华师九年级第27章二次函数(12)教案

合集下载

第二十七章 二次函数整章教案

第二十七章 二次函数整章教案

第二十七章二次函数整章教案第二十七章二次函数[本章知识要点]1.探索具体问题中的数量关系和变化规律.2.结合具体情境体会二次函数作为一种数学模型的意义,并了解二次函数的有关概念. 3.会用描点法画出二次函数的图象,能通过图象和关系式认识二次函数的性质. 4.会运用配方法确定二次函数图象的顶点、开口方向和对称轴. 5.会利用二次函数的图象求一元二次方程(组)的近似解.6.会通过对现实情境的分析,确定二次函数的表达式,并能运用二次函数及其性质解决简单的实际问题.27.1 二次函数[本课知识要点]通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义. [MM 及创新思维](1)正方形边长为a(cm),它的面积s(cm2)是多少?(2)矩形的长是4厘米,宽是3厘米,如果将其长与宽都增加x厘米,则面积增加y 平方厘米,试写出y与x的关系式.请观察上面列出的两个式子,它们是不是函数?为什么?如果是函数,请你结合学习一次函数概念的经验,给它下个定义. [实践与探索]例1. m取哪些值时,函数y?(m?m)x?mx?(m?1)是以x为自变量的二次函数?22m?m?0.分析若函数y?(m?m)x?mx?(m?1)是二次函数,须满足的条件是:22222解若函数y?(m?m)x?mx?(m?1)是二次函数,则m?m?0.解得 m?0,且m?1.22因此,当m?0,且m?1时,函数y?(m?m)x?mx?(m?1)是二次函数. 2回顾与反思形如y?ax?bx?c的函数只有在a?0的条件下才是二次函数.2探索若函数y?(m?m)x?mx?(m?1)是以x为自变量的一次函数,则m取哪些值?例2.写出下列各函数关系,并判断它们是什么类型的函数.122(1)写出正方体的表面积S(cm2)与正方体棱长a(cm)之间的函数关系;(2)写出圆的面积y(cm2)与它的周长x(cm)之间的函数关系;(3)某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;(4)菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.解(1)由题意,得 S?6a2(a?0),其中S是a的二次函数;x2(x?0),其中y是x的二次函数;(2)由题意,得y?4?0x≥0且是正整数),(3)由题意,得 y?10000?1.98%x?1000(其中y是x的一次函数;(4)由题意,得 S?11x(26?x)??x2?13x(0?x?26),其中S 是x的二次函数. 22例3.正方形铁片边长为15cm,在四个角上各剪去一个边长为x (cm)的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S(cm2)与小正方形边长x(cm)之间的函数关系式; (2)当小正方形边长为3cm时,求盒子的表面积.解(1)S?15?4x?225?4x(0?x?222215); 2 (2)当x=3cm时,S?225?4?3?189(cm2). [当堂课内练习]1.下列函数中,哪些是二次函数?(1)y?x2?0 (3)y?x?2(2)y?(x?2)(x?2)?(x?1)21 (4)y?x2?2x?3 x22.当k为何值时,函数y?(k?1)xk2?k?1为二次函数?3.已知正方形的面积为y(cm),周长为x(cm). (1)请写出y与x的函数关系式;(2)判断y是否为x的二次函数. [本课课外作业]A组1.已知函数y?(m?3)xm2?7是二次函数,求m的值.22.已知二次函数y?ax2,当x=3时,y= -5,当x= -5时,求y的值.3.已知一个圆柱的高为27,底面半径为x,求圆柱的体积y与x的函数关系式.若圆柱的底面半径x为3,求此时的y.4.用一根长为40 cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径x之间的函数关系式.这个函数是二次函数吗?请写出半径r的取值范围.B组5.对于任意实数m,下列函数一定是二次函数的是() A.y?(m?1)2x2 B.y?(m?1)2x2 C.y?(m2?1)x2 D.y?(m2?1)x2 6.下列函数关系中,可以看作二次函数y?ax2?bx?c(a?0)模型的是()A.在一定的距离内汽车的行驶速度与行驶时间的关系B.我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系 C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D.圆的周长与圆的半径之间的关系327.2 二次函数的图象与性质(1)[本课知识要点]会用描点法画出二次函数y?ax2的图象,概括出图象的特点及函数的性质. [MM及创新思维]我们已经知道,一次函数y?2x?1,反比例函数y? ,那么二次函数y?x2的图象是什么呢?(1)描点法画函数y?x2的图象前,想一想,列表时如何合理选值?以什么数为中心?当x取互为相反数的值时,y的值如何?(2)观察函数y?x2的图象,你能得出什么结论?[实践与探索]例1.在同一直角坐标系中,画出下列函数的图象,并指出它们有何共同点?有何不同点?(1)y?2x2 解列表 x ? ? -3 18 -18 -2 8 -8 -1 2 -2 0 0 0 1 2 -2 2 8 -8 3 18 -18 ? ? ? (2)y??2x23的图象分别是、 xy?2x2 y??2x2 ? 分别描点、连线,画出这两个函数的图象,这两个函数的图象都是抛物线,如图26.2.1.共同点:都以y轴为对称轴,顶点都在坐标原点.不同点:y?2x的图象开口向上,顶点是抛物线的最低点,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升.2y??2x2的图象开口向下,顶点是抛物线的最高点,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降.回顾与反思在列表、描点时,要注意合理灵活地取值以及图形的对称性,因为图象是抛物线,因此,要用平滑曲线按自变量从小到大或从大到小的顺序连接.4例2.已知y?(k?2)xk2?k?4是二次函数,且当x?0时,y随x的增大而增大.(1)求k的值;(2)求顶点坐标和对称轴.?k2?k?4?2解(1)由题意,得?,解得k=2.?k?2?0 (2)二次函数为y?4x2,则顶点坐标为(0,0),对称轴为y轴.例3.已知正方形周长为Ccm,面积为S cm2.(1)求S和C之间的函数关系式,并画出图象;(2)根据图象,求出S=1 cm2时,正方形的周长;(3)根据图象,求出C 取何值时,S≥4 cm2.分析此题是二次函数实际应用问题,解这类问题时要注意自变量的取值范围;画图象时,自变量C的取值应在取值范围内.解(1)由题意,得S?列表: C 2 4 1 6 8 4 ? ? 12C(C?0). 16S?12C 161 49 4描点、连线,图象如图26.2.2.(2)根据图象得S=1 cm2时,正方形的周长是4cm.(3)根据图象得,当C≥8cm 时,S≥4 cm2.回顾与反思(1)此图象原点处为空心点.(2)横轴、纵轴字母应为题中的字母C、S,不要习惯地写成x、y.(3)在自变量取值范围内,图象为抛物线的一部分. [当堂课内练习]1.在同一直角坐标系中,画出下列函数的图象,并分别写出它们的开口方向、对称轴和顶点坐标.22(1)y?3x (2)y??3x (3)y?12x 32.(1)函数y?22x的开口,对称轴是,顶点坐标是; 312(2)函数y??x的开口,对称轴是,顶点坐标是.43.已知等边三角形的边长为2x,请将此三角形的面积S表示成x的函数,并画出图象的草图.5感谢您的阅读,祝您生活愉快。

2020春华师版九年级数学下册 第26章 【教案】 二次函数

2020春华师版九年级数学下册 第26章 【教案】 二次函数

二次函数教学目标:(1)知识与技能能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)过程与方法结合之前的知识,理解并会运用二次函数的关系式.(3)情感态度与价值观注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯重点难点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学过程:一、试一试1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,2.x的值是否可以任意取?有限定范围吗?3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x 的函数,试写出这个函数的关系式,对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。

对于2,可让学生分组讨论、交流,然后各组派代表发表意见。

形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。

对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.二、提出问题某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。

将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:1.商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价-进价)×销售量]2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? [10-8=2(元),(10-8)×100=200(元)]3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?[(10-8-x);(100+100x)]4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。

华师大版数学九年级下册26.2《二次函数的图象与性质》教学设计

华师大版数学九年级下册26.2《二次函数的图象与性质》教学设计

华师大版数学九年级下册26.2《二次函数的图象与性质》教学设计一. 教材分析《二次函数的图象与性质》是华师大版数学九年级下册第26章第2节的内容。

本节内容主要介绍二次函数的图象与性质,包括二次函数的顶点、开口、对称轴等概念,以及如何通过图象来判断二次函数的性质。

学生通过本节的学习,应该能够理解二次函数的图象与性质,并能够运用这些知识解决实际问题。

二. 学情分析九年级的学生已经学习了函数的基础知识,对函数的概念、定义、图像等有一定的了解。

但是,对于二次函数的图象与性质,学生可能还比较陌生,需要通过实例来理解和掌握。

此外,学生的空间想象能力和抽象思维能力还有待提高,因此,在教学过程中,需要注重培养学生的这些能力。

三. 教学目标1.知识与技能:使学生理解二次函数的图象与性质,能够通过图象来判断二次函数的性质。

2.过程与方法:通过观察、操作、猜测、验证等活动,培养学生的空间想象能力和抽象思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的探究精神。

四. 教学重难点1.重点:二次函数的图象与性质。

2.难点:如何通过图象来判断二次函数的性质。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法。

通过设置问题,引导学生观察、操作、猜测、验证,从而理解二次函数的图象与性质。

同时,学生进行小组合作,培养学生的团队协作能力。

六. 教学准备1.准备相关的教学案例和实例。

2.准备教学PPT,包括二次函数的图象与性质的讲解、实例分析等。

3.准备纸笔,用于学生进行绘图和记录。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出二次函数的图象与性质的概念。

例如:某商场进行促销活动,打折后的价格可以表示为一个二次函数,如何根据价格来判断促销活动是否优惠?2.呈现(10分钟)利用PPT,呈现二次函数的图象与性质的定义和概念,包括顶点、开口、对称轴等。

同时,通过实例来展示这些概念的应用。

3.操练(10分钟)让学生分组进行绘图和分析,每组选择一个二次函数,画出它的图象,并判断它的性质。

华师大版数学九年级下册《26.1 二次函数》教学设计3

华师大版数学九年级下册《26.1 二次函数》教学设计3

华师大版数学九年级下册《26.1 二次函数》教学设计3一. 教材分析华师大版数学九年级下册《26.1 二次函数》是学生在初中阶段学习二次函数的起始章节,它是在学生已经掌握了函数概念、一次函数和二次方程的基础上进行的。

本节课的主要内容是介绍二次函数的定义、性质和图像,以及二次函数的顶点公式。

教材通过生动的实例和丰富的练习,帮助学生理解和掌握二次函数的知识,为学生进一步学习高中数学打下坚实的基础。

二. 学情分析九年级的学生已经具备了一定的数学基础,对函数概念、一次函数和二次方程有一定的了解。

但二次函数相对于一次函数来说,其图像和性质更加复杂,需要学生通过实例和练习来进一步理解和掌握。

此外,学生的学习兴趣和动机对他们的学习效果有很大影响,因此教师需要设计有趣的教学活动来激发学生的学习兴趣。

三. 教学目标1.知识与技能:使学生理解和掌握二次函数的定义、性质和图像,能够运用二次函数的知识解决实际问题。

2.过程与方法:通过实例和练习,培养学生的观察能力、推理能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。

四. 教学重难点1.重点:二次函数的定义、性质和图像。

2.难点:理解二次函数的顶点公式,并能运用其解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过提出问题,引导学生思考和探索;通过分析具体案例,使学生理解和掌握二次函数的知识;通过小组合作,培养学生的合作意识和解决问题的能力。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备多媒体教学设备,如投影仪和黑板。

3.准备教案和教学笔记。

七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考和探索二次函数的概念。

例如:“什么是二次函数?它与一次函数有什么区别?”2.呈现(10分钟)通过分析具体案例,使学生理解和掌握二次函数的定义、性质和图像。

例如,展示一个二次函数的图像,引导学生观察其特点。

华师大版九下《二次函数》精品教案

华师大版九下《二次函数》精品教案

华师大版九下《二次函数》精品教案一、教学内容本节课选自华师大版九年级下册《二次函数》章节,详细内容包括:二次函数的定义、图像及性质,二次函数的顶点式和一般式,二次函数的图像变换,以及二次函数在实际问题中的应用。

二、教学目标1. 理解二次函数的定义,掌握二次函数的图像及性质。

2. 学会使用顶点式和一般式表示二次函数,并能进行图像变换。

3. 能够运用二次函数解决实际问题,提高数学应用能力。

三、教学难点与重点重点:二次函数的定义、图像及性质,二次函数的顶点式和一般式。

难点:二次函数图像的变换,以及在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:直尺、圆规、三角板。

五、教学过程1. 实践情景引入:通过展示一个抛物线的运动轨迹,让学生观察并思考,激发兴趣。

2. 知识讲解:a. 引入二次函数的定义,解释二次项、一次项和常数项。

b. 介绍二次函数的图像及性质,通过示例让学生理解并掌握。

c. 讲解二次函数的顶点式和一般式,并进行图像变换的推导。

3. 例题讲解:讲解典型例题,分析解题思路,强调注意事项。

4. 随堂练习:布置一些典型练习题,让学生巩固所学知识。

5. 小组讨论:针对实际问题,让学生分组讨论,提出解决方案。

六、板书设计1. 二次函数的定义、图像及性质。

2. 二次函数的顶点式和一般式。

3. 图像变换的推导过程。

4. 典型例题及解题思路。

七、作业设计1. 作业题目:a. 求下列二次函数的顶点坐标和对称轴:y = x^2 4x + 3。

b. 将二次函数y = (x 1)^2 + 2向左平移3个单位,求新函数的表达式。

c. 某抛物线的顶点坐标为(2, 3),且过点(0, 6),求抛物线的解析式。

2. 答案:a. 顶点坐标:(2, 1),对称轴:x = 2。

b. 新函数的表达式:y = (x 4)^2 + 2。

c. 抛物线的解析式:y = (x 2)^2 3。

八、课后反思及拓展延伸1. 反思:本节课通过实践情景引入、例题讲解和随堂练习,使学生掌握了二次函数的定义、图像及性质。

2024年华师大版九下《二次函数》教案

2024年华师大版九下《二次函数》教案

2024年华师大版九下《二次函数》教案一、教学内容本节课选自2024年华师大版九年级下册《二次函数》章节。

具体内容包括:二次函数的定义及其图像特征,二次函数的标准式、顶点式和一般式的相互转化,二次函数的性质,以及二次函数在生活中的简单应用。

二、教学目标1. 理解并掌握二次函数的定义,能熟练地识别二次函数;2. 学会二次函数标准式、顶点式和一般式之间的相互转化,并了解二次函数图像的特征;3. 掌握二次函数的性质,能运用二次函数解决实际问题。

三、教学难点与重点难点:二次函数图像的特征及其性质,二次函数在实际问题中的应用。

重点:二次函数的定义,二次函数标准式、顶点式和一般式的相互转化。

四、教具与学具准备教具:黑板、粉笔、教学课件、投影仪。

学具:直尺、圆规、练习本、草稿纸。

五、教学过程1. 实践情景引入通过展示生活中的抛物线现象,如抛物面天线、篮球投篮的轨迹等,引导学生思考抛物线与二次函数之间的关系。

2. 教学新课(1)二次函数的定义:引导学生回顾一次函数的定义,进而引出二次函数的定义。

(2)二次函数的标准式、顶点式和一般式:讲解三种形式的二次函数,并通过实例进行演示。

(3)二次函数图像的特征:通过画图工具,展示二次函数图像的对称性、开口方向和顶点位置等特点。

(4)二次函数的性质:讲解二次函数的增减性、最值等性质。

3. 例题讲解选取具有代表性的例题,讲解解题思路和方法,引导学生运用所学知识解决实际问题。

4. 随堂练习设计具有梯度性的练习题,让学生在课堂上及时巩固所学知识。

六、板书设计1. 二次函数的定义2. 二次函数的标准式、顶点式和一般式3. 二次函数图像的特征4. 二次函数的性质5. 例题及解题步骤6. 随堂练习题目七、作业设计1. 作业题目(1)已知二次函数的标准式,求顶点坐标和对称轴;(2)已知二次函数的一般式,求最大值和最小值;(3)运用二次函数解决实际问题。

答案:见附件。

八、课后反思及拓展延伸1. 反思:本节课学生对二次函数的定义和图像特征掌握较好,但在解决实际问题时还需加强引导。

华师大版数学九年级下册《26.1 二次函数》说课稿

华师大版数学九年级下册《26.1 二次函数》说课稿

华师大版数学九年级下册《26.1 二次函数》说课稿一. 教材分析华师大版数学九年级下册《26.1 二次函数》这一节的内容,主要介绍了二次函数的定义、性质和图像。

二次函数是中学数学中的重要内容,对于学生来说,掌握二次函数的知识对于理解高中阶段的函数学习和解决实际问题具有重要意义。

本节内容首先介绍了二次函数的定义,包括函数的表达式、自变量和函数值的限制条件等。

接着,通过实例讲解,让学生理解二次函数的图像特征,包括开口方向、顶点坐标、对称轴等。

然后,引导学生学习二次函数的性质,包括单调性、极值等。

最后,通过练习题,让学生巩固所学知识,并能应用于解决实际问题。

二. 学情分析九年级的学生已经学习了函数的基本知识,对于一次函数和二次函数的概念有一定的了解。

但是,对于二次函数的性质和图像的深入理解还需要加强。

此外,学生对于实际问题的解决能力也有待提高。

三. 说教学目标1.知识与技能目标:让学生掌握二次函数的定义、性质和图像,能够解决简单的实际问题。

2.过程与方法目标:通过实例讲解和练习,培养学生的观察能力、分析能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的耐心和细心,使学生感受到数学在生活中的应用。

四. 说教学重难点1.重点:二次函数的定义、性质和图像。

2.难点:二次函数的图像特征的理解和应用。

五. 说教学方法与手段1.教学方法:采用讲授法、案例教学法和练习法。

2.教学手段:利用多媒体课件进行教学,展示二次函数的图像和实例。

六. 说教学过程1.导入:通过一个实际问题,引出二次函数的概念,激发学生的兴趣。

2.讲解:讲解二次函数的定义、性质和图像,通过实例进行解释和展示。

3.练习:让学生进行练习,巩固所学知识,并能应用于解决实际问题。

4.总结:对本节内容进行总结,强调二次函数的重要性和应用价值。

七. 说板书设计板书设计包括二次函数的定义、性质和图像的主要内容,以及相关的重要概念和公式。

华师大版九年级数学下册第26章二次函数y=ax2+c的图像和性质 说课稿

华师大版九年级数学下册第26章二次函数y=ax2+c的图像和性质 说课稿

二次函数y=ax2+c的图像和性质尊敬的各位评委、各位老师:大家好!今天我说课的题目是《二次函数y=ax2+c的图像和性质》,下面我将围绕本节课“教什么?”、“怎样教?”、“为什么这样教?”三个问题,从教材内容、教法学法、教学过程这三个方面逐一分析说明。

一、教材内容分析:1、本节课内容在整个教材中的地位和作用。

概括地讲,二次函数的图像在教材中起着承上启下的作用,它的地位体现在它的思想的基础性。

一方面,本节课是对初中有关内容的深化,为后面进一步学习二次函数的性质打下基础;另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。

2、教学目标定位。

根据教学大纲要求、新课程标准精神和学生心理认知特征,我确定了三个层面的教学目标。

第一个层面是基础知识与能力目标:理解二次函数的图像中a、k、的作用,会对图像进行平移变换,领会研究二次函数图像的方法,培养学生运用数形结合数学思想方法解决问题的能力,提高运算和作图能力;第二个层面是过程和方法:让学生经历作图、观察、比较、归纳的学习过程,使学生掌握类比、化归等数学思想方法,养成即能自主探索,又能合作探究的良好学习习惯;第三个层面是情感、态度和价值观:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

3、教学重难点。

重点是二次函数各系数对图像和形状的影响,抛物线开口、对称轴、顶点坐标、最值、增减性。

利用二次函数图像平移的特例分析过程,培养学生数形结合的思想和划归思想。

难点是图像的平移变换,二、教法学法分析:数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。

为了更好地体现在课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:27.3实践与探索(4)
教材分析:
本节课是学习有关二次函数的应用问题的又一课时,基于学生的认知水平和学习本节内容的设计要求,本课依然遵循由易到难的原则,让学生逐步学会结合二次函数的图象分析问题、解决问题,掌握一元二次方程的图象解法.
教学目的:
1.掌握一元二次方程的图象解法.
2.了解一元二次方程的图象解法的原理
3.培养学生学会观察生活运用知识的能力。

4.激发学生的学习热情,培养学生学习数学的兴趣。

教学重点、难点:
重点:掌握一元二次方程的图象解法
难点:对一元二次方程的图象解法的理解
教学方法:
讲练结合,注重引导和启发
教学过程:
[新课引入]
上节课的作业第5题:画图求方程22+-=x x 的解,你是如何解决的呢?我们来看一看两位同学不同的方法.
甲:将方程22+-=x x 化为022=-+x x ,画出22-+=x x y 的图象,观察它与x 轴的交点,得出方程的解.
乙:分别画出函数2x y =和2+-=x y 的图象,观察
它们的交点,把交点的横坐标作为方程的解.
你对这两种解法有什么看法?请与你的同学交流.
[实践与探索]
例1.利用函数的图象,求下列方程的解:
(1)0322=-+x x ;
(2)02522=+-x x .
分析 上面甲乙两位同学的解法都是可行的,但乙的方法要来得简便,因为画抛物线远比画直线困难,所以只要事先画好一
条抛物线2x y =的图象,再根据待解的方程,画出相应的直线,交点的横坐标即为方程的解.
解 (1)在同一直角坐标系中画出
函数2x y =和32+-=x y 的图象,
如图26.3.5,
得到它们的交点(-3,9)、(1,1),
则方程0322=-+x x 的解为 –3,1.
(2)先把方程02522=+-x x 化为
012
52=+-
x x ,然后在同一直角 坐标系中画出函数2x y =和12
5-=x y 的图象,如图26.3.6, 得到它们的交点(21,4
1)、(2,4), 则方程02522=+-x x 的解为 21,2. 回顾与反思 一般地,求一元二次方程)0(02≠=++a c bx ax 的近似解时,可先将方程02=++c bx ax 化为02=++a
c x a b x ,然后分别画出函数2
x y =和a
c x a b y --=的图象,得出交点,交点的横坐标即为方程的解. 例2.利用函数的图象,求下列方程组的解: (1)⎪⎩
⎪⎨⎧=+-=22321x y x y ; (2)⎩⎨⎧+=+=x x y x y 2632. 分析 (1)可以通过直接画出函数2
321+-=x y 和2x y =的图象,得到它们的交点,从而得到方程组的解;(2)也可以同样解决.
解 (1)在同一直角坐标系中画出函数2x y =和
2
321+-=x y 的图象,如图26.3.7, 得到它们的交点(2
3-,49)、(1,1), 则方程组⎪⎩⎪⎨⎧=+-=22321x y x y 的解为⎩⎨⎧==⎪⎪⎩
⎪⎪⎨⎧=-=11,49232211y x y x .
(2)在同一直角坐标系中画出函数x x y 22+=和63+=x y 的图象,如图26.3.8,
得到它们的交点(-2,0)、(3,15),则方程组⎩⎨⎧+=+=x
x y x y 2632的解为⎩⎨⎧==⎩⎨⎧=-=153,022211y x y x .
探索 (2)中的抛物线画出来比较麻烦,你能想出更好的解决此题的方法吗?比如利用抛物线2x y =的图象,请尝试一下.
[当堂课内练习]
1.利用函数的图象,求下列方程的解:
(1)012=++-x x (精确到0.1) ;
(2)02532=+-x x .
2.利用函数的图象,求方程组⎩⎨⎧=+-=22x
y x y 的解: [本课课外作业]
A 组
1.利用函数的图象,求下列方程的解:
(1)01232=-+x x (2)03
1322=++x x 2.利用函数的图象,求下列方程组的解:
(1)⎩⎨⎧-+=-=5
)1(2x y x y ; (2)⎩⎨⎧+-=-=x x y x y 262. B 组
3.如图所示,二次函数)0(21≠++=a c bx ax y 与)0(2≠+=k b kx y 的图象交于A (-2,4)、B (8,2).求能使21y y >成立的x 的取值范围。

相关文档
最新文档