微波无源电路仿真技术01
合集下载
主题2:微波无源电路的实践

行仪器的校准。校准就是将传输或反射损耗测 量系统中固有的损耗存储在内存中,以后再从 测试数据中减去这些损耗,其结果反映的就只 是被测部件的特性。
• 单端口校准:单端口校准能测量并消除反射测
Connector
电缆
Cable
移
动
通
讯
系
统
接地卡口
Grounding bar
微波系统在通讯领域的应用
GSM/CDMA移动通讯系统的天线
微波系统在通讯领域的应用
GSM/CDMA
微波系统在通讯领域的应用
移 动 通 讯 系 统
微波系统在通讯领域的应用
地面数字通讯 系统
便携式点对点系统
微波系统在通讯领域的应用
主题2:微波电路设计1与实践
——微波பைடு நூலகம்源电路设计制作与测试
1. 认识微波系统与部件 2. 解剖微波工程 3. 微波网络分析仪的用处 4. 微波网络分析仪的使用 5. 简要原理 6. 网络分析仪的使用步骤 7. 微波工程中的EDA工具 8. 设计实例 9. 实践要求
1. 认识微波系统与部件
——我们周围有些什么样的微波系统?
幅度和相位信息,通过比值测量法定量描述被测器件的反 射和传输特性。
网络分析仪分类
矢网(Vector network):
能测量和显示电气网络和整体幅度和相位特性。 包括:S参数、幅度和相位、驻波比、插入损耗/增 益、群延时、回波损耗、复数阻抗等
标网(Scalar network) :
只能测量S参数的幅度部分,测量结果包括:传 输损耗/增益、回波损耗和驻波比、反向隔离度等
4、微波网络分析仪的使用
4.1 网络分析仪简介
网络分析方法: 是通过测量微波网络(微波部件)输入端和输出
• 单端口校准:单端口校准能测量并消除反射测
Connector
电缆
Cable
移
动
通
讯
系
统
接地卡口
Grounding bar
微波系统在通讯领域的应用
GSM/CDMA移动通讯系统的天线
微波系统在通讯领域的应用
GSM/CDMA
微波系统在通讯领域的应用
移 动 通 讯 系 统
微波系统在通讯领域的应用
地面数字通讯 系统
便携式点对点系统
微波系统在通讯领域的应用
主题2:微波电路设计1与实践
——微波பைடு நூலகம்源电路设计制作与测试
1. 认识微波系统与部件 2. 解剖微波工程 3. 微波网络分析仪的用处 4. 微波网络分析仪的使用 5. 简要原理 6. 网络分析仪的使用步骤 7. 微波工程中的EDA工具 8. 设计实例 9. 实践要求
1. 认识微波系统与部件
——我们周围有些什么样的微波系统?
幅度和相位信息,通过比值测量法定量描述被测器件的反 射和传输特性。
网络分析仪分类
矢网(Vector network):
能测量和显示电气网络和整体幅度和相位特性。 包括:S参数、幅度和相位、驻波比、插入损耗/增 益、群延时、回波损耗、复数阻抗等
标网(Scalar network) :
只能测量S参数的幅度部分,测量结果包括:传 输损耗/增益、回波损耗和驻波比、反向隔离度等
4、微波网络分析仪的使用
4.1 网络分析仪简介
网络分析方法: 是通过测量微波网络(微波部件)输入端和输出
微波无源电路仿真技术(02EM)

平面仿真器(EM Sight)适用领域
Typical Board, Package, IC Planar Structures
Planar layers of metal and dielectric.
Planar Antennas Structures with well defined ground planes
Microstrip Coplanar
Typical Structures of Interest to RF, Microwave Designers
Methods Use Green’s Functions
Assumes have parallel layers of materials solve for currents on the metal
Linear Simulator
S parameters are output at the ports specified. No active devices are allowed. ME are solved for the currents on the metal.
Materials Allowed
1. 0
Many Formats
Available
S,Y,Z
Image Currents and E-Fields
- 10
0
10 20
- 20
30
30
40
-
40
50
-50
60
-60
70
-70
800
110 -110
120 -120
130
-130
-
14
14 0
-
电子科大HFSS(01)微波仿真技术与微波仿真软件

CST Design Studio界面
Ansoft Serenade
Ansoft Serenade 设计环境为现代的射频以及微波设计者们提供了一个强大 的电路、系统和电磁仿真的工具。简易的使用环境允许使用者们在仿真器和 其他的工具(如文字处理器)最大程度的产生数据资料的转移。简单的说, 它主要包括Harmonica电路仿真 和 Symphony系统仿真部分。 Symphony 可以在Serenade 文件夹(一种计算机标原理图获取、布局、和 仿真环境)下面运行。它是一个可以仿真有射频、微波和数字部分组成的通 信系统的软件工具。Symphony 添加了针对外围环境的高效的模拟、数字混 合方式(模拟和数字)和系统分析能力。使用者能够很快的构建一个系统包 括大量元件的库里的射频部分的模拟和数字信号处理。像信道编码,模拟和 数字信号处理滤波器,放大器,晶体震荡器衰减信道模型。这些都能使设计 者们迅速的组建有线的或者无线系统。由于系统自带了那么多模型,因此设 计者只需要对元器件键入很少的关键特征。它也能够对线性或非线性系统进 行彻底的操作。 它也能输出例如增益、噪声和在时域或者频域上的误码率。针对不同的设计 方法,在早期阶段的时候它就能够迅速的检查,以减少设计周期时间和避免 由于射频和数字信号处理系统之间的互相干扰而造成的高成本的重新设计。 一旦一个设计系统结构被确认了那么一个自上而下的设计流程就能被完成。 一个系统的误码率能够基于完整的系统分析而计算出来。对射频的描述,例 如阻抗不匹配,晶体震荡器的相位噪声和群延迟,在系统中(当然包括噪声, 输入功率,S参数和其他的输入信号扫描分析)把误码率的计算作为一个任何 参数的函数。
ADS主要应用
ADS功能非常强大,对整个现代通信系统及其子系统 的设计和仿真提供支持。主要应用有以下几个主要方 面:
微波无源电路仿真技术(04)

order impedance calculation
Boundary is /4 away from horn aperture in all directions.
Note boundary does not follow ‘break’ at tail end of horn. Doing so would result in a convex surface to interior radiation.
Implication: Use caution when
using symmetry to assure that real behavior in the device is not filtered out by your boundary conditions!!
Natural 是指理想磁边界施加到其它边界 ( 如. Perfect E)
‘删除’理想电边界,但允许存在切向电场 。 其作用为在理想导电平面开了一个 ‘孔’ 。
Boundary/Excitations Overview
Perfect E 应用实例
不考虑损耗的金属平面
地平面
腔体表面
微带线导带
Resistor is 3.5 mils long (in direction of flow) and 4 mils wide. Desired lumped value is 35 ohms.
3 .5 0.875 4 Rlumped 35 Rsheet 40 / square N .875 N
趋肤深度
趋肤深度
1 = f
趋肤深度
d
微波无源器件的设计与优化

微波无源器件的设计与优化在现代通信和雷达系统中,微波无源器件扮演着至关重要的角色。
它们作为微波信号的传输、调制和处理的关键组成部分,直接影响着系统的性能和效率。
因此,对微波无源器件的设计与优化显得尤为重要。
本文将探讨微波无源器件的设计原理、优化方法以及应用前景。
设计原理微波无源器件的设计原理涉及电磁场理论、微波传输线理论以及微波元件的电路模型等多个方面。
其中,电磁场理论用于分析微波在器件内部的传播和耦合特性,微波传输线理论则用于描述微波在导波结构中的传输规律。
此外,微波元件的电路模型则是将微波器件抽象为电路元件,用于建立数学模型以实现仿真和优化。
优化方法针对不同类型的微波无源器件,存在着各种不同的优化方法。
例如,在微波滤波器的设计中,可以通过优化电路拓扑结构、调整元件参数以及优化耦合方式来实现性能的提升。
而对于微波功分器件的优化,则需要考虑功分平衡性、传输损耗以及频率响应等因素。
此外,利用计算机辅助设计(CAD)工具进行仿真和优化也是常见的方法之一。
应用前景随着通信技术的不断发展,微波无源器件在通信、雷达、无线电频谱监测等领域的应用前景十分广阔。
在5G通信系统中,微波滤波器、功分器件等无源器件的优化将对系统的性能和覆盖范围起到关键作用。
同时,在雷达系统中,微波无源器件的高性能和稳定性要求将进一步推动其在目标识别、跟踪和导引等方面的应用。
此外,随着物联网、车联网等新兴应用的兴起,微波无源器件的需求将持续增长。
结论微波无源器件的设计与优化是一个综合性的课题,涉及多个学科领域的知识和技术。
通过深入研究微波器件的设计原理,采用合适的优化方法,并结合实际应用需求,可以不断提升微波无源器件的性能和可靠性,推动微波技术在通信、雷达等领域的发展。
微波无源电路仿真技术(06带线微带合路)

-40.00
dB(S(2,3)) Setup1 : Sw eep1
Y1
-60.00
-80.00
-100.00
-120.00 1.50 1.75 2.00 2.25 2.50 Freq [GHz] 2.75 3.00 3.25 3.50
某合路器的MWO仿真模型
PCB图
MWO的优化结果
HFSS仿真模型
HFSS的仿真结果Βιβλιοθήκη Ansoft LLC0.00
Curve Info
XY Plot 1
dB(S(1,1)) Setup1 : Sw eep1 dB(S(2,2)) Setup1 : Sw eep1 dB(S(3,3)) Setup1 : Sw eep1
Port1-Port2低通
HFSS仿真结果
Ansoft LLC
0.00
XY Plot 1
HFSSDesign1
Curve Info dB(S(1,1)) Setup1 : Sw eep1
-20.00
dB(S(1,2)) Setup1 : Sw eep1 dB(S(1,3)) Setup1 : Sw eep1
微波无源电路仿真技术
带状线/微带线合路器
电子科技大学 贾宝富 博士
设计及过程
通常,带状线和微带线合路器通常都是低通和带阻滤波器 。低通滤波器通常选择切比雪夫和椭圆函数类型。带阻滤 波器一般也会利用SIR谐振器控制寄生阻带的位置。这类 器件的设计过程为, 建立电路模型,注意此时不一定使用带有J/K变换器的滤 波器电路模型。 选择合适的电路结构建立原始电路板模型。 使用电路软件优化。 利用EM软件或三维软件检验设计。 加工测试。
微波无源电路仿真技术(03低通滤波器)

低通滤波器的实现方法(一)
高、低阻抗传输线法:
X βl βl = Z 0tg ≈ Z 0 2 2 2
βl π
4
= B Y0 Sin ( β l ) ≈ Y0 β l β l π
4
= X Z 0 Sin ( β l ) ≈ Z 0 β l β l π B βl βl = Y0tg ≈ Y0 2 2 2
微波无源电路仿真技术
微波低通滤波器设计
电子科技大学 贾宝富 博士
微波低通滤波器的设计方法
微波低通滤波器的设计过程大致可分为3个步骤: (1)根据滤波器的预先给定的技术指标,设计出一 个LC梯型网络低通原型滤波器; (2)通过低通变换得到LC低通滤波器。 (3)选择合适的微波结构用微波网络元件来实现LC 低通滤波器中串联电感和并联电容。 实现微波网络元件的结构有:波导,同轴线,带 状线,微带线等。相对应的低通滤波器分别被称 作波导低通滤波器,同轴线低通滤波器,带状线 低通滤波器和微带线低通滤波器等。
技术指标
截止频率: f1 = 2GHz 通带最大插入损耗:LAr ≤ 0.1dB 4GHz 阻带最大衰减:La ≥ 30dB @ f a = 输入、输出阻抗: 50Ω
确定滤波器级数
如选择切比雪夫滤波器,根据公式,
= LA (ω ′) 10 log10 2 −1 ω ′ ′ = LA (ω ) 10 log10 1 + ε cosh n cosh ′ ω 1 ω ′≤ω1′ −1 ω ′ 2 1 + ε cos n cos ′ ω 1 ω ′≤ω1′
微波无源电路仿真技术(04管状滤波器)

4Cs2 K ij
2 1 4 2Cs2 K ij
2C0C1 Cpij 2C0 C1
根据T形到Π形(星形)等效电路的计算公式,得
Cij
2Cs Cpij 1 Cs K ij
Π形拓扑结构端部等效电路
端部为容性耦合的电路结构,丌能直接使用变换器等效。 需要变换成如下的电路形式。
Cd 2 r3Cd 2 1 1 4 Cd ln 2 ln 100 1 1 2 11.1(1 )( 1) 1016 ( pF / mm)
其中:
r r 3 2; r3 r1
实际上,串联电容输入是Π形拓扑结构的一个特例。通常 这种结构多用于窄带管状滤波器设计。串联电感输入多用 于宽带滤波器设计。下面将分别对Π形拓扑结构和串联电 感结构的综合设计过程做比较详细的介绍。
超导滤波器的拓扑结构
另外值得注意的是,管状滤波器的电路拓扑结构除了用于 管状滤波器外也被用于其他半集中参数滤波器设计。例如 :平面结构超导滤波器设计。
管状滤波器样品
管状滤波器内部结构
一款管状滤波器的结构
管状滤波器典型技术指标
管状带通滤波器的拓扑结构
管状带通滤波器的电路拓扑结构有多种类型。
串联电感输入
串联电容输入
并联电感输入
管状带通滤波器的拓扑结构
为了能够比较容易地实现管状结构滤波器要求的元件值, 管状滤波器还有一些变形的拓扑结构。如下图所示的输入 输出端为Π形电容的拓扑结构。
2 1 FBW 0
计算 Cs
Cs 1 ; 2 0 Ls
综合步骤(2)
2 1 4 2Cs2 K ij
2C0C1 Cpij 2C0 C1
根据T形到Π形(星形)等效电路的计算公式,得
Cij
2Cs Cpij 1 Cs K ij
Π形拓扑结构端部等效电路
端部为容性耦合的电路结构,丌能直接使用变换器等效。 需要变换成如下的电路形式。
Cd 2 r3Cd 2 1 1 4 Cd ln 2 ln 100 1 1 2 11.1(1 )( 1) 1016 ( pF / mm)
其中:
r r 3 2; r3 r1
实际上,串联电容输入是Π形拓扑结构的一个特例。通常 这种结构多用于窄带管状滤波器设计。串联电感输入多用 于宽带滤波器设计。下面将分别对Π形拓扑结构和串联电 感结构的综合设计过程做比较详细的介绍。
超导滤波器的拓扑结构
另外值得注意的是,管状滤波器的电路拓扑结构除了用于 管状滤波器外也被用于其他半集中参数滤波器设计。例如 :平面结构超导滤波器设计。
管状滤波器样品
管状滤波器内部结构
一款管状滤波器的结构
管状滤波器典型技术指标
管状带通滤波器的拓扑结构
管状带通滤波器的电路拓扑结构有多种类型。
串联电感输入
串联电容输入
并联电感输入
管状带通滤波器的拓扑结构
为了能够比较容易地实现管状结构滤波器要求的元件值, 管状滤波器还有一些变形的拓扑结构。如下图所示的输入 输出端为Π形电容的拓扑结构。
2 1 FBW 0
计算 Cs
Cs 1 ; 2 0 Ls
综合步骤(2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ansoft Designer
(MOM+解析法)
CST Design Studio
(解析法)
电磁场仿真软件
2.5D
Ansoft Esemble
(MOM)
Sonnet
(MOM)
IE3D
(MOM)
3D
Ansoft HFSS
(FEM)
Ansys
(FEM)
CST Microwave Studio (FIT)
Maxwell 方程组
Maxwell 方程组
r H(r,t)
r
r
D(r,t) J (r,t)
t
r E(r,t)
r B(r,t)
r
t
D(r,t) (r,t)
r
B(r,t) 0
本构关系
rr
D E
r
r
B HrrJ E Nhomakorabea边界条件
ADS软件范围涵盖了小至元器件,大到系统级的设计和分析,主要包括 RFIC设计软件、RF电路板设计软件、DSP专业设计软件、通讯系统设计软 件以及微波电路设计软件。
ADS软件仿真手段丰富多样,可实现包括时域和频域、数字与模拟、 线性与非线性、噪声等多种仿真分析手段,并可对设计结果进行成品率分析 与优化,从而大大提高了复杂电路的设计效率,是非常优秀的微波电路、系 统信号链路的设计工具。不但其仿真性能优越,而且提供了功能强大的数据后 处理能力。这对我们进行复杂、特殊电路的仿真、数据后处理及显示提供了 可能。该软件切实考虑到工程实际中各种参数对系统的影响,对要求分析手 段多样,运算量大的仿真分析,尤其适用。
微波无源电路仿真技术
微波仿真技术与微波仿真软件
电子科技大学 贾宝富 博士
历史回顾
英国物理学家 J.C.Maxwell干1862年提 出了位移电流的概念,并提 出了“光与电磁现象有联系” 的想法。
1865年,Maxwell在其论文 中第 一次使用了“电磁场” (electro一magnetic field) 一词,并提出了电磁场方程 组,推演了波方程,还论证 了光是电磁波的一种。一百 多年来的事实证明,建立在 电磁场理论基础上的微波科 学技术,对入类生活产生了 极其巨大的影响。
CST Mafia
(FIT)
EMPIRE
(FDTD)
XFDTD
(FDTD)
FEKO
(MOM+PO/UTD)
Super NEC
(MOM+UTD)
ADS(Advanced Design System )
它是Agilent Technoligyies公司推出的一套电路自动设计软件。Agilent Technoligyies公司把已有产品HP MDS(Microwave Design System)和HP EEsof IV(Electronic Engineering Software)两者的精华有机的结合起来,并 增加了许多新的功能,构成了功能强大的ADS软件。
解析方法与数值方法
早期人们解决微波工程中的设计与计算问题, 基本上都采用解析方法
Maxwell 方程 + 规则边界 = 解析法
上世纪60年代,随着计算机技术的发展,开始 采用数值计算技术解决不规则边界条件下微波 工程问题的求解
Maxwell 方程 + 不规则边界 = 数值法
常见的数值方法
ADS软件可应用于整个现代通信系统及其子系统,能对通信系统进行 快速、便捷、有效的设计和仿真。这是以往任何自动设计软件都不能够的。 所以,ADS已被广大电子工程技术人员接受,应用也愈加广泛。
ADS主要应用
ADS功能非常强大,对整个现代通信系统及其子系统 的设计和仿真提供支持。主要应用有以下几个主要方 面:
二维(2D)解法(MOM,TLM,FEM,FDTD)
适用范围:场和源都是两维空间变量的函数。 典型应用:TE10矩形波导;TEM波同轴线等。
二维半(2.5D)解法(MOM,TLM,FEM,FDTD)
适用范围:场是三维空间变量的函数,源是两维空间变量的函数。 典型应用:平面传输线(微带线,共面波导)、平面结构天线和多
层结构器件(LTCC)等。
三维(3D)解法(FDM,MOM,TLM,FEM,FDTD,FIT)
适用范围:场和源都是三维空间变量的函数。 典型应用:可以求解所有的电磁场问题。
常见的仿真软件
系统仿真软件
Agilent ADS
(MOM+解析法)
Microwave Office
(MOM+解析法)
射频和微波电路的设计(包括RFIC、RF Board)。 DSP设计 通信系统的设计 向量仿真
每个设计本身又包括以下几个内容:
绘制原理图 系统仿真 布局图 Pspice原理图
ADS界面
Microwave Office
Microwave Office软件为微波平面电路设计提供了最完整, 最快速和最精确 的解答。它是通过两个模拟器来对微波平面电路进行模拟和仿真的。 对于由集总 元件构成的电路, 用电路的方法来处理较为简便。 该软件设有一个叫“VoltaireXL” 的模拟器来处理集总元件构成的微波平面电路问题。 而对于由具体的微带几何图 形构成的分布参数微波平面电路则采用场的方法较为有效, 该软件采用的是一个叫 “EMSight”的模拟器来处理任何多层平面结构的三维电磁场的问题。
由于这里意在着重于电磁场分析,所以仅涉及“EMSight”模拟器。下面是它的 具体功能:
“EMSight”模拟器是一个完整的三维电磁场模拟程序包, 它可用于平面高 频电路和天线结构的分析。模拟器分析的电路都安装在一个矩形的金属包装盒内, 对于电路的层数和端口数并没有限制。它还具有显示微波平面电路内金属上电流和 空间电场力线的能力。“EMSight”模拟器可以对微波平面电路进行许多种类的计 算, (在该软件中称计算为测量)。 除了可以计算电路的阻抗参量,导纳参量,散射参 量,传输参量, 混合参量之外, 对于线性电路,它能计算辅助稳定因子,输入电容,群延 迟, 偶/奇模传输常数/阻抗/导纳, 电压驻波比, 端口输入阻抗/导纳, 增益等。具有计 算各种线/圆极化微带天线的电场方向图和功率方向图的能力, 在计算天线时矩形的 金属包装盒边界可以改变, 顶部和底部可以改为自由空间阻抗,而侧壁可以拉远。在 “EMSight”模拟器内也设有一个元件库, 其特点是列入了大量的微带元件的资料如 各种弯头, 开路线, 短截线, 耦合器, 阶梯, T形接头等。 还包括了许多传输线的资料。
频域:
差分法(FDM) 有限元法 (FEM) 矩量法(MOM) 边界元法(BEM) 传输线法(TLM)
时域:
时域有限差分法 (FDTD)
有限积分技术(FIT)
微分型
积分型
数值解法根据空间变量分类
一维(1D)解法(传输线解,SPICE程序)
适用范围:场和源都是一维空间变量的函数。 典型应用:传输线;平面波和电路等。