Lab3 - 3 phase induction motor_PE3
【WO2019215400A1】确定在退化模式中的三PHASEELECTRIC电机的估计电流的方法【

E((51)Classification internationale des brevets:tual Property,31100TOULOUSE(FR).CONTINENTALH02P6/28(2016.01)B62D5/04(2006.01)AUTOMOTIVE GMBH[DE/DE];Vahrenwalderstrasse, H02P6/182(2016.01)9,30165Hanovre(DE).(21)Numéro de la demande internationale:(72)Inventeurs:PARETTE,Michel;CONTINENTALPCT/FR2019/050891AUTOMOTIVE FRANCE,Service Intellectual Proper¬ty,1,Avenue Paul Ourliac,31100TOULOUSE(FR).(22)Date de dépôt international:JAUMOUILLÉ,Rodolphe;CONTINENTALAUTO¬16avril2019(16.04.2019)MOTIVE FRANCE,Service Intellectual Property,1,Ave¬(25)Langue de dépôt:français nue Paul Ourliac,31100TOULOUSE(FR).(26)Langue de publication:français(74)Mandataire:CONTINENTAL AUTOMOTIVEFRANCE;1,Avenue Paul Ourliac,Intellectual Property, (30)Données relativesàla priorité:31100TOULOUSE(FR).185392907mai2018(07.05.2018)FR(81)États désignés(sauf indication contraire,pour tout titre de (71)Déposants:CONTINENTAL AUTOMOTIVE protection nationale disponible):AE,AG,AL,AM,AO,FRANCE[FR/FR];1,Avenue Paul Ourliac,Intellec-AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,(54)Title:METHOD FOR DETERMINING AN ESTIMATED CURRENT OF A THREE-PHASE ELECTRIC MOTOR IN DE-GRADED MODE(54)Titre:PROCÉDÉDE DÉTERMINATION D'UN COURANT ESTIMÉD'UN MOTEURÉLECTRIQUE TRIPHASÉEN MODE DÉGRADÉFIG.1(57)Abstract:The présent invention relates to a method for determining an estimated current(lestx,lesty)circulating in a winding of a motor(M)which is then controlled over two active phases.The method involves measuring a measured voltage(Ux,Uy)for each of the two active phases at the input of the winding,correcting the two measured voltages(Ux,Uy)in order to produce a respective corrected voltage(Umesx,Umesy),determining a résistance of the motor(Rmot)compensated according to the température and determining at least one estimated current(lestx,lesty)circulating in each of the two active phases of the winding,respectively,as a function of the résistance of the motor(Rmot)compensated as a function of the température and the measured voltages(Umesx,Umesy)of the two active phases.[Suite sur la page suivante]W O2019/215400A l||||||||||||||||||||||CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,Π,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN,KP,KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VC,VN,ZA,ZM,ZW.(84)États désignés(sauf indication contraire,pour tout titre deprotection régionale disponible):ARIPO(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),eurasien(AM,A Z,BY,KG,KZ,RU,TJ,TM),européen(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OAPI(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG).Publiée:—avec rapport de recherche internationale(Art.21(3))(57)Abrégé:La présente invention a pour objet un procédéde détermination d'un courant estimé(Iestx,Iesty)circulant dans un bobinage d'un moteur(M)alors commandésur deux phases actives.Il est procédéàune mesure d'une tension mesurée(Ux,Uy)pour chacune des deux phases activesàl'entrée du bobinage,une#correction des deux tensions mesurées(Ux,Uy)pour produire une tension corrigée respective(Umesx,Umesy),une#détermination d'une résistance du moteur(Rmot)compensée en fonction de la température et une détermination d'au moins un courant estimé(Iestx,Iesty)circulant dans respectivement chacune des deux phases actives du bobinage en fonction de la résistance du moteur(Rmot)compensée en fonction de la température et des tensions mesurées(Umesx, Umesy)des deux phases actives.。
三相异步电机控制的一种策略

©Texas Instruments Inc., March 2003
2
System Overview 1 System Overview This document describes the “C” real control framework to demonstrate the ACI3_4 demo implemented using Code Composer Studio (CCS) version 2.2. The “C” framework is designed to run on TMS320C28x based controller on CCS V2.2. The framework uses the following modules viz., 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. EN_DRIVE PWMDAC/PWMGEN CAPTURE ACI_FE ACI_SE CLARKE PID_REG3 PARK/IPARK SPEED_PRD SVGEN_DQ VOLT_CAL ACI_FE_CONST ACI_SE_CONST
1 2
Excluding the Stack Size Excluding “IQmath” Look-up Tables
©Texas Instruments Inc., March 2003
3
System Overview
The overall system for implementation of the 3 -ph induction motor control can be depicted in figure 1. The induction motor is driven by the conventional voltage-source inverter. The TMS320x2812 eZdsp is generating six pulse width modulation (PWM) signals by means of space vector PWM technique for six power switching devices in the inverter. Two input currents of the induction motor (ia and ib ) are measured from the inverter and they are sent to the TMS320x2812 eZdsp via two analog-to-digital converters (ADCs). In addition, the DC-bus voltage in the inverter is measured and sent to the TMS320x2812 eZdsp via an ADC as well. This DC-bus voltage is necessary in order to calculate three phase voltages of induction motor when the switching functions are known.
SensorlessFieldOrientedControlof3PhaseInductionMotorsUsing F2833x

ApplicationReportSPRABQ0–October2013
SensorlessFieldOrientedControlof3-PhaseInductionMotorsUsingF2833x
ManishBhardwajABSTRACTThisapplicationreportpresentsasolutiontocontrolanACinductionmotorusingfloatingpointTMS320F2833xmicrocontrollers.TMS320F2833xdevicesarepartofthefamilyofC2000™microcontrollerswhichenablecost-effectivedesignofintelligentcontrollersforthreephasemotorsbyreducingthesystemcomponentsandincreaseefficiency.WiththesedevicesitispossibletorealizefarmoreprecisedigitalvectorcontrolalgorithmslikeFieldOrientatedControl(FOC).Thisalgorithm’simplementationisdiscussedinthisdocumentusingTI’sDigitalMotorControl(DMC)Library.TheFOCalgorithmmaintainsefficiencyinawiderangeofspeedsandtakesintoconsiderationtorquechangeswithtransientphasesbyprocessingadynamicmodelofthemotor.Amongthesolutionsproposedarewaystoeliminatethephasecurrentsensorsanduseanobserverforspeedsensorlesscontrol.TheDMCLibraryusesTI’sIQmathlibrary,whichsupportsbothfixedandfloatingpointmaths.Thismakesmigratingfromfloatingtofixedpointdeviceseasy.AconfigurationforTMS320F2803x,whichisafixedpointmicrocontroller,isavailableintheprojecttohighlightthis.
Flux estimator of the 3-ph induction motor

ACI_FE Flux estimator of the 3-ph induction motorDescriptionThis software module implements the flux estimator with the rotor flux angle for the 3-phinduction motor based upon the integral of back emf’s (voltage model) approach. Toreduce the errors due to pure integrator and stator resistance measurement, thecompensated voltages produced by PI compensators are introduced. Therefore, this fluxestimator can be operating over a wide range of speed, even at very low speed.Module VariablesFormatRange Name DescriptionInputsu_ds_fe Stationary d-axis stator voltage (pu) Q15 -1 -> 0.999u_qs_fe Stationary q-axis stator voltage (pu) Q15 -1 -> 0.999i_ds_fe Stationary d-axis stator current (pu) Q15 -1 -> 0.999i_qs_fe Stationary q-axis stator current (pu) Q15 -1 -> 0.999Outputspsi_dr_fe Stationary d-axis rotor flux linkage (pu) Q15 -1 -> 0.999psi_qr_fe Stationary q-axis rotor flux linkage (pu)Q15 -1 -> 0.999theta_r_fe Rotor flux linkage angle (pu) Q15 -1 -> 0.999Init / Config These constants are computed basing on themachine parameters (Rs, Ls, Lr, Lm, Tr), basequantities (Ib, Vb), and sampling period (T).K1 K1 = Tr/(Tr+T) Q15 -1 -> 0.999K2 K2 = T/(Tr+T)Q15 -1 -> 0.999K3 K3 = Lm/Lr Q15 -1 -> 0.999K4 K4 = (Ls*Lr-Lm*Lm)/(Lr*Lm) Q15 -1 -> 0.999K5 K5 = Rs*Ib/Vb Q15 -1 -> 0.999K6 K6 = T*Vb/(Lm*Ib) Q15 -1 -> 0.999K7 K7 = Lr/Lm Q14 -2 -> 1.999K8 K8 = (Ls*Lr-Lm*Lm)/(Lm*Lm) Q15 -1 -> 0.999Module StatisticsAssembly Filename:aci_fe.asmASM Routines: ACI_FE, ACI_FE_INITParameter calculation excel file:aci_fe_init.xlsC-callable ASM filename(s): aci_fe.asm, aci_fe.hType:: Target Independent, Application DependentTarget Device/s:x24x / x24xxItem Asm only C callable ASM Comments Code size 286 words 306 words1Data RAM 46 words 0 words1xDAIS module No NoxDAIS component No NoMultiple Instances No Yes1 Each pre-initialized ACIFE structure instance consumes 37 words in the .cinit section and 35 words in data memory.Module Usage / Calling ConventionASM onlyRoutine names and calling limitation:There are two routines involved:ACI_FE, the main routine; andACI_FE_INIT, the initialization routine.The initialization routine must be called during program initialization. The ACI_FE routine must be called in the control loop.Variable Declaration:In the system file, including the following statements before calling the subroutines:FunctioncallsACI_FE_INIT ;ACI_FE,.ref.ref psi_dr_fe, psi_qr_fe, theta_r_fe ; OutputsInputsi_qs_fe ;i_ds_fe,.ref;Inputsu_ds_fe,.refu_qs_feMemory map:All variables are mapped to an uninitialized named section, fe_aci, which can be allocated to any one data page.Example code:During system initialization specify the ACI_FE parameters as follows:LDP #K1_feSPLK #K1_fe_,K1_fe ; K1 = Tr/(Tr+T) (Q15)SPLK #K2_fe_,K2_fe ; K2 = T(Tr+T) (Q15)SPLK #K3_fe_,K3_fe ; K3 = Lm/Lr (Q15)SPLK #K4_fe_,K4_fe ; K4 = (Ls*Lr-Lm*Lm)/(Lr*Lm) (Q15)SPLK #K5_fe_,K5_fe ; K5 = Rs*Ib/Vb (Q15)SPLK #K6_fe_,K6_fe ; K6 = T*Vb/(Lm*Ib) (Q15)SPLK #K7_fe_,K7_fe ; K7 = Lr/Lm (Q14)SPLK #K8_fe_,K8_fe ; K8 = (Ls*Lr-Lm*Lm)/(Lm*Lm) (Q15)Then in the interrupt service routine call the module and read results as follows:LDP #u_ds_fe ; Set DP for module inputsBLDD #input_var1,u_ds_fe ; Pass input variables to module inputsBLDD #input_var2,u_qs_fe ; Pass input variables to module inputsBLDD #input_var3,i_ds_fe ; Pass input variables to module inputsBLDD #input_var4,i_qs_fe ; Pass input variables to module inputsCALL ACI_FEmoduleoutputforDPSetLDP #output_var1 ;BLDD #psi_dr_fe,output_var1 ; Pass output to other variablesBLDD #psi_qr_fe,output_var2 ; Pass output to other variablesBLDD #theta_r_fe,output_var3 ; Pass output to other variablesC/C-callable ASM onlyObject DefinitionThe structure of the ACIFE object is defined in the header file, aci_fe.h, as seen in the following:typedef struct { int theta_r_fe; /* Output: Rotor flux angle (Q15) */int i_qs_fe; /* Input: Stationary q-axis stator current (Q15) */int i_ds_fe; /* Input: Stationary d-axis stator current (Q15) */int K1_fe; /* Parameter: Constant using in current model (Q15) */int flx_dr_e /* Variable: Rotating d-axis rotor flux (current model) (Q15) */int K2_fe; /* Parameter: Constant using in current model (Q15) */int flx_qr_s; /* Variable: Stationary q-axis rotor flux (current model) (Q15) */int flx_dr_s; /* Variable: Stationary d-axis rotor flux (current model) (Q15) */int K3_fe; /* Parameter: Constant using in stator flux computation (Q15) */int K4_fe; /* Parameter: Constant using in stator flux computation (Q15) */int flx_ds_s; /* Variable: Stationary d-axis stator flux (current model) (Q15) */int flx_qs_s; /* Variable: Stationary q-axis stator flux (current model) (Q15) */ int psi_ds_fe; /* Variable:Stationary d-axis stator flux (voltage model) (Q31) */ int Kp_fe; /* Parameter: PI proportionnal gain (Q15) */int ui_lo_ds; /* Variable: Stationary d-axis integral term (Q30) */int ui_hi_ds; /* Variable: Stationary d-axis integral term (Q30) */int ucomp_ds; /* Variable: Stationary d-axis compensated voltage (Q15) */int Ki_fe; /* Parameter: PI integral gain (Q31-16bit) */int psi_qs_fe; /* Variable: Stationary q-axis stator flux (voltage model) (Q31) */int ui_lo_qs; /* Variable: Stationary q-axis integral term (Q30) */int ui_hi_qs; /* Variable: Stationary q-axis integral term (Q30) */int ucomp_qs; /* Variable: Stationary q-axis compensated voltage (Q15) */int emf_ds /* Variable: Stationary d-axis back emf (Q15) */int u_ds_fe; /* Input: Stationary d-axis stator voltage (Q15) */int K5_fe; /* Parameter: Constant using in back emf computation (Q15) */int K6_fe; /* Parameter: Constant using in back emf computation (Q15) */int psi_ds_lo; /* Variable: Stationary d-axis stator flux (voltage model) (Q31) */int emf_qs /* Variable: Stationary q-axis back emf (Q15) */int u_qs_fe; /* Input: Stationary q-axis stator voltage (Q15) */int psi_qs_lo; /* Variable: Stationary q-axis stator flux (voltage model) (Q31) */int K8_fe; /* Parameter: Constant using in rotor flux computation (Q15) */int K7_fe; /* Parameter: Constant using in rotor flux computation (Q14) */int psi_dr_fe; /* Output: Stationary d-axis estimated rotor flux (Q15) */int psi_qr_fe; /* Output: Stationary q-axis estimated rotor flux (Q15) */int (*calc)(); /* Pointer to calculation function */} ACIFE;Special Constants and Data typesACIFE The module definition itself is created as a data type. Thismakes it convenient to instance a ACIFE object. To createmultiple instances of the module simply declare variables oftype ACIFE.ACIFE_DEFAULTS Initializer for the ACIFE object. This provides the initial valuesto the terminal variables, internal variables, as well as methodpointers. This is initialized in the header file,aci_fe.h. Methodsvoid aci_fe_calc(ACIFE *);This default definition of the object implements just one method – the runtime compute function for flux and its angle estimator. This is implemented by means of a function pointer, and the default initializer sets this to aci_fe_calc function. The argument to this function is the address of the ACIFE object. Again, this statement is written in the header file, aci_fe.h.Module UsageInstantiationThe following example instances two such objects:ACIFE fe1, fe2;InitializationTo instance a pre-initialized object:ACIFE fe1 = ACIFE_DEFAULTS;ACIFE fe2 = ACIFE_DEFAULTS;Invoking the compute functionfe1.calc(&fe1);fe2.calc(&fe2);ExampleLets instance two ACIFE objects, otherwise identical, and compute two flux estimators. The following example is the c source code for the system file.ACIFE fe1= ACIFE_DEFAULTS; /* instance the first object */ACIFE fe2= ACIFE_DEFAULTS; /* instance the second object */main(){fe1.u_ds_fe= voltage_dq1.d; /* Pass inputs to fe1 */fe1.u_qs_fe= voltage_dq1.q; /* Pass inputs to fe1 */fe1.i_ds_fe=current_dq1.d; /* Pass inputs to fe1 */fe1.i_qs_fe=current_dq1.q; /* Pass inputs to fe1 */fe2.u_ds_fe= voltage_dq2.d; /* Pass inputs to fe2 */fe2.u_qs_fe= voltage_dq2.q; /* Pass inputs to fe2 */fe2.i_ds_fe=current_dq2.d; /* Pass inputs to fe2 */fe2.i_qs_fe=current_dq2.q; /* Pass inputs to fe2 */}void interrupt periodic_interrupt_isr(){fe1for*/function fe1.calc(&fe1); /*Callcomputefe2*/forcomputefe2.calc(&fe2); /*Callfunctionflux1.d = fe1.psi_dr_fe; /* Access the outputs of fe1 */flux1.q = fe1.psi_qr_fe; /* Access the outputs of fe1 */angle1 = fe1.theta_r_fe; /* Access the outputs of fe1 */flux2.d = fe2.psi_dr_fe; /* Access the outputs of fe2 */flux2.q = fe2.psi_qr_fe; /* Access the outputs of fe2 */angle2 = fe2.theta_r_fe; /* Access the outputs of fe2 */}Technical Background:The overall of the flux estimator [1] can be shown in Figure 1. The rotor flux linkages in the stationary reference frame are mainly computed by means of the integral of back emf’s in the voltage model. By introducing the compensated voltages generated by PI compensators, the errors associated with pure integrator and stator resistance measurement can be taken care. The equations derived for this flux estimator are summarized as follows:Continuous time:Firstly, the rotor flux linkage dynamics in synchronously rotating reference frame ()r e ψω=ω=ω can be shown as below:()i ,e qr r e i ,e dr re ds r m i ,e dr1i L dt d ψω−ω+ψτ−τ=ψ (1)()i,e dr r e i ,e qr re qs r m i,e qr1i L dt d ψω−ω−ψτ−τ=ψ (2)where L m is the magnetizing inductance (H), rr r R L=τis the rotor time constant (sec), andωr is the electrically angular velocity of rotor (rad/sec).In the current model, total rotor flux linkage is aligned into the d-axis component, which is modeled by the stator currents, thusi ,e dr i ,e r ψ=ψ and 0i,e qr =ψ(3) Substituting 0i,e qr =ψ into (1)-(2), yields the oriented rotor flux dynamics are i,e dr re ds r m i,e dr 1i L dt d ψτ−τ=ψ (4)0i,e qr =ψ(5) Note that (4) and (5) are the classical rotor flux vector control equations. Then, the rotor flux linkages in (4)-(5) are transformed into the stationary reference frame performed by inverse park transformation.()()()r r r cos sin cos i,e dr i ,e qr i ,e dr i ,s dr ψψψθψ=θψ−θψ=ψ(6)()()()r r r sin cos sin i,e dr i ,e qr i ,e dr i ,s qr ψψψθψ=θψ+θψ=ψ(7)where r ψθis the rotor flux angle (rad).Then, the stator flux linkages in stationary reference frame are computed from the rotor flux linkages in (6)-(7)i,s dr r m s ds r 2m r s s drm s dss i,s dsL L i L L L L i L i L ψ+⎟⎟⎠⎞⎜⎜⎝⎛−=+=ψ (8) i ,s qr r m s qs r 2m r s sqr m s qs s i ,s qs L L i L L L L i L i L ψ+⎟⎟⎠⎞⎜⎜⎝⎛−=+=ψ (9) where L s and L r are the stator and rotor self inductance (H), respectively.Next, the stator flux linkages in the voltage model is computed by means of back emf’s integration with compensated voltages.()d t u R i u ds ,comp s sds s ds v ,s ds ∫−−=ψ(10) ()d t u R i u qs,comp s s qs s qs v,s qs∫−−=ψ(11)where R s is the stator resistance (Ω), sqs s ds u ,u are stationary dq-axis stator voltages, andthe compensated voltages are computed by the PI control law as follows:()()d t T K K u i,s ds v ,s ds Ipi ,s ds v ,s ds p ds ,comp ∫ψ−ψ+ψ−ψ= (12) ()()d t T K K u i ,s qs v ,s qs IP i ,s qs v ,s qs p qs ,comp ∫ψ−ψ+ψ−ψ= (13) The proportional gain K P and the reset time T I are chosen such that the flux linkages computed by current model is dominant at low speed because the back emf’s computed by the voltage model are extremely low at this speed range (even zero back emf’s at zero speed). While at high speed range, the flux linkages computed by voltage model is dominant.Once the stator flux linkages in (10)-(11) are calculated, the rotor flux linkages based on the voltage model are further computed, by rearranging (8)-(9), asv,s ds m r s ds m 2m r s v ,s dr L L i L L L L ψ+⎟⎟⎠⎞⎜⎜⎝⎛−−=ψ (14) v ,s qs m r s qs m 2m r s v ,s qrL L i L L L L ψ+⎟⎟⎠⎞⎜⎜⎝⎛−−=ψ (15) Then, the rotor flux angle based on the voltage model is finally computed as⎟⎟⎠⎞⎜⎜⎝⎛ψψ=θ−ψv ,s dr v,s qr 1tanr (16) Discrete time:The oriented rotor flux dynamics in (4) is discretized by using backward approximation as follows:e,i e,ie e,i dr dr m dsdr r r(k)(k 1)L 1i (k)(k)T ψ−ψ−=−ψττ (17) where T is the sampling period (sec). Rearranging (17), then it givese,i e,i er m drdr ds r r L T (k)(k 1)i (k)T T ⎛⎞⎛⎞τψ=ψ−+⎜⎟⎜⎟τ+τ+⎝⎠⎝⎠(18) Next, the stator flux linkages in (10)-(11) are discretized by using trapezoidal (or tustin) approximation as())1k (e )k (e 2T )1k ()k (s ds s ds v,s ds v ,s ds −++−ψ=ψ(19) ())1k (e )k (e 2T )1k ()k (s qs s qs v,s qs v ,s qs −++−ψ=ψ(20) where the back emf’s are computed as)k (u R )k (i )k (u )k (e ds ,comp s sds s ds s ds −−=(21) )k (u R )k (i )k (u )k (e qs ,comp s sqs s qs s qs −−=(22)Similarly, the PI control laws in (12)-(13) are also discretized by using trapezoidal approximation as())1k (u )k ()k (K )k (u i ,ds ,comp i,s ds v ,s ds p ds ,comp −+ψ−ψ=(23) ())1k (u )k ()k (K )k (u i ,qs ,comp i,s qs v ,s qs p qs ,comp −+ψ−ψ=(24)where the accumulating integral terms are as()())k ()k (K K )1k (u )k ()k (T T K )1k (u )k (u i,s ds v ,s ds I P i ,ds ,comp i,s ds v ,s ds I P i ,ds ,comp i ,ds ,comp ψ−ψ+−=ψ−ψ+−=(25)()())k ()k (K K )1k (u )k ()k (TTK )1k (u )k (u i,s qs v ,s qs I P i ,qs ,comp i,s qsv ,s qs IP i,qs ,comp i ,qs ,comp ψ−ψ+−=ψ−ψ+−= (26)where II T TK =.Discrete time and Per-unit:Now all equations are normalized into the per-unit by the specified base quantities. Firstly, the rotor flux linkage in current model (18) is normalized by dividing the base flux linkage ase,i e,i er dr,pudr,pu ds,pu r r T (k)(k 1)i (k)T T ⎛⎞⎛⎞τψ=ψ−+⎜⎟⎜⎟τ+τ+⎝⎠⎝⎠ pu (27) where b m b I L =ψ is the base flux linkage (volt.sec) and I b is the base current (amp).Next, the stator flux linkages in the current model (8)-(9) are similarly normalized by dividing the base flux linkage as)k (L L )k (i L L L L L )k (i ,s pu ,dr r m s pu ,ds m r 2m r s i,s pu ,ds ψ+⎟⎟⎠⎞⎜⎜⎝⎛−=ψ pu (28))k (L L )k (i L L L L L )k (i,s pu ,qr r m s pu ,qs m r 2m r s i,s pu,qs ψ+⎟⎟⎠⎞⎜⎜⎝⎛−=ψ pu (29) Then, the back emf’s in (21)-(22) are normalized by dividing the base phase voltage V b)k (u )k (i V R I )k (u )k (e pu ,ds ,comp s pu ,ds bs b spu,ds s pu ,ds −−= pu (30) )k (u )k (i V R I )k (u )k (e pu ,qs ,comp s pu ,qs bs b spu,qs s pu ,qs −−= pu (31) Next, the stator flux linkages in the voltage model (19)-(20) are divided by the base flux linkage.⎟⎟⎠⎞⎜⎜⎝⎛−++−ψ=ψ2)1k (e )k (e I L T V )1k ()k (spu ,ds s pu ,ds b m b v ,s pu ,ds v ,s pu ,ds pu (32) ⎟⎟⎠⎞⎜⎜⎝⎛−++−ψ=ψ2)1k (e )k (e I L T V )1k ()k (spu ,qs s pu ,qs b m b v ,s pu ,qs v ,s pu ,qs pu (33) Similar to (28)-(29), the normalized rotor flux linkages in voltage model are)k (L L )k (i L L L L L )k (v,s pu ,ds m r s pu ,ds m m 2m r s v ,s pu ,dr ψ+⎟⎟⎠⎞⎜⎜⎝⎛−−=ψ pu (34) )k (L L )k (i L L L L L )k (v,s pu ,qs m r s pu ,qs m m 2m r s v ,s pu,qr ψ+⎟⎟⎠⎞⎜⎜⎝⎛−−=ψ pu (35) In conclusion, the discrete-time, per-unit equations are rewritten in terms of constants.Current model – rotor flux linkage in synchronously rotating reference frame ()rψω=ωe,i e,i edr,pu 1dr,pu 2ds,pu (k)K (k 1)K i (k)ψ=ψ−+ pu(36)where T K r r 1+ττ=, and TTK r 2+τ=. Current model – rotor flux linkages in the stationary reference frame ()0=ω)k (K )k (i K )k (i,s pu ,dr 3s pu ,ds 4i ,s pu ,ds ψ+=ψ pu(37) )k (K )k (i K )k (i ,s pu ,qr 3s pu ,qs 4i ,s pu ,qs ψ+=ψ pu(38)where r m3L L K =, and mr 2m r s 4L L L L L K −=. Voltage model – back emf’s in the stationary reference frame ()0=ω)k (u )k (i K )k (u )k (e pu ,ds ,comp spu ,ds 5s pu ,ds s pu ,ds −−= pu(39))k (u )k (i K )k (u )k (e pu ,qs ,comp s pu ,qs 5s pu ,qs s pu ,qs −−= pu (40)where bsb 5V R I K =. Voltage model – stator flux linkages in the stationary reference frame ()0=ω⎟⎟⎠⎞⎜⎜⎝⎛−++−ψ=ψ2)1k (e )k (e K )1k ()k (spu ,ds s pu ,ds 6v ,s pu,ds v,s pu,ds pu (41) ⎟⎟⎠⎞⎜⎜⎝⎛−++−ψ=ψ2)1k (e )k (e K )1k ()k (spu ,qs s pu ,qs 6v ,s pu ,qs v ,s pu ,qs pu (42) where bm b 6I L TV K =.Voltage model – rotor flux linkages in the stationary reference frame ()0=ω)k (K )k (i K )k (v,s pu ,ds 7s pu ,ds 8v ,s pu ,dr ψ+−=ψ pu(43) )k (K )k (i K )k (v,s pu ,qs 7s pu ,qs 8v ,s pu ,qr ψ+−=ψ pu(44)where m r7L L K =, and mm 2m r s 8L L L L L K −=. Voltage model – rotor flux angle⎟⎟⎠⎞⎜⎜⎝⎛ψψπ=θ−ψ)k ()k (tan 21)k (v ,s pu ,dr v ,s pu ,qr 1pu ,r pu (45) Notice that the rotor flux angle is computed by a look-up table of 0o -45o with 256 entries.In fact, equations (36)-(44) are mainly employed to compute the estimated flux linkages in per-unit. The excel file aci_fe_init.xls is used to compute these eight constants (i.e., K 1,…,K 8) in the appropriately defined Q system. This file can directly compute the hexadecimal/decimal values of these K’s in order to put them into the ACI_FE_INIT module easily. The required parameters for this module are summarized as follows:The machine parameters: - stator resistance (R s ) - rotor resistance (R r )- stator leakage inductance (L sl ) - rotor leakage inductance (L rl ) - magnetizing inductance (L m )The based quantities: - base current (I b )- base phase voltage (V b )The sampling period: - sampling period (T)Notice that the stator self inductance is m sl s L L L += (H) and the rotor self inductance is m rl r L L L +=(H).Next, Table 1 shows the correspondence of notations between variables used here and variables used in the program (i.e., aci_fe.asm). The software module requires that both input and output variables are in per unit values (i.e., they are defined in Q15).Table 1: Correspondence of notationsReferences:[1] C. Lascu, I. Boldea, and F. Blaabjerg, “A modified direct torque control for inductionmotor sensorless drive”, IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 122-130, January/February 2000.。
三相异步电动机Matlab仿真..

中国石油大学胜利学院综合课程设计总结报告题目:三相异步电机直接启动特性实验模型学生姓名: 潘伟鹏系别: 机械与电气工程系专业年级: 2012级电气工程专业专升本2班指导教师: 王铭2013年 6 月27日一、设计任务与要求普通异步电动机直接起动电流达到额定电流的6--7倍,起动转矩能达到额定转矩的1.25倍以上。
过高的温度、过快的加热速度、过大的温度梯度和电磁力,产生了极大的破坏力,缩短了定子线圈和转子铜条的使用寿命。
但在电网条件和工艺条件允许的情况下,异步电动机也可以直接启动。
本次课程设计通过MATLAB软件建模模拟三相异步电动机直接启动时的各个元器件上的电量变化。
参考:电力系统matlab仿真类书籍电机类教材二、方案设计与论证三相异步电动机直接起动就是利用开关或接触器将电动机的定子绕组直接接到具有额定电压的电网上。
由《电机学》知三相异步电动机的电磁转矩M与直流电动机的电磁转矩有相似的表达形式。
它们都与电机结构(表现为转矩常数)和每级下磁通有关,只不过在三相异步电动机中不再是通过电枢的全部电流,而是点数电流的有功分量。
三相异步电机电磁转矩的表达式为:(1-1)式中——转矩常数——每级下磁通——转子功率因数式(1-1)表明,转子通入电流后,与气隙磁场相互作用产生电磁力,因此,反映了电机中电流、磁场和作用力之间符合左手定则的物理关系,故称为机械特性的物理表达式。
该表达式在分析电磁转矩与磁通、电流之间的关系时非常方便。
从三相异步电动机的转子等值电路可知,(1-2)(1-3) 将式(1-2)、(1-3)代入(1-1)得:(1-4)一:我们做如下分析:1.当s=0时,,M=0,说明电动机的理想空载转速为同步转速。
2.当s很小时,有,,说明电磁转矩T近似与s呈线性关系,即随着M的增加,略有下降。
因而,类似直流电动机的机械特性,是一条下倾的直线。
3.当s很大时,有,,说明电磁转矩M近似与s成反比,即M增加时n反而升高。
三相感应电机仿真

三相感应电动机起动动态过程仿真软件的开发及应用摘 要:本文利用MATLAB 语言强大的计算功能和计算结果可视化功能,对电动机起动动态过程进行仿真软件的开发,通过对一台投入使用中的电机进行起动动态过程的仿真,并对其结果进行分析。
关键词:感应电动机,软件开发,动态仿真Abstract : Using the calculating and consequence visualization functions of MATLAB ,this article developed a simulation softwares for start dynamic processes of motor ,simulated dynamic processes for one working motors and analysised the consequences.Key words : Induction Motor ,Software Development , Dynamic Analysis随着科学技术的不断发展,电机已成为提高生活效率和科技水平以及提高生活质量的主要载体之一,这就要求我们对电机的运行特性有进一步的了解与掌握。
本文主要针对感应电动机的起动动态过程进行仿真软件开发及仿真。
1 仿真软件开发将电机的数学模型与MATLAB 语言的功能相结合,来编制电机在起动工况下的动态仿真软件。
在simulink 中建立感应电机的仿真模型,随后在MATLAB 的工作空间调用龙格-库塔函数,即可得到电机在起动条件下的仿真结果,再应用plot( )命令,得到感应电机的起动仿真曲线。
仿真程序流程图如图1所示。
对仿真软件的开发,主要可分为以下几个步骤: 1.1参数的选定为了编制程序的方便(包括界面可视性效果)及验证程序的正确性,首先选定一台由我公司制造的已知电机作为原型机,用其参数进行仿真软件的开发及模拟。
输入的参数包括:额定功率1800=N P KW ,额定转速1491/min N n r =,定子绕组接线系数0=k (星接),定子绕组相电 阻Ω=08999.0s R ,转子绕组相电阻Ω=10999.0r R ,定子绕组相漏抗Ω=0858.0ls X ,转 子 绕 组 相 漏 抗Ω=1405.0lr X ,定 子 绕 组 激 磁 电 抗 Ω=2895.3m X ,转子外径m D 65.02=,铁芯长m L t 83.0=,转动惯量24.113m Kg J m ⋅=,旋转阻力系数rad s m N Roma /0225.0⋅⋅=,定子绕组每相串联匝数1801=ω,定子绕组系数936.01=ωK ,转子槽数472=Z ,电机极对数2=p ,额定电压V U N 6000=,频率Hz f 50=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PE3 Exp 3 1
University of Glasgow School of Engineering Power Engineering 3
Lab 3 - 3-Phase Induction Motor
Student Name……………………………………… Matric No…………………………………………..
Introduction In this experiment you will study the performance a squirrel-cage 3-phase induction motor. These motors are very important for many applications and absorb round about 45 % of all energy generated. They come in many sizes, from only a few watts up to several megawatts, and in many shapes, they can have the rotor rotating around the stator and different methods of cooling (e.g., TEFC – totally enclosed fan cooled, IP 55 (ingress protection, outdoor use) is very common, large machines can be water or oil cooled, drip-proof machines (IP 20, indoor use only) will have an internal fan and venting for air inlet and outlet and a fully submersible motor will be IP 68).
The 4 pole machine you are using is a total enclosed machine with natural convection cooling. It is low voltage (an educational machine designed to work at less that 50 V line to line) however it can be connected in various ways in a similar way to a normal 3-phase motors working at higher voltages.
We will look at the performance of the machine and carry out the following tests and measurements: Direction test No load test Locked rotor test Calculation of equivalent circuit parameters Obtains torque/speed and current Speed curves from equivalent circuit parameters Load test
Assessment The 3 laboratory sessions account for 15% of your final mark in Power Engineering 3. You should have with you a bound laboratory book (with graph paper). Record ALL your measured results and any subsequent calculations in your bound laboratory book during the laboratory session, also fill out the necessary results in this lab sheet (this makes it easy for me to check your results during the session).
At some point after the lab session you need to write up the results (neatly!) and complete the associated analysis/theory sections before handing in your lab books before the end of the semester. PE3 Exp 3 2
Note that you will not be assessed during the laboratory session so please communicate freely with supervisor/demonstrators – we are here to help you obtain accurate results and to help with any questions you have relating to the associated theory.
Equipment Warning – please get your connections checked by a demonstrator when first switching on and if in doubt. Take care when using the machinery – it is low power and low voltage but a nasty accident can still occur if you get things caught in it. Long hair should be tied back, ties should be removed or tucked away and objects such as fingers or pens should not be put into the rotating machinery.
Look at the list of equipment in Table 1. The main piece of equipment is the induction motor and eddy current brake. The motor is on the right hand side and the eddy current brake is on the left. The eddy current brake is solely for loading the machine and is simply controlled from the Eddy Current Brake Controller (Module D55-4) connected to it – increase the voltage and the load will increase. Now look at the 3-phase induction motor. At the non-drive end you will find a connection panel with six terminals. Ignore the thermistor connection and study the six terminals. These are labelled A-X, B-Y, and C - Z which represent the three different phase windings. These can be connected in two different ways – in either star or delta. In our experiments, the three phase windings are connected in delta connection as shown in Figure 1.
Table 1 Equipment List No Module Type Name Quantity 1 DD03-4 Eddy Current Brake 1 2 D55-4 Eddy Current Brake Controller 1 3 DJ16 3-phase Induction Motor 1 4 D31 DC Voltmeter,DC Ammeter 1 5 D33 AC Voltmeter 1 6 D32 AC Ammeter 1 7 D34-3 Digital Wattmeter 1 8 D42 Three-phase variable resistor load 1 9 D51 Test Switch Board 1 PE3 Exp 3 3
BYXAZ
C Figure 1. Delta Connection Inspect the plate on the induction motor. Rating plates are very important so never remove because it is then difficult to identify what the machine actually is!
Write down the details on the plate below: Motor Type Voltage VN(V) Connection Type
Power PN(W) Current IN(A) Insulation Grade Frequency f(Hz) Speed nN(r/min)
Answer these questions: 1. Calculate the Synchronous Frequency using the following equation: Nsync = 120 × supply frequency fs ÷ pole number P.
Nsync rpm