丁玉美《数字信号处理》(第3版)笔记
数字信号处理 第三版 (高西全 丁玉美)信号处理5章

在通带和阻带内均为等
波纹幅频特性
第5章 无限长单位脉冲响应(IIR)数字滤波器的设计方法
典型滤波器的幅度平方函数都有自己的表达式,可以直接 引用,而设计的最终目的是确定系统函数Ha(s) 。 5.3.1 幅度平方函数确定系统函数
模拟滤波器幅度响应常用幅度平方函数|Ha(jΩ)|2表示
* | Ha ( j) |2 Ha ( j)Ha ( j)
以右图低通为例, 频率响应包括
通带、过渡带与阻带
1(2) 为通 ( 阻 ) 带的容限 ,
p(s)
为通(阻)带截止频率
p
s
第5章 无限长单位脉冲响应(IIR)数字滤波器的设计方法
通带允许的最大衰减(波纹)Ap和阻带应达到的最小衰减As
| H (e j 0 ) | j p Ap 20 lg 20 lg | H ( e ) | 20 lg(1 1 ) j p | H (e ) | 式中 |H(ej0)|=1 | H (e j 0 ) | (归一化) j s As 20 lg 20 lg | H ( e ) | 20 lg 2 | H (e js ) |
•
根据阶数N,查表得到归一化系统函数HaN(s)
•
根据Ωc将HaN(s)去归一化,得到实际要求的系统函数Ha(s)
Ha (s) HaN s c
第5章 无限长单位脉冲响应(IIR)数字滤波器的设计方法
•
低通巴特沃思滤波器设计步骤总结 step1: 已知Ωp, Ap,Ωs和As,计算滤波器阶数N和截止频率Ωc
k b z k
H ( z)
1 ak z k
k 1
k 0 N
第5章 无限长单位脉冲响应(IIR)数字滤波器的设计方法
数字信号处理课后答案+第3章(高西全丁美玉第三版)PPT课件

所以
DFT[X(n)]=Nx(N-k) k=0, 1, …, N-1 5. 如果X(k)=DFT[x(n)], 证明DFT的初值定理
x(0)
1
N 1
X (k)
证: 由IDFT定义式
N k0
x(n)
1 N
N 1
X (k )WNkn
k 0
n 0, 1, , N 1
可知
x(0)
1
N 1
X (k)
教材第3章习题与上机题解答
1. 计算以下序列的N点DFT, 在变换区间0≤n≤N-1内,
(1) x(n)=1
(2) x(n)=δ(n) (3) x(n)=δ(n-n0) (4) x(n)=Rm(n)
0<n0<N 0<m<N
j2π mn
(5) x(n) e N , 0 m N
(6) x(n) cos 2π mn, 0 m N N
sin
(0
2π N
k
)
/
2
k 0, 1, , N 1
或
1 e j0N
X
7
(k
)
1
e
j(0
2 N
k)
(8) 解法一 直接计算:
k 0, 1, , N 1
x8 (n)
sin(0n)
RN
(n)
1 [e j0n 2j
e j0n ]RN
(n)
X8(n)
N 1
x8 (n)WNkn
n0
1
N 1
[e j0n
1 WNk
j π (m1)k
e N
sin
π N
mk
sin
π N
数字信号处理(第三版)课后答案及学习指导(高西全-丁玉美)第八章

第8章 上机实验
x2n=ones(1, 128); %产生信号x2n=un hn=impz(B, A, 58); %求系统单位脉冲响应h(n) subplot(2, 2, 1); y=′h(n)′; tstem(hn, y);
%谐振器对正弦信号的响应y32n figure(3) subplot(2, 1, 1); y=′y31(n)′; tstem(y31n, y) title(′(h) 谐振器对u(n)的响应y31(n)′) subplot(2, 1, 2); y=′y32(n)′; tstem(y32n, y); title(′(i) 谐振器对正弦信号的响应y32(n)′)
%调用函数tstem title(′(d) 系统单位脉冲响应h1(n)′) subplot(2, 2, 2); y=′y21(n)′; tstem(y21n, y);
第8章 上机实验
title(′(e) h1(n)与R8(n)的卷积y21(n)′)
subplot(2, 2, 3); y=′h2(n)′; tstem(h2n, y);
注意在以下实验中均假设系统的初始状态为零
第8章 上机实验
3. (1) 编制程序, 包括产生输入信号、 单位脉冲响应 序列的子程序, 用filter函数或conv函数求解系统输出响应 的主程序。 程序中要有绘制信号波形的功能。 (2) 给定一个低通滤波器的差分方程为
y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1) 输入信号
第8章 上机实验
8.1.3
实验结果与波形如图8.1.1所示。
第8章 上机实验
数字信号处理第三版西安科大出版高西全丁玉美课后答案第3与4章

x 6 ( n ) ID [X ( k F ),]n T 0 ,1 ,2 , ,5
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
解:直接根据频域采样概念得到
x6(n ) x(n 6 l)R 6(n )R 6(n )R 2(n ) l
[例3.4.3] 令X(k)表示x(n)的N点DFT, 分别证明: (1) 如果x(n)满足关系式
yc(1)
x(1)
x(0)
x(L1)
x(2)
h(1)
yc(2)
x(2)
x(1)
x(0) x(3) h(2)
yc(L1) x(L1) x(L2) x(L3) x(0)h(L1)
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
循环卷积定理: 若
yc(n)=h(n) L x(n) 则
~xN(n) x(niN) n
会发生时域混叠, xN(n)≠x(n)。
通过频率域采样得到频域离散序列xN(k), 再对xN(k)进行 IDFT得到的序列xN(n)应是原序列x(n)以采样点数N为周期进行 周期化后的主值区序列, 这一概念非常重要。
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
(FFT)
3.1.2 重要公式
1) 定义
N1
X(k)DF [x(T n)N ] x(n)W N k n k=0, 1, …, N-1 n0
x(n)ID[X F(kT )N ]N 1N k 0 1X(k)W N kn
2) 隐含周期性
k=0, 1, …, N-1
N 1
N 1
X (k m ) N x (n ) W N (k m )n N x (n ) W N k nX (k )
数字信号处理第三版课后答案

数字信号处理第三版课后答案西安电⼦(⾼西全丁美⽟第三版)数字信号处理课后答案1.2教材第⼀章习题解答1.⽤单位脉冲序列及其加权和表⽰题1图所⽰的序列。
解:2.给定信号:(1)画出序列的波形,标上各序列的值;(2)试⽤延迟单位脉冲序列及其加权和表⽰序列;(3)令,试画出波形;(4)令,试画出波形;(5)令,试画出波形。
解:(1)x(n)的波形如题2解图(⼀)所⽰。
(2)(3)的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(⼆)所⽰。
(4)的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所⽰。
(5)画时,先画x(-n)的波形,然后再右移2位,波形如题2解图(四)所⽰。
3.判断下⾯的序列是否是周期的,若是周期的,确定其周期。
(1),A是常数;(2)。
解:(1),这是有理数,因此是周期序列,周期是T=14;(2),这是⽆理数,因此是⾮周期序列。
5.设系统分别⽤下⾯的差分⽅程描述,与分别表⽰系统输⼊和输出,判断系统是否是线性⾮时变的。
(1);(3),为整常数;(5);(7)。
解:故该系统是时不变系统。
故该系统是线性系统。
(3)这是⼀个延时器,延时器是⼀个线性时不变系统,下⾯予以证明。
令输⼊为,输出为,因为故延时器是⼀个时不变系统。
⼜因为故延时器是线性系统。
(5)令:输⼊为,输出为,因为故系统是时不变系统。
⼜因为因此系统是⾮线性系统。
(7)令:输⼊为,输出为,因为故该系统是时变系统。
⼜因为故系统是线性系统。
6.给定下述系统的差分⽅程,试判断系统是否是因果稳定系统,并说明理由。
(1);(3);(5)。
(1)只要,该系统就是因果系统,因为输出只与n时刻的和n时刻以前的输⼊有关。
如果,则,因此系统是稳定系统。
(3)如果,,因此系统是稳定的。
系统是⾮因果的,因为输出还和x(n)的将来值有关.(5)系统是因果系统,因为系统的输出不取决于x(n)的未来值。
如果,则,因此系统是稳定的。
7.设线性时不变系统的单位脉冲响应和输⼊序列如题7图所⽰,要求画出输出输出的波形。
数字信号处理课后答案+第3章(高西全丁美玉第三版)

X (k ) =
∑
kn 1 ⋅ WN
=
∑
=
1− e 1− e
N k = 0 = 0 k = 1, 2, ⋯, N − 1
(2) X (k ) = ∑ δ(n)W
n =0
N −1
kn N
(10) 解法一
X (k ) =
∑
n =0
N −1 kn nW N
k = 0, 1, ⋯ , N − 1
上式直接计算较难, 可根据循环移位性质来求解X(k)。 因 为x(n)=nRN(n), 所以 x(n)-x((n-1))NRN(n)+Nδ(n)=RN(n) 等式两边进行DFT, 得到 X(k)-X(k)WkN+N=Nδ(k)
j
2π mn N ,
0<m< N
2π x(n) = cos mn , 0 < m < N N
(7) (8) (9)
x(n)=ejω0nRN(n) x(n)=sin(ω0n)RN(n) x(n)=cos(ω0n)RN(N)
(10) x(n)=nRN(n) 解: (1)
H (k ) = ∑ ∑ x((n′ + lN )) N e
l =0 n′=0
m −1 N −1
−j
2π( n′+lN ) k rN
2π 2π −j n′k − j lk N −1 k r −1 − j 2π lk ′)e mN e m = X ∑ e m = ∑ ∑ x(n l =0 n′=0 r l =0 m −1
(完整版)数字信号处理(第三版)高西全丁玉美课后答案

西安电子(咼西全丁美玉第二版)数字信号处理课后答案1.2 教材第一章习题解答解:x(n)(n 4)2 (n 2)0.5 (n 4) 2 (n(n 1) 2 (n) (n 1) 2 (n 2) 4 (n 3) 6)2n 5, 4 n 12.给定信号 :x(n)6,0 n 4 0,其它(1) 画出x(n)序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示 x(n)序列;(3) 令X 1(n) 2x(n 2),试画出捲(n)波形; (4) 令 X 2(n) 2x(n 2),试画出 X 2(n)波形; (5) 令 x 3(n) 2x(2 n),试画出 X 3(n)波形。
解:(1) x(n)的波形如 题2解图(一)所示。
(2)x(n) 3 (n 4) (n 3) (n 2) 3 (n 1) 6 (n)6 (n 1) 6 (n 2) 6 (n 3) 6 (n 4)(5)画X 3(n)时,先画x(-n)的波形,然后再右移 2位,X 3(n)波形如题2解图(四)所示。
3.判断下面的序列是否是周期的,若是周期的,确定其周期。
3(1) x(n) Acos( n -),A 是常数;1j (7n)(2) x(n) e 8。
1.用单位脉冲序列(n)及其加权和表示 题1图所示的序列。
(3) x, n)的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4) X 2 (n)的波形是x(n)的波形左移 2位,在乘以2,画出图形如 题2解图(三)所示。
解:3 2 14(1)W , ,这是有理数,因此是周期序列,周期是T=14 ;7 w 31 2(2)w , 16 ,这是无理数,因此是非周期序列。
8 w5.设系统分别用下面的差分方程描述,x(n)与y(n)分别表示系统输入和输出,判断系统是否是线性非时变的。
(1)y(n) x(n) 2x(n 1) 3x(n 2);(3)y(n) x(n n°),n o为整常数;(5)y(n) x2(n);(7)y(n) nx(m)。
数字信号处理第三版(高西全丁玉美)信号处理章

第4章 数字滤波器的基本结构 2. 离散时间系统结构的信号流图表示法
第4章 数字滤波器的基本结构 2. 离散时间系统结构的信号流图表示法 例 二阶数字滤波器系统的信号流图可表示为
信号流图与方框图完全等效,但是画起来要更简单些
1 直接型 (Ⅰ型)
N阶的IIR滤波器的差分方程表示如下
M
N
y(n) bi x(n i) ai y(n i)
i0
i 1
令M=N时,方程对应的信号流图可表示成
第4章 数字滤波器的基本结构
M
N
y(n) bi x(n i) ai y(n i)
i0
i 1
直接I型结构
M
H (z)
Y (z) X (z)
第4章 数字滤波器的基本结构 直接型(II型 )---结构特点
➢ 两个网络级联,第一个有反馈的N节延时网络实现极点,第二 个横向结构M节延时网络实现零点。
➢ 实现N阶滤波器(N>=M),只需N级延时单元。所需延时单元 最少,故称典范型。
➢ 具有直接型实现的一般缺点。
第4章 数字滤波器的基本结构
系统函数为
bk z k
k 0
N
ak zk
k 0
第4章 数字滤波器的基本结构 直接型(I型 )---结构特点
➢ 两个网络级联,第一个横向结构M节延时网络实现零点,第二 个有反馈的N节延时网络实现极点。
➢ 共需(N+M)级延时单元。 ➢ 系数ai,bi不是直接决定单个零极点,因而不能很好地进行滤波
器性能控制。 ➢ 极点对系数的变化过于灵敏,从而使系统频率响应对系数变化
M