.曲线与坐标轴所围的面积是【答案】3【解析】据余弦函数的图象,23.已知,且在第二象限,那么在 ( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】解:∵sinθ="3" /4 ,且θ在第二象限,∴cosθ=-/4,所以sin2θ=2sinθcosθ=-3/16Cos2θ=1-2sin2θ=-1/8故2θ在第三象限。

任意角和弧度制及任意角的三角函数考点与提醒归纳

任意角和弧度制及任意角的三角函数考点与提醒归纳

任意角和弧度制及任意角的三角函数考点与提醒归纳一、基础知识1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+2k π,k ∈Z }.终边相同的角不一定相等,但相等的角其终边一定相同.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:有关角度与弧度的两个注意点(1)角度与弧度的换算的关键是π=180°,在同一个式子中,采用的度量制度必须一致,不可混用.(2)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.二、常用结论汇总——规律多一点(1)一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦. (2)三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=y r ,cos α=xr ,tan α=yx(x ≠0).(3)象限角(4)轴线角考点一 象限角及终边相同的角[典例] (1)若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________. [解析] (1)∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z. 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.故选C.(2)如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,4π3;在[-2π,0)内满足条件的角有两个:-2π3,-5π3,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3.[答案] (1)C (2)⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3[题组训练]1.集合⎩⎨⎧⎭⎬⎫α⎪⎪k π≤α≤k π+π4,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选B 当k =2n (n ∈Z )时,2n π≤α≤2n π+π4(n ∈Z ),此时α的终边和0≤α≤π4的终边一样,当k =2n +1(n ∈Z )时,2n π+π≤α≤2n π+π+π4(n ∈Z ),此时α的终边和π≤α≤π+π4的终边一样. 2.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°终边相同的角可表示为: β=45°+k ×360°(k ∈Z ),则令-720°≤45°+k ×360°<0°(k ∈Z ), 得-765°≤k ×360°<-45°(k ∈Z ), 解得-765360≤k <-45360(k ∈Z ),从而k =-2或k =-1, 代入得β=-675°或β=-315°. 答案:-675°或-315°考点二 三角函数的定义[典例] 已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________.[解析] ∵角α的终边经过点P (-x ,-6),且cos α=-513,∴cos α=-x x 2+36=-513,解得x =52或x =-52(舍去),∴P ⎝⎛⎭⎫-52,-6,∴sin α=-1213, ∴tan α=sin αcos α=125,则1sin α+1tan α=-1312+512=-23.[答案] -23[解题技法]用定义法求三角函数值的2种类型及解题方法(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解.(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.[题组训练]1.已知角α的终边经过点(3,-4),则sin α+1cos α=( )A .-15B.3715C.3720D.1315解析:选D ∵角α的终边经过点(3,-4),∴sin α=-45,cos α=35,∴sin α+1cos α=-45+53=1315. 2.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35C .35D .45解析:选B 设P (t,2t )(t ≠0)为角θ终边上任意一点,则cos θ=t5|t |.当t >0时,cos θ=55;当t <0时,cos θ=-55.因此cos 2θ=2cos 2θ-1=25-1=-35. 考点三 三角函数值符号的判定[典例] 若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角[解析] 由sin αtan α<0可知sin α,tan α异号, 则α为第二象限角或第三象限角. 由cos αtan α<0可知cos α,tan α异号, 则α为第三象限角或第四象限角. 综上可知,α为第三象限角. [答案] C[解题技法] 三角函数值符号及角所在象限的判断三角函数在各个象限的符号与角的终边上的点的坐标密切相关.sin θ在一、二象限为正,cos θ在一、四象限为正,tan θ在一、三象限为正.学习时首先把取正值的象限记清楚,其余的象限就是负的,如sin θ在一、二象限为正,那么在三、四象限就是负的.值得一提的是:三角函数的正负有时还要考虑坐标轴上的角,如sin π2=1>0,cos π=-1<0.[题组训练]1.下列各选项中正确的是( ) A .sin 300°>0 B .cos(-305°)<0 C .tan ⎝⎛⎭⎫-22π3>0 D .sin 10<0解析:选D 300°=360°-60°,则300°是第四象限角,故sin 300°<0;-305°=-360°+55°,则-305°是第一象限角,故cos(-305°)>0;-22π3=-8π+2π3,则-22π3是第二象限角,故tan ⎝⎛⎭⎫-22π3<0;3π<10<7π2,则10是第三象限角,故sin 10<0,故选D. 2.已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B 由题意得⎩⎨⎧cos α<0,tan α<0⇒⎩⎪⎨⎪⎧cos α<0,sin α>0,所以角α的终边在第二象限.[课时跟踪检测]A 级1.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6D .8解析:选C 设扇形的半径为r (r >0),弧长为l ,则由扇形面积公式可得2=12lr =12|α|r 2=12×4×r 2,解得r =1,l =|α|r =4,所以所求扇形的周长为2r +l =6. 2.(2019·石家庄模拟)已知角α(0°≤α<360°)终边上一点的坐标为(sin 150°,cos 150°),则α=( )A .150°B .135°C .300°D .60°解析:选C 由sin 150°=12 >0,cos 150°=-32<0,可知角α终边上一点的坐标为⎝⎛⎭⎫12,-32,故该点在第四象限,由三角函数的定义得sin α=-32,因为0°≤α<360°,所以角α为300°.3.(2018·长春检测)若角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边在直线y =-3x 上,则角α的取值集合是( )A.⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π-π3,k ∈Z B.⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π+2π3,k ∈Z C.⎩⎨⎧⎭⎬⎫α⎪⎪ α=k π-2π3,k ∈Z D.⎩⎨⎧⎭⎬⎫α⎪⎪α=k π-π3,k ∈Z 解析:选D 当α的终边在射线y =-3x (x ≤0)上时,对应的角为2π3+2k π,k ∈Z ,当α的终边在射线y =-3x (x ≥0)上时,对应的角为-π3+2k π,k ∈Z ,所以角α的取值集合是⎩⎨⎧⎭⎬⎫α⎪⎪α=k π-π3,k ∈Z .4.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A 由cos α≤0,sin α>0可知,角α的终边落在第二象限或y 轴的正半轴上,所以有⎩⎪⎨⎪⎧3a -9≤0,a +2>0,解得-2<a ≤3.5.在平面直角坐标系xOy 中,α为第二象限角,P (-3,y )为其终边上一点,且sin α=2y4,则y 的值为( ) A.3 B .-5 C.5 D.3或5解析:选C 由题意知|OP |=3+y 2,则sin α=y 3+y 2=2y4,解得y =0(舍去)或y =±5,因为α为第二象限角,所以y >0,则y = 5.6.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3解析:选B 由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限,因为角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1. 7.已知一个扇形的圆心角为3π4,面积为3π2,则此扇形的半径为________. 解析:设此扇形的半径为r (r >0),由3π2=12×3π4×r 2,得r =2.答案:28.(2019·江苏高邮模拟)在平面直角坐标系xOy 中,60°角终边上一点P 的坐标为(1,m ),则实数m 的值为________.解析:∵60°角终边上一点P 的坐标为(1,m ),∴tan 60°=m1,∵tan 60°=3,∴m = 3.答案:39.若α=1 560°,角θ与α终边相同,且-360°<θ<360°,则θ=________. 解析:因为α=1 560°=4×360°+120°, 所以与α终边相同的角为360°×k +120°,k ∈Z , 令k =-1或k =0,可得θ=-240°或θ=120°. 答案:120°或-240°10.在直角坐标系xOy 中,O 为坐标原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°, 设点B 坐标为(x ,y ),则x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3). 答案:(-1,3)11.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点M ⎝⎛⎭⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值. 解:(1)由1|sin α|=-1sin α,得sin α<0,由lg(cos α)有意义,可知cos α>0, 所以α是第四象限角.(2)因为|OM |=1,所以⎝⎛⎭⎫352+m 2=1,解得m =±45. 又因为α是第四象限角,所以m <0, 从而m =-45,sin α=y r =m |OM |=-451=-45.12.已知α为第三象限角. (1)求角α2终边所在的象限;(2)试判断 tan α2sin α2cos α2的符号.解:(1)由2k π+π<α<2k π+3π2,k ∈Z , 得k π+π2<α2<k π+3π4,k ∈Z ,当k 为偶数时,角α2终边在第二象限;当k 为奇数时,角α2终边在第四象限.故角α2终边在第二或第四象限.(2)当角α2在第二象限时,tan α2<0,sin α2>0, cos α2<0,所以tan α2sin α2cos α2取正号;当角α2在第四象限时,tan α2<0,sin α2<0, cos α2>0, 所以 tan α2sin α2cos α2也取正号.因此tan α2sin α2cos α2取正号.B 级1.若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α解析:选C 如图所示,作出角α的正弦线MP ,余弦线OM ,正切线AT ,因为-3π4 <α<-π2,所以α终边位置在图中的阴影部分,观察可得AT >OM >MP ,故有sin α<cos α<tan α.2.已知点P (sin α-cos α,tan α)在第一象限,且α∈[0,2π],则角α的取值范围是( )A.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫π,5π4B.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4C.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫5π4,3π2D.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫3π4,π解析:选B 因为点P 在第一象限,所以⎩⎪⎨⎪⎧ sin α-cos α>0,tan α>0,即⎩⎨⎧sin α>cos α,tan α>0.由tan α>0可知角α为第一或第三象限角,画出单位圆如图.又sin α>cos α,用正弦线、余弦线得满足条件的角α的终边在如图所示的阴影部分(不包括边界),即角α的取值范围是⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4.3.已知角θ的终边过点P (-4a,3a )(a ≠0).(1)求sin θ+cos θ的值;(2)试判断cos(sin θ)·sin(cos θ)的符号.解:(1)因为角θ的终边过点P (-4a,3a )(a ≠0),所以x =-4a ,y =3a ,r =5|a |,当a >0时,r =5a ,sin θ+cos θ=35-45=-15; 当a <0时,r =-5a ,sin θ+cos θ=-35+45=15. (2)当a >0时,sin θ=35∈⎝⎛⎭⎫0,π2, cos θ=-45∈⎝⎛⎭⎫-π2,0, 则cos(sin θ)·sin(cos θ)=cos 35·sin ⎝⎛⎭⎫-45<0; 当a <0时,sin θ=-35∈⎝⎛⎭⎫-π2,0, cos θ=45∈⎝⎛⎭⎫0,π2, 则cos(sin θ)·sin(cos θ)=cos ⎝⎛⎭⎫-35·sin 45>0. 综上,当a >0时,cos(sin θ)·sin(cos θ)的符号为负;当a <0时,cos(sin θ)·sin(cos θ)的符号为正.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

授课主题:任意角、弧度制、同角三角函数基本关系教学目标1.理解任意角的概念,特别是象限角、区间角、终边相同的角的概念及其表示法.2.理解并掌握弧度制的定义,理解1弧度的定义,能熟练进行弧度与角度的互化.3.理解弧度制表示的弧长、扇形面积公式,能运用弧长、扇形面积公式计算.4.理解并掌握任意角的三角函数的定义及其表示,能熟练求三角函数的值.5.掌握同角三角函数的基本关系式并灵活运用于解题,提高学生分析,解决问题的能力.6.灵活运用同角三角函数基本关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法.教学内容1.象限角和轴线角象限角:当角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合时,角的终边在第几象限,就把这个角叫做第几象限的角.轴线角:当角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合时,如果角的终边落在坐标轴上,就把这个角叫做轴线角.注意:直角坐标系中角的分类是根据角在坐标系内终边的位置而定义的,而初中学习的角的分类是根据角的范围而定义的,通过定义比较我们可以知道锐角是第一象限的角,钝角是第二象限的角,直角,平角,周角都是轴线角.但要注意反之则不然,也就是说第一象限的角不都是锐角.2.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合为{}β|β=α+k·360°,k∈Z.即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.由终边相同的角的定义可知,相等的角,终边一定相同;终边相同的角不一定相等.终边相同的角有无数多个,它们相差360°的整数倍.3.弧度制的概念1)弧度制:我们把等于半径长的圆弧所对的圆心角叫做1弧度的角.2)由弧度定义,一定大小的圆心角α所对应的弧长与半径的比值是确定的,与圆的半径大小无关.由三角函数的定义,以及各象限内的点的坐标的符号,可以确定三角函数在各象限的符号.sin α=yr ,其中r >0,于是sin α的符号与y 的符号相同,即:当α是第一、二象限角时,sin α>0;当α是第三、四象限角时,sin α<0;cos α=xr ,其中r >0,于是cos α的符号与x 的符号相同,即:当α是第一、四象限角时,cos α>0;当α是第二、三象限角时,cos α<0;tan α=yx ,当x 与y 同号时,它们的比值为正,当x 与y 异号时,它们的比值为负,即:当α是第一、三象限角时,tan α>0;当α是第二、四象限角时,tan α<0.根据终边所在位置总结出形象的识记口诀:(1) “sin α=y r :上正下负横为0;cos α=x r :左负右正纵为0;tan α=yx :交叉正负”.(2) “一全正二正弦,三正切四余弦”8.诱导公式一由定义可知,三角函数值是由角的终边的位置确定的,因此,终边相同的角的同一三角函数的值相等,这样就有下面的一组公式(诱导公式一):sin(2k π+α)=sin α,cos(2k π+α)=cos α,tan(2k π+α)=tan α,k ∈Z.注意:公式一中的角α不一定是锐角.也就是说,对于任意角α,公式一都成立. 9.三角函数的定义域三角函数 sin α cos α tan α定义域RR⎩⎨⎧⎭⎬⎫α⎪⎪α≠k π+π2,k ∈Z题型一 象限角的确定例1 已知角的顶点与坐标原点重合,始边落在x 轴的非负半轴上,在0°≤α<360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限角.(1)-150°; (2)730°;(3)-795°; (4)950°18′解析:(1)∵-150°=-360°+210°,∴在0°≤α<360°范围内,终边与-150°相同的角是210°,它是第三象限角; (2)∵730°=2×360°+10°,∴在0°≤α<360°范围内,终边与730°相同的角是10°,它是第一象限角; (3)∵-795°=-3×360°+285°,∴在0°≤α<360°范围内,终边与-795°相同的角是285°,它是第四象限角; (4)∵950°18′=2×360°+230°18′,∴在0°≤α<360°范围内,终边与950°18′相同的角是230°18′,它是第三象限角. 题型二 终边相同的角的表示例2 分别写出终边落在以下直线上的角的集合:(1)终边落在x 轴上; (2)终边落在直线y =x 上.解析:(1)在0°≤α<360°范围内,终边落在x 轴上的角有0°和180°, 与0°角终边相同的角的集合为S 1={α|α=k ·360°,k ∈Z}, 与180°角终边相同的角的集合为S 2={α|α=180°+k ·360°,k ∈Z}.故终边在x 轴上的角的集合为:S =S 1∪S 2={α|α=k ·360°,k ∈Z}∪{α|α=180°+k ·360°,k ∈Z}={α|α=2k ·180°,k ∈Z}∪{α|α=(2k +1)·180°,k ∈Z}={α|α=k ·180°,k ∈Z}.(2)在0≤α<360°范围内,终边落在直线y =x 上的角有45°和225°, 与45°角终边相同的角的集合为:S 3={}α|α=45°+k ·360°,k ∈Z , 与225°角终边相同的角的集合为:S 4={}α|α=225°+k ·360°,k ∈Z , 故终边在直线y =x 上的角的集合为:S =S 3∪S 4={α|α=45°+k ·360°,k ∈Z}∪{α|α=225°+k ·360°,k ∈Z}={α|α=45°+2k ·180°,k ∈Z}∪{α|α=45°+(2k +1)·180°,k ∈Z}={α|α=45°+k ·180°,k ∈Z}. 巩 固 与-457°角终边相同的角的集合是( )A.{}α|α=k ·360°+457°,k ∈Z B.{}α|α=k ·360°+97°,k ∈Z C.{}α|α=k ·360°+263°,k ∈Z D.{}α|α=k ·360°-263°,k ∈Z 解析:∵-457°=-2×360°+263°, ∴-457°与263°是终边相同的角,选C. 答案:C巩 固 分别写出终边落在以下直线上的角的集合:(1)终边落在y 轴上; (2)终边落在直线y =-x 上; (3)终边落在坐标轴上.解析:(1)在0°≤α<360°范围内,终边落在y 轴上的角有90°和270°,与90°角终边相同的角的集合为:S 1={}α|α=90°+k ·360°,k ∈Z , 与270°角终边相同的角的集合为:S 2={α|α={270°+k ·360°,k ∈Z},故终边在y 轴上的角的集合为:S =S 1∪S 2={α|α=90°+k ·360°,k ∈Z}∪{α|α=270°+k ·360°,k ∈Z} ={α|α=90°+2k ·180°,k ∈Z}∪{α|α=90°+(2k +1)·180°,k ∈Z}={}α|α=90°+k ·180°,k ∈Z . (2)在0°≤α<360°范围内,终边落在直线y =-x 上的角有135°和315°, 与135°角终边相同的角的集合为:S 3={}α|α=135°+k ·360°,k ∈Z , 与315°角终边相同的角的集合为:S 4={α|α=315°+k ·360°,k ∈Z},故终边在直线y =-x 上的角的集合为:S =S 3∪S 4={α|α=135°+k ·360°,k ∈Z}∪{α|α=315°+k ·360°,k ∈Z} ={α|α=135°+2k ·180°,k ∈Z}∪{α|α=135°+(2k +1)·180°,k ∈Z}={α|α=135°+k ·180°,k ∈Z}. (3)在0°≤α<360°范围内,终边落在坐标轴上的角有0°,90°,180°和270°. 与0°角终边相同的角的集合为S 5={}α|α=k ·360°,k ∈Z ={}α|α=4k ·90°,k ∈Z , 与90°角终边相同的角的集合为S 6={α|α=90°+k ·360°,k ∈Z}={α|α=(4k +1)·90°,k ∈Z}, 与180°角终边相同的角的集合为S 7={α|α=180°+k ·360°,k ∈Z}={α|α=(4k +2)·90°,k ∈Z}, 与270°角终边相同的角的集合为S 8={α|α=270°+k ·360°,k ∈Z}={α|α=(4k +3)·90°,k ∈Z}, 故终边在坐标轴上的角的集合为:S =S 5∪S 6∪S 7∪S 8={}α|α=k ·90°,k ∈Z . 题型三 区间角的表示例3 已知集合A ={α|k ·180°+30°<α<k ·180°+90°,k ∈Z},集合B ={β|k ·360°-45°<β<k ·360°+45°,k ∈Z},求A ∩B .解析:∵A ={α|k ·180°+30°<α<k ·180°+90°,k ∈Z},当k =2n ,n ∈Z 时,A ={α|n ·360°+30°<α<n ·360°+90°,k ∈Z}, 当k =2n +1,n ∈Z 时,A ={α|n ·360°+210°<α<n ·360°+270°,k ∈Z},∴角α为第一或第三象限角,而β角为第一或第四象限角或终边在x 轴正半轴上, ∴A ∩B ={α|k ·360°+30°<α<k ·360°+45°,k ∈Z}.巩 固 (1)分别写出第一、三象限角的集合;(2)写出第一、三象限角的集合.解析:(1)设角α的顶点与坐标原点重合,始边落在x 轴的非负半轴上,终边落在第一象限内,则角α的集合为 A ={α|k ·360°+0°<α<k ·360°+90°,k ∈Z};同理,设角β的顶点与坐标原点重合,始边落在x 轴的非负半轴上,终边落在第三象限内,则角β的集合为 B ={β|k ·360°+180°<β<k ·360°+270°,k ∈Z}. (2)由(1)知,终边落在第一或第三象限角的集合为A ∪B ={α|2n ·180°<α<2n ·180°+90°}∪{B |(2n +1)·180°<β<(2n +1)·180°+90°,n ∈Z} ={a |k ·180°<α<k ·180°+90°,k ∈Z}. 题型四 等分角的表示例4 已知角α是第二象限角,试问:α2是第几象限角?解析:方法一 ∵α是第二象限角,∴k ·360°+90°<α<k ·360°+180°,k ∈Z , ∴k ·180°+45°<α2<k ·180°+90°,k ∈Z ,当k =2n ,n ∈Z 时,n ·360°+45°<α2<n ·360°+90°,n ∈Z ,此时,α2是第一象限角;当k =2n +1,n ∈Z 时,n ·360°+225°<α2<n ·360°+270°,n ∈Z ,此时,α2是第三象限角.∴α2是第一或第三象限角. 方法二 如图所示,先将各象限分成二等分,再从x 轴正向的上方依次将各区域标上Ⅰ、Ⅱ、Ⅲ、Ⅳ,则标有Ⅱ的区域即为α2的终边所在的区域.故α2是第一、三象限角.巩 固 已知角α是第二象限角,试问:2α是第几象限角?解析:∵α是第二象限角,∴k ·360°+90°<α<k ·360°+180°,k ∈Z , ∴2k ·360°+180°<2α<2k ·360°+360°,k ∈Z ,∴2α是第三或第四象限角或终边在y 轴的非正半轴上. 题型五 弧度制的概念 例5 下列说法正确的是( )A .1弧度是1度的圆心角所对的弧B .1弧度是长度为半径的弧C .1弧度是1度的弧与1度的角之和D .1弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位解析:本题考查弧度制下,角的度量单位1弧度的概念.根据1弧度的定义,我们把长度等半径长的弧所对的圆心角叫做1弧度的角,即可判断D 正确.答案:D巩 固 下列说法不正确的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1度的角是圆周的1360所对的圆心角,1弧度的角是圆周的12π所对的圆心角C .根据弧度的定义知,180度一定等于π radD .不论是用角度制还是用弧度制度量角,它们都与圆的半径的长短有关解析: 根据角度与弧度的定义可知,无论是角度制还是弧度制,角的大小都与半径的长短无关,所以D 错误,故选D.答案:D题型六 弧度制与角度制的换算例6 将下列各角化成2k π+α(k ∈Z,0≤α<2π)的形式,并指出是第几象限角?(1)1 140°; (2)-316π; (3)196π; (4)-315°.解析:(1)1 140°=193π=6π+π3,193π与π3的终边相同,故193π是第一象限角;(2)-316π=-6π+5π6,-316π与5π6的终边相同,是第二象限角; (3)196π=2π+7π6,是第三象限角; (4)-315°=-360°+45°=-2π+π4,是第一象限角.巩 固 (1)把-1 480°角化成2k π+α(k ∈Z,0≤α<2π)的形式;(2)若β∈[-4π,0],且β与-1 480°角的终边相同,求β. 解析: (1)-1 480°=-74π9=-10π+16π9=2×(-5)π+16π9;(2)β与-1 480°角的终边相同, ∴β=2k π+α=2k π+16π9,又∵β∈[-4π,0],∴β1=-2π+16π9=-2π9,β2=-4π+16π9=-20π9.巩 固 (1)把-1 480°角化成2k π+α(k ∈Z,0≤α<2π)的形式;(2)若β∈[-4π,0],且β与-1 480°角的终边相同,求β.解析: (1)-1 480°=-74π9=-10π+16π9=2×(-5)π+16π9;(2)β与-1 480°角的终边相同, ∴β=2k π+α=2k π+16π9,又∵β∈[-4π,0],∴β1=-2π+16π9=-2π9,β2=-4π+16π9=-20π9.题型七 用弧度制表示角例7 用弧度制表示顶点在原点,始边重合x 轴非负半轴,终边落在下图中阴影部分内的角的集合(包括边界).解析:(1)图(1)中的阴影部分表示为{α|45°+k ·180°≤α≤90°+k ·180°,k ∈Z}, 化为弧度制为⎩⎨⎧α⎪⎪⎭⎬⎫π4+k π≤α≤π2+k π,k ∈Z ; (2)图(2)中的阴影部分表示为{α|k ·90°≤α≤45°+k ·90°,k ∈Z}, 化为弧度制为⎩⎨⎧α⎪⎪⎭⎬⎫k π2≤α≤π4+k π2,k ∈Z ; (3)图(3)中的阴影部分表示为{α|-120°+k ·360°≤α≤150°+k ·360°,k ∈Z}, 化为弧度制为⎩⎨⎧α⎪⎪⎭⎬⎫-2π3+2k π≤α≤5π6+2k π,k ∈Z . 题型八 弧长公式与扇形面积公式的应用例8 (1)已知扇形周长为10,面积为4,求扇形圆心角的弧度数;(2)已知一扇形的圆心角是72°,半径为20,求扇形的面积;(3)已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少? 解析:由l =|α|·R 及S =12l ·R 单独应用或联立,可做到知二求一.(1)设扇形圆心角的弧度数为θ(0<θ<2π),弧长为l ,半径为r ,则 ⎩⎪⎨⎪⎧l +2r =10,12l ·r =4,解得⎩⎪⎨⎪⎧ r =1,l =8或⎩⎪⎨⎪⎧r =4,l =2, 代入弧长公式l =θ·r ⇒θ=lr,所以有θ=8 rad>2π(rad)(舍去)或θ=12(rad).(2)设扇形弧长为l ,因为圆心角72°=72×π180=2π5 rad ,所以扇形弧长l =|α|·r =2π5×20=8π, 于是,扇形的面积S =12l ·r =12×8π×20=80π.(3)设扇形圆心角的弧度数为θ(0<θ<2π),弧长为l ,半径为r ,面积为S , 则l +2r =4,所以l =4-2r ⎝⎛⎭⎫21+π<r <2,所以S =12l ·r =12×(4-2r )×r =-r 2+2r =-(r -1)2+1,所以当r =1时,S 最大,且S max =1, 此是时,θ=l r =4-2×11=2(rad).巩 固 一扇形周长为20 cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?并求此扇形的最大面积?解析:设扇形的圆心角为α,半径为r ,由已知条件得,扇形的弧长l =α·r , ∴2r +αr =20,α=20r -2,S =12·α·r 2=10r -r 2=-(r -5)2+25,当r =5,α=2时,S max =25(cm)2. 题型九 利用三角函数的定义求三角函数值例9 已知角α的终边过点P (-3,2),求sin α,cos α,tan α的值.分析:本题考查角α的三角函数值,已知x =-3,y =2,先求出r ,然后根据三角函数的定义求解. 解析:∵x =-3,y =2,∴r =-32+22=13,∴sin α=y r =213=21313,cos α=x r =-313=-31313,tan α=y x =2-3=-23.点评:(1)解已知角α的终边在直线上的问题时,常用的解题方法有两种;①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.②注意到角的终边为射线,所以应分两种情况处理,取射线上任意一点坐标(a ,b ),则对应角的正弦值sin α=b a 2+b 2,余弦值cos α=a a 2+b 2. (2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论 巩 固 在平面直角坐标系中,若角α终边经过点P (-3,4),则cos α的值为 ( )A .-45B .-35 C.35 D.45解析: ∵x =-3,y =4,∴r =-32+42=5,∴cos α=x r =-35=-35,故选B.答案:B巩 固 已知角α的终边落在直线y =2x 上,求sin α,cos α,tan α的值.分析: 因为角α的终边是一条射线,故应分两种情况进行讨论.可在直线上取一特殊点转化成例1类似的问题,进而求解.解析: 当角α的终边在第一象限时,角α的终边上取点P (1,2), ∵x =1,y =2,∴r =12+22=5,∴sin α=y r =25=255,cos α=x r =15=55,tan α=y x =21=2.当角α的终边在第三象限时,角α的终边上取点Q (-1,-2), ∵x =-1,y =-2,∴r =-12+-22=5,∴sin α=y r =-25=-255,cos α=x r =-15=-55,tan α=y x =-2-1=2.题型十 应用诱导公式(一)进行化简、求值 例10 求下列各三角函数的值:(1)cos(-1 050°); (2)sin ⎝⎛⎭⎫-314π.解析:(1)∵-1 050°=-3×360°+30°, ∴-1 050°角与30°角的终边相同,∴cos(-1 050°)=cos(-3×360°+30°)=cos 30°=32; (2)∵-314π=-4×2π+π4,∴-314π角与π4角的终边相同,∴sin ⎝⎛⎭⎫-314π=sin ⎝⎛⎭⎫-4×2π+π4=sin π4=22. 巩 固 求值:cos 94π+tan ⎝⎛⎭⎫-116π=________. 解析:∵cos 94π=cos ⎝⎛⎭⎫2π+π4=22,tan ⎝⎛⎭⎫-116π=tan ⎝⎛⎭⎫-2π+π6=tan π6=33, ∴cos 94π+tan ⎝⎛⎭⎫-116π=22+33. 答案:22+33题型十一 判断三角函数值的符号问题例11 (1)若角α分别是第二、三、四象限角,则点P (sin α,cos α)分别落在第________、________和________象限.(2)依据三角函数线,作出如下四个判断:①sin π6=sin 7π6;②cos π4=cos ⎝⎛⎭⎫-π4;③tan π8>tan 3π8;④sin 3π5>sin 4π5. 其中判断正确的有( )A .1个B .2个C .3个D .4个解析:(1)当角α是第二象限角时,sin α>0,cos α<0,则点P (sin α,cos α)在第四象限; 当角α是第三象限角时,sin α<0,cos α<0,则点P (sin α,cos α)在第三象限; 当角α是第四象限角时,sin α<0,cos α>0,则点P (sin α,cos α)在第二象限. (2)在平面直角坐标系中作单位圆,依次作相关角的三角函数线,由图象可知 sin π6≠sin 7π6,cos π4=cos ⎝⎛⎭⎫-π4,tan π8<tan 3π8,sin 3π5>sin 4π5,∴序号②④判断正确,答案选B.答案:(1)四 三 二 (2) B巩 固 判断下列各三角函数值的符号:sin 3,cos 4,tan 5.解析: ∵π2<3<π,π<4<32π,3π2<5<2π, ∴sin 3>0,cos 4<0,tan 5<0.A 组1.下列说法正确的是( )A .1弧度角的大小与圆的半径无关B .大圆中1弧度角比小圆中1弧度角大C .圆心角为1弧度的扇形的弧长都相等D .用弧度表示的角都是正角解析: ∵1 rad =180°π=57.3°=57°18′,其大小与圆的半径无关. 答案:A2.某扇形的面积为1 cm 2,周长为4 cm ,那么该扇形圆心角的弧度数为( )A .2°B .2C .4°D .4 解析: ∵4=|α|·r +2r ⇒r =42+|α|,且1=12|α|·r 2, ∴1=12|α|·⎝⎛⎭⎫4|α|+22,解得|α|=2,故选B. 答案: B3.一条弦长等于圆的半径,则这条弦所对的圆心角的弧度数是( )A.π3B.π6C .1D .π 答案:A4.扇形弧长为π,面积为π,圆的半径是 .解析:弧长l =π.∵S 扇=12lr =π, ∴12×πr =π,即r =2,∴圆的半径为2. 答案:2B 组1.将-300°化为弧度等于( )A -4π3B .-5π3C .-7π4D .-7π6答案:B2.将-1 485°化成2k π+α,(0≤α<2π,k ∈Z)的形式是( )A .-8π+π4B .-8π-7π4C .-10π-π4D .-10π+7π4答案:D3.已知半径为1的扇形面积为38π,则扇形的圆心角为( ) A.316π B.38π C.34π D.32π 答案:C4.终边在x 轴正半轴上的角的集合为________,终边在x 轴负半轴上的角的集合为________,终边在x 轴上的角的集合为________,终边在y 轴正半轴上的角的集合为________,终边在y 轴负半轴上的角的集合为________,终边在y 轴上的角的集合为________,终边在坐标轴上的角的集合为________.答案:{}α|α=2k π,k ∈Z {}α|α=π+2k π,k ∈Z {}α|α=k π,k ∈Z ⎩⎨⎧⎭⎬⎫α|α=π2+2k π,k ∈Z ⎩⎨⎧⎭⎬⎫α|α=-π2+2k π,k ∈Z ⎩⎨⎧⎭⎬⎫α|α=π2+k π,k ∈Z ⎩⎨⎧⎭⎬⎫α|α=k π2,k ∈ZA 组1.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90°-αB .90°+αC .360°-αD .180°+α解析: ∵α是第一象限角,∴k ·360°+0°<α<k ·360°+90°,k ∈Z ,∴k ·360°-90°<-α<k ·360°+0°,k ∈Z ,∴k ·360°+270°<360°-α<k ·360°+360°,k ∈Z ,∴360°-α是第四象限角,故选C.答案:C7.角α=-5π2,则sin α,tan α的值分别为( ) A .-1,不存在 B .1,不存在C .-1,0D .1,0解析:由三角函数的定义及终边相同角的概念知A 正确,故选A.答案:A8.有下列四个命题:①终边相同的角的同名三角函数的值相等;②终边不同的角的同名三角函数的值不相等;③若sin α>0,则α是第一或第二象限角;④若α是第二象限角,且P (x ,y )是其终边上一点,则cos α=-xx 2+y 2 . 其中,不正确命题的个数是( )A .1个B .2个C .3个D .4个解析: ①正确;②不正确;③不正确,例:α=π2也成立;④不正确.故选C. 答案:C9.若sin α<0且tan α>0,则α( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角解析:∵sin α<0,∴α在第三、四象限.又∵tan α>0,∴α在第一、三象限.故α在第三象限.答案:CB 组1.角α的终边落在y =-x (x >0)上,则sin α的值等于( )A .±12 B.22 C .±22 D .-22答案:D2.sin 330°等于( )A .-32B .-12 C.12 D.32 答案:B3.若角θ的终边经过点⎝⎛⎭⎫-32,12,则tan θ的值是( ) A .-33 B .-32 C. 3 D.12答案:A4.判断正误.(1)锐角是第一象限角( )答案:√ (2)第一象限角一定是锐角( ) 答案:×(3)直角是终边在y 轴非负半轴上的角( ) 答案:√(4)终边在y 轴非负半轴上的角是直角( ) 答案:×(5)钝角是第二象限角( ) 答案:√(6)第二象限角是钝角( )答案:× 5.设M ={小于90°的角},N ={第一象限的角},则M ∩N =( )A .{锐角}B .{小于90°的角}C .{第一象限的角}D .以上都不对 答案:D6.与-1 500°终边相同的角可以表示为( )A .k · 360°+1 500°,k ∈ZB .k · 360°+60°,k ∈ZC .k · 360°-60°,k ∈ZD .k · 360°+100°,k ∈Z答案:C7.如图所示,终边落在阴影部分(含边界)的角的集合是( )A .{α|-45°≤α≤120°}B .{α|120°≤α≤315°}C .{α|k · 360°-45°≤α≤k · 360°+120°,k ∈Z}D .{α|k · 360°+120°≤α≤k · 360°+315°,k ∈Z}答案:C8.若α=k · 180°+45°,k ∈Z ,则α是第______象限角( )A .一或三B .一或二C .二或四D .三或四答案:AC 组1.若θ是第三象限角,且cos θ2>0,则θ2是第____角( ) A .一象限 B .二象限C .三象限D .四象限解析:∵θ是第三象限角,∴2k π+π<θ<2k π+32π(k ∈Z), ∴k π+π2<θ2<k π+34π(k ∈Z),即θ2是第二或第四象限角,又由cos θ2>0,∴θ2只能是第四象限角,故选D. 答案:D2.已知α为第三象限角,则α2所在的象限是( ) A .第一或第二象限 B .第二或第三象限C .第一或第三象限D .第二或第四象限解析:∵α是第三象限角,∴k ·360°+180°<α<k ·360°+270°,k ∈Z ,∴k ·180°+90°<α2<k ·180°+135°,k ∈Z , 当k =2n ,n ∈Z 时,n ·360°+90°<α2<n ·360°+135°,n ∈Z ,此时,α2是第二象限角; 当k =2n +1,n ∈Z 时,n ·360°+270°<α2<n ·360°+315°,n ∈Z ,此时,α2是第四象限角. ∴α2是第二或第四象限角.故选D. 答案:D3.与-1 000°终边相同的最小正角是________.解析:∵-1 000°=-3×360°+80°,∴与-1 000°终边相同的最小正角是80°.答案:80°。

相关文档
最新文档